• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tensorflow.arg_max函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.arg_max函数的典型用法代码示例。如果您正苦于以下问题:Python arg_max函数的具体用法?Python arg_max怎么用?Python arg_max使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了arg_max函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: cnn_handigit

def cnn_handigit():
    sess = tf.InteractiveSession()

    # paras
    W_conv1 = weight_varible([5, 5, 1, 32])
    b_conv1 = bias_variable([32])

    # conv layer-1
    x = tf.placeholder(tf.float32, [None, 784])
    x_image = tf.reshape(x, [-1, 28, 28, 1])

    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
    h_pool1 = max_pool_2x2(h_conv1)

    # conv layer-2
    W_conv2 = weight_varible([5, 5, 32, 64])
    b_conv2 = bias_variable([64])

    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
    h_pool2 = max_pool_2x2(h_conv2)

    # full connection
    W_fc1 = weight_varible([7 * 7 * 64, 1024])
    b_fc1 = bias_variable([1024])

    h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

    # dropout
    keep_prob = tf.placeholder(tf.float32)
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

    # output layer: softmax
    W_fc2 = weight_varible([1024, 10])
    b_fc2 = bias_variable([10])

    y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
    y_ = tf.placeholder(tf.float32, [None, 10])

    # model training
    cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

    correct_prediction = tf.equal(tf.arg_max(y_conv, 1), tf.arg_max(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

    sess.run(tf.initialize_all_variables())

    saver = tf.train.Saver()
    tf.add_to_collection('train_op', train_step)
    for i in range(200):
        batch = mnist.train.next_batch(50)
        if i % 100 == 0:
            train_accuacy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
            print("step %d, training accuracy %g"%(i, train_accuacy))
            saver.save(sess,'train_process',global_step=i)  #在保存的时候
        train_step.run(feed_dict = {x: batch[0], y_: batch[1], keep_prob: 0.5})

    # accuacy on test
    print("test accuracy %g"%(accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})))
开发者ID:tuling56,项目名称:Python,代码行数:60,代码来源:cnn_handigit.py


示例2: evaluate

def evaluate(input_x, input_y):
    '''
    评价 文本分类
    :return
        result:预测的结果,哪一维更大
        accuracy:精确度
    '''
    graph = tf.Graph()
    with graph.as_default(), tf.Session() as sess:
        # 恢复模型
        features = tf.placeholder(tf.int32, [None, cnnc.SEQUENCE_LENGTH])
        labels = tf.placeholder(tf.int32, [None, cnnc.FLAGS.num_class])
        logits = cnnc.inference(features)
        predictions = tf.arg_max(logits, 1)
        correct_predictions = tf.equal(predictions, tf.arg_max(labels, 1))
        accuracy = tf.reduce_mean(tf.cast(correct_predictions,
                                          dtype=tf.float32))
        saver = tf.train.Saver()
        ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
        if ckpt and ckpt.model_checkpoint_path:
            saver.restore(sess, ckpt.model_checkpoint_path)
            print("SUCESS")
        else:
            print("No checkpoint file found")

        result, accuracy = sess.run([predictions, accuracy], feed_dict={features: input_x, labels: input_y})

    return result, accuracy
开发者ID:IgorWang,项目名称:MachineLearningPracticer,代码行数:28,代码来源:cnnc_eval.py


示例3: compute_accuracy

def compute_accuracy(y_hat, labels, sparse=False):
    """Compute accuracy for a 3-dimensional outputs.

    The prediction is assumed to be made by argmax.

    Parameters
    ----------
    y_hat : tensor, shape (batch_size, n_samples, n_outputs)
        Raw predictions of a neural network. It is not required to convert it
        to softmax, because softmax is a monotonous transform.
    labels : tensor
        True labels. It can have shape (batch_size, n_samples), then each
        values should be an index within [0, n_classes). Or alternatively
        it can have shape (batch_size, n_samples, n_outputs), then for each
        sample a probability distribution with n_outputs values should be
        provided (this case also handles one-hot label encoding). In the
        latter case the correct label is also selected by argmax. Set `sparse`
        parameter to select an appropriate setting.
    sparse : bool, default False
        Whether `labels` are indices or full distributions.

    Returns
    -------
    accuracy : scalar tensor
        Computed accuracy.
    """
    prediction = tf.arg_max(y_hat, 2)
    if sparse:
        labels = tf.cast(labels, prediction.dtype)
    else:
        labels = tf.arg_max(labels, 2)

    return tf.reduce_mean(tf.cast(tf.equal(prediction, labels), tf.float32))
开发者ID:developeralgo8888,项目名称:ufcnn,代码行数:33,代码来源:ufcnn.py


示例4: main

def main(_):
    start_time = time.time()

    data_sets = read_data_sets()

    with tf.Graph().as_default(), tf.Session() as session:
        dictionary_size = len(data_sets.dictionary)

        x = tf.placeholder(tf.float32, [None, dictionary_size])
        W = tf.Variable(tf.zeros([dictionary_size, label_size]))
        b = tf.Variable(tf.zeros([label_size]))
        y = tf.nn.softmax(tf.matmul(x, W) + b)

        y_ = tf.placeholder(tf.float32, [None, label_size])
        cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
        train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(cross_entropy)

        tf.initialize_all_variables().run()

        for i in range(1000):
            batch_xs, batch_ys = data_sets.train.next_batch(100)
            train_step.run({x: batch_xs, y_: batch_ys})

        correct_prediction = tf.equal(tf.arg_max(y, 1), tf.arg_max(y_, 1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        print(accuracy.eval({x: data_sets.validation.inputs, y_: data_sets.validation.labels}))

    print("Elapsed time:", time.time() - start_time)
开发者ID:izeye,项目名称:samples-tensorflow,代码行数:28,代码来源:unknown_softmax.py


示例5: train_neural_network

def train_neural_network(x):
    prediction = neural_network_model(x)

    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(prediction, y))
    optimizer = tf.train.AdadeltaOptimizer().minimize(cost)

    hm_epoches = 10

    with tf.Session() as sess:
        sess.run(tf.initialize_all_variables())

        for epoch in range(hm_epoches):
            epoch_lose = 0

            for _ in range(int(mnist.train.num_example / batch_size)):
                epoch_x, epoch_y = mnist.train.next_batch(batch_size)

                _, c = sess.run([optimizer, cost], feed_dict={x: epoch_x, y: epoch_y})
                epoch_lose += c

            print('Epoch ', epoch, ' complet out of ', hm_epoches, ' lose : ', epoch_lose)

        correct = tf.equal(tf.arg_max(prediction, 1), tf.arg_max(y, 1))
        accuracy = tf.reduce_mean(tf.cast(correct, 'float'))

        print('Accuracy :', accuracy.eval({x: mnist.test.images, y: mnist.test.labels}))
开发者ID:Daniel194,项目名称:Machine-Learning,代码行数:26,代码来源:DeepLearning.py


示例6: num_correct_prediction

def num_correct_prediction(logits, labels):
  """Evaluate the quality of the logits at predicting the label.
  Return:
      the number of correct predictions
  """
  correct = tf.equal(tf.arg_max(logits, 1), tf.arg_max(labels, 1))
  correct = tf.cast(correct, tf.int32)
  n_correct = tf.reduce_sum(correct)
  return n_correct
开发者ID:caibobit,项目名称:tensorflowlearning,代码行数:9,代码来源:tools.py


示例7: build_graph

    def build_graph(self):

        x = tf.placeholder(tf.float32, [None, self.window_size, self.dim_word_feat], "x_input")
        y = tf.placeholder(tf.float32, [None, self.output_size], "label_input")

        W1 = self.weight_variable(shape=[2, self.dim_word_feat, 1, self.num_feat_map])
        b1 = self.bias_variable(shape=[self.num_feat_map])

        x_inputs = tf.reshape(x, [-1, self.window_size, self.dim_word_feat, 1])

        # h_conv_1 size: [-1, dwf, ws, nfm]
        h_conv_1 = tf.nn.relu(self.conv_2d(x_inputs, W1) + b1)
        print h_conv_1.get_shape()
        # h_max_pool size: [-1, 1,1, nfm]
        h_max_pool = self.max_pool(h_conv_1)
        print h_max_pool.get_shape()

        # concentrate in none vector
        # sent_vec size: [-1, nfm]
        sent_vec = tf.reshape(h_max_pool, [-1, self.num_feat_map])
        print sent_vec.get_shape()

        W2 = self.weight_variable(shape=[self.num_feat_map, self.output_size])
        b2 = self.bias_variable(shape=[self.output_size])

        logits = tf.matmul(sent_vec, W2) + b2
        print logits.get_shape()

        outputs = tf.nn.softmax(logits)
        print outputs.get_shape()

        # window - level
        cross_entropy = tf.reduce_mean(-tf.reduce_sum(tf.mul(y, tf.log(outputs)), reduction_indices=[1]))
        print cross_entropy.get_shape()
        # # sentence - level
        # y_label = tf.arg_max(y, 1)
        # ltm = self.label_transition_mat([self.output_size + 1, self.output_size])
        #
        # score_golden =  tf.reduce_sum(ltm[])
        # log_add_score

        train_step = tf.train.AdamOptimizer(self.learning_rate).minimize(cross_entropy)

        prediction = tf.arg_max(outputs, 1)
        ori_label = tf.arg_max(y, 1)

        accuracy = tf.reduce_mean(tf.cast(tf.equal(prediction, ori_label), tf.float32))

        return dict(
            x=x,
            y=y,
            loss=cross_entropy,
            train=train_step,
            accuracy=accuracy,
            prediction=prediction,
            ori_label=ori_label
        )
开发者ID:staylonging,项目名称:tf,代码行数:57,代码来源:mycnn.py


示例8: accuracy

def accuracy(logits, labels):
  """Evaluate the quality of the logits at predicting the label.
  Args:
    logits: Logits tensor, float - [batch_size, NUM_CLASSES].
    labels: Labels tensor, 
  """
  with tf.name_scope('accuracy') as scope:
      correct = tf.equal(tf.arg_max(logits, 1), tf.arg_max(labels, 1))
      correct = tf.cast(correct, tf.float32)
      accuracy = tf.reduce_mean(correct)*100.0
      tf.summary.scalar(scope+'/accuracy', accuracy)
  return accuracy
开发者ID:caibobit,项目名称:tensorflowlearning,代码行数:12,代码来源:tools.py


示例9: calc_reward

def calc_reward(outputs):
  outputs = outputs[-1]  # look at ONLY THE END of the sequence
  outputs = tf.reshape(outputs, (batch_size, cell_out_size))
  h_a_out = weight_variable((cell_out_size, n_classes))

  p_y = tf.nn.softmax(tf.matmul(outputs, h_a_out))
  max_p_y = tf.arg_max(p_y, 1)
  correct_y = tf.cast(labels_placeholder, tf.int64)

  R = tf.cast(tf.equal(max_p_y, correct_y), tf.float32)  # reward per example

  reward = tf.reduce_mean(R)  # overall reward

  p_loc = gaussian_pdf(mean_locs, sampled_locs)
  p_loc = tf.reshape(p_loc, (batch_size, glimpses * 2))

  R = tf.reshape(R, (batch_size, 1))
  J = tf.concat(1, [tf.log(p_y + 1e-5) * onehot_labels_placeholder, tf.log(
      p_loc + 1e-5) * R])
  J = tf.reduce_sum(J, 1)
  J = tf.reduce_mean(J, 0)
  cost = -J

  optimizer = tf.train.AdamOptimizer(lr)
  train_op = optimizer.minimize(cost)

  return cost, reward, max_p_y, correct_y, train_op
开发者ID:ffmpbgrnn,项目名称:tensorflow_mnist_ram,代码行数:27,代码来源:ram.py


示例10: test_i2v

def test_i2v():
    """Loads the i2v network and applies it to a test image.
    """
    with tf.Session() as sess:
        net = get_i2v_model()
        tf.import_graph_def(net['graph_def'], name='i2v')
        g = tf.get_default_graph()
        names = [op.name for op in g.get_operations()]
        x = g.get_tensor_by_name(names[0] + ':0')
        softmax = g.get_tensor_by_name(names[-3] + ':0')

        from skimage import data
        img = preprocess(data.coffee())[np.newaxis]
        res = np.squeeze(softmax.eval(feed_dict={x: img}))
        print([(res[idx], net['labels'][idx])
               for idx in res.argsort()[-5:][::-1]])

        """Let's visualize the network's gradient activation
        when backpropagated to the original input image.  This
        is effectively telling us which pixels contribute to the
        predicted class or given neuron"""
        pools = [name for name in names if 'pool' in name.split('/')[-1]]
        fig, axs = plt.subplots(1, len(pools))
        for pool_i, poolname in enumerate(pools):
            pool = g.get_tensor_by_name(poolname + ':0')
            pool.get_shape()
            neuron = tf.reduce_max(pool, 1)
            saliency = tf.gradients(neuron, x)
            neuron_idx = tf.arg_max(pool, 1)
            this_res = sess.run([saliency[0], neuron_idx],
                                feed_dict={x: img})

            grad = this_res[0][0] / np.max(np.abs(this_res[0]))
            axs[pool_i].imshow((grad * 128 + 128).astype(np.uint8))
            axs[pool_i].set_title(poolname)
开发者ID:Arn-O,项目名称:kadenze-deep-creative-apps,代码行数:35,代码来源:i2v.py


示例11: train

def train(mnist):
    x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input')
    y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input')
    regularizer = tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE)
    y = mnist_inference.inference(x, regularizer)
    global_step = tf.Variable(0, trainable=False)

    # 滑动平均操作
    variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
    variable_averages_op = variable_averages.apply(tf.trainable_variables())
    # 损失函数
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.arg_max(y_, 1))
    cross_entropy_mean = tf.reduce_mean(cross_entropy)
    loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
    learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE, global_step, mnist.train.num_examples/BATCH_SIZE, LEARNING_RATE_DECAY)
    # 训练过程
    train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
    with tf.control_dependencies([train_step, variable_averages_op]):
        train_op = tf.no_op(name='train')
    
    # 初始化TF 持久化类
    saver = tf.train.Saver()
    with tf.Session() as sess:
        tf.initialize_all_variables().run()

        for i in range(TRAINING_STEPS):
            xs, ys = mnist.train.next_batch(BATCH_SIZE)
            _, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys})
            if i % 1000 == 0:
                print("After %d training step(s), loss on training "
                    "batch is %g." % (step, loss_value))
                saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step)
开发者ID:ZhangXinNan,项目名称:LearnPractice,代码行数:32,代码来源:mnist_train.py


示例12: train_neural_network

def train_neural_network(x):
    prediction = neural_network_model(x)
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = prediction,labels = y))
    optimizer = tf.train.AdamOptimizer().minimize(cost)
    
    #cycles of feed forward and back propagation
    hm_epochs = 10
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        
        for epoch in range(hm_epochs):
            epoch_loss = 0
            
            i = 0
            while i < len(train_x):
                start = i
                end = i+batch_size
                batch_x = np.array(train_x[start:end])
                batch_y = np.array(train_y[start:end])
                
                _,c = sess.run([optimizer,cost],feed_dict = {x: batch_x,y: batch_y})
                epoch_loss += c
                i += batch_size
                
            print('Epoch',epoch+1,'completed out of', hm_epochs,'loss:',epoch_loss)
        correct = tf.equal(tf.arg_max(prediction,1),tf.argmax(y,1))
        
        accuracy = tf.reduce_mean(tf.cast(correct,'float'))
        print('Accuracy: ',accuracy.eval({x:test_x,y:test_y}))
开发者ID:akuchotrani,项目名称:Tensorflow,代码行数:29,代码来源:SentimentNeuralNetwork.py


示例13: infer

def infer(args):
    """
    """
    dataloader = DataLoader(args.input_dict)

    args.seq_length = dataloader.seq_length
    args.char_size = len(dataloader.char_vocab_dict)
    args.phvocab_size = len(dataloader.ph_vocab_dict)

    model = Model(args)

    with tf.Session() as sess:
        sess.run(tf.initialize_all_variables())

        ##
        ## initial state for the model
        ##
        state = sess.run(model.initial_state)

        dataloader.reset_batch_pointer()

        for n in xrange(dataloader.num_batches):
            b = dataloader.next_batch()
            x, y = b
            inx = np.array([sess.run(x), sess.run(x)])
           
            feed = {model.input_data: inx}
            logits = sess.run(model.logits, feed_dict = feed)
            logits = tf.split(0, args.batch_size, logits)
            
            for res in logits:
                result = sess.run(tf.arg_max(res, 1))
                print(result, [dataloader.ph_vocab_invdict[i] for i in result])
开发者ID:datavizweb,项目名称:g2p-tf,代码行数:33,代码来源:g2p.py


示例14: MLP

def MLP(trainFeature, trainLabel, testFeature):
    N1 = trainFeature.shape[0]
    N2 = testFeature.shape[0]
    D = trainFeature.shape[1]
    x = tf.placeholder(tf.float32, [None, D])
    W = tf.Variable(tf.zeros([D, 2]))
    b = tf.Variable(tf.zeros([2]))
    y = tf.nn.softmax(tf.matmul(x, W) + b)
    y_ = tf.placeholder(tf.float32, [None, 2])
    cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
    train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
    init = tf.initialize_all_variables()
    label1 = np.zeros([N1, 2])
    for item in range(N1):
        label1[item][trainLabel[item]] = 1
    sess = tf.Session()
    sess.run(init)
    idx = [i for i in range(N1)]
    for i in range(100):
        randomSamples = random.sample(idx, 5)
        batch_xs = trainFeature[randomSamples, :]
        batch_ys = label1[randomSamples]
        sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
        if i % 10 == 0:
            print(i, sess.run(W), sess.run(b))

    #correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))

    #accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    predicted_label = tf.arg_max(y, 1)
    return(sess.run(predicted_label, feed_dict={x: testFeature}))
开发者ID:Codelegant92,项目名称:RiskEvaluation,代码行数:31,代码来源:NeuralNetwork.py


示例15: __init__

    def __init__(self, layer_sizes, layer_types,
                 init_value_scale=1.0, uniform_init=False,
                 verbose = True):
        '''
        initialize network architecture
        :param layer_sizes: list type, layer sizes,
                e.g. a 3-layer network "784:256:10"
        :param layer_types: list type, hidden layer types,
                e.g. sigmoid/tanh or "sigmoid:tanh" for 2-hidden-layer network
        :param init_value_scale: int, scale for uniform initialization
        :param uniform_init: bool, true for uniform, gaussian otherwise
        :param verbose: bool, verbose
        :return:
        '''

        self.verbose = verbose
        # input settings
        self.x = tf.placeholder(tf.float32, [None, layer_sizes[0]], name='input')
        self.y = tf.placeholder(tf.float32, [None, layer_sizes[-1]], name='truth')
        self.learning_rate = tf.placeholder(tf.float32, name='learningrate')
        self.momentum = tf.placeholder(tf.float32, name='momentum')
        # layers
        self.layers = []
        # build multi-layer perceptron architecture
        if self.verbose: print('Building Multilayer Perceptron...')
        # forward pass and build output
        for idx in xrange(len(layer_sizes) - 1):
            n_input = layer_sizes[idx]
            n_output = layer_sizes[idx + 1]
            layer = Layer(n_input, n_output, layer_types[idx], init_value_scale, uniform_init)
            self.layers.append(layer)

        # forward
        net_output = self.x
        for idx in xrange(len(self.layers)):
            net_output = self.layers[idx].output(net_output)
        # cost function with ground truth provided, for training
        self.cost = self.layers[-1].neg_loglikelihood(net_output, self.y)
        # make prediction
        self.prediction = tf.arg_max(net_output, dimension=1)
        # prediction error
        self.prederr = tf.reduce_mean(tf.to_float(tf.not_equal(self.prediction, tf.arg_max(self.y, dimension=1))))
        # training
        self.train_process = tf.train.MomentumOptimizer(self.learning_rate, self.momentum).minimize(self.cost)
        # session
        self.sess = tf.Session()
开发者ID:zhaocq-nlp,项目名称:NeuralExamples,代码行数:46,代码来源:MLP.py


示例16: inference

def inference(x1, x2, mask1, mask2, l, y,
              args, embeddings, reuse=False, training=False):
    with tf.variable_scope('model', reuse=reuse):
        embed = tf.get_variable('embed', shape=embeddings.shape,
                                initializer=tf.constant_initializer(embeddings))
        embed1 = tf.nn.embedding_lookup(embed, x1)
        embed2 = tf.nn.embedding_lookup(embed, x2)
 
        keep = 1.0 - args.dropout_rate if training else 1.0
        dropout1 = tf.nn.dropout(embed1, keep)
        dropout2 = tf.nn.dropout(embed2, keep)
 
        rnn_cell = {'gru': tf.contrib.rnn.GRUCell,
                    'lstm': tf.contrib.rnn.LSTMCell}[args.rnn_type]
        rnn1 = bidirectional_dynamic_rnn(dropout1, cell_fn=rnn_cell,
                                         n_hidden=args.hidden_size,
                                         sequence_length=retrieve_seq_length_op2(mask1),
                                         name='rnn1')
        rnn2 = bidirectional_dynamic_rnn(dropout2, cell_fn=rnn_cell,
                                         n_hidden=args.hidden_size,
                                         sequence_length=retrieve_seq_length_op2(mask2),
                                         return_last=True,
                                         name='rnn2')
 
        args.rnn_output_size = 2 * args.hidden_size
        att = BilinearAttention([rnn1, rnn2], args.rnn_output_size, mask1)
 
        z = tf.layers.dense(att, units=args.num_labels,
                            kernel_initializer=tf.random_uniform_initializer(-0.1, 0.1),
                            use_bias=False)
 
        prob = tf.nn.softmax(z)
        prob = prob * l
        prob /= tf.reduce_sum(prob, axis=1, keep_dims=True)
 
        pred = tf.to_int32(tf.arg_max(prob, dimension=1))
        acc = tf.reduce_mean(tf.to_float(tf.equal(pred, y)))
 
        if not training:
            return acc
        else:
            epsilon = 1e-7
            prob = tf.clip_by_value(prob, epsilon, 1 - epsilon)
            loss = tf.one_hot(y, depth=args.num_labels) * -tf.log(prob)
            loss = tf.reduce_sum(loss, axis=1)
            loss = tf.reduce_mean(loss)
 
            if args.optimizer == 'sgd':
                optimizer = tf.train.GradientDescentOptimizer(learning_rate=args.learning_rate)
            elif args.optimizer == 'adam':
                optimizer = tf.train.AdamOptimizer()
            elif args.optimizer == 'rmsprop':
                optimizer = tf.train.RMSPropOptimizer(learning_rate=args.learning_rate)
            else:
                raise NotImplementedError('optimizer = %s' % args.optimizer)
            train_op = optimizer.minimize(loss)
            return train_op, loss, acc
开发者ID:yaroslavvb,项目名称:stuff,代码行数:57,代码来源:main.py


示例17: calc_R_glimpse

def calc_R_glimpse(output, correct_y):
    p_y = tf.nn.softmax(tf.matmul(output, Wa_h_a) + Ba_h_a)
    max_p_y = tf.arg_max(p_y, 1)

    # reward for all examples in the batch
    R = tf.cast(tf.equal(max_p_y, correct_y), tf.float32)
    reward = tf.reduce_mean(R)  # mean reward
    R = tf.reshape(R, (batch_size, 1))
    R = tf.tile(R, [1, 2])
    return R, reward, tf.log(p_y + SMALL_NUM) * onehot_labels_placeholder, max_p_y
开发者ID:QihongL,项目名称:mathCognition_RAM,代码行数:10,代码来源:ram_subitizing.py


示例18: _argmax

	def _argmax(self, tensor):
		""" ArgMax
		Args:
			tensor	: 2D - Tensor (Height x Width : 64x64 )
		Returns:
			arg		: Tuple of max position
		"""
		resh = tf.reshape(tensor, [-1])
		argmax = tf.arg_max(resh, 0)
		return (argmax // tensor.get_shape().as_list()[0], argmax % tensor.get_shape().as_list()[0])
开发者ID:wjgaas,项目名称:FashionAI_keypoint,代码行数:10,代码来源:hourglass_tiny.py


示例19: lable_pred

def lable_pred(output):
    output = tf.reshape(output, (batch_size, cell_out_size))

    with tf.variable_scope("pred", reuse = DO_SHARE):
        pred_tensor = linear(output, n_classes + 1)

    pred_tensor = tf.nn.softmax(pred_tensor) # batch_size * 11
    pred = tf.arg_max(pred_tensor, 1) # (batch_size,)
    pred = tf.reshape(pred, (batch_size, 1))
    return pred_tensor, pred
开发者ID:BreilleXuan,项目名称:Multi-digit-recognition,代码行数:10,代码来源:RAM_model.py


示例20: calc_reward

def calc_reward(outputs):
    
    outputs_tensor = tf.convert_to_tensor(outputs)
    outputs_tensor = tf.transpose(outputs_tensor, perm=[1, 0, 2])
    b_weights_batch = tf.tile(b_weights, [10, 1, 1])
    b = tf.sigmoid(tf.matmul(outputs_tensor, b_weights_batch))
    b = tf.concat(axis=2, values=[b, b])
    b = tf.reshape(b, (batch_size, glimpses * 2))
    print(b.get_shape())
    # consider the action at the last time step
    outputs = outputs[-1] # look at ONLY THE END of the sequence
    outputs = tf.reshape(outputs, (batch_size, cell_out_size))
    
    # the hidden layer for the action network
    h_a_out = weight_variable((cell_out_size, n_classes))
    # process its output
    p_y = tf.nn.softmax(tf.matmul(outputs, h_a_out))
    max_p_y = tf.arg_max(p_y, 1)
    # the targets
    correct_y = tf.cast(labels_placeholder, tf.int64)

    # reward for all examples in the batch
    R = tf.cast(tf.equal(max_p_y, correct_y), tf.float32)
    reward = tf.reduce_mean(R) # mean reward

    #
    p_loc = gaussian_pdf(mean_locs, sampled_locs)
    p_loc_orig = p_loc
    p_loc = tf.reshape(p_loc, (batch_size, glimpses * 2))

    print(R)
    R = tf.reshape(R, (batch_size, 1))
    R = tf.tile(R, [1, glimpses*2])
    print(R)
    # 1 means concatenate along the row direction
    no_grad_b = tf.stop_gradient(b)
    J = tf.concat(axis=1, values=[tf.log(p_y + 1e-5) * onehot_labels_placeholder, tf.log(p_loc + 1e-5) * (R)])
    print(J)
    # sum the probability of action and location
    J = tf.reduce_sum(J, 1)
    print(J)
    # average over batch
    J = tf.reduce_mean(J, 0)
    print(J)
    cost = -J
    #cost = cost + tf.square(tf.reduce_mean(R - b))

    # Adaptive Moment Estimation
    # estimate the 1st and the 2nd moment of the gradients
    global_step = tf.Variable(0, trainable=False)
    lr = tf.train.exponential_decay(1e-3, global_step, 1000, 0.95, staircase=True)
    optimizer = tf.train.AdamOptimizer(lr)
    train_op = optimizer.minimize(cost)

    return cost, reward, max_p_y, correct_y, train_op, b, tf.reduce_mean(b), tf.reduce_mean(R - b), p_loc_orig, p_loc
开发者ID:jlindsey15,项目名称:RAM,代码行数:55,代码来源:raminit.py



注:本文中的tensorflow.arg_max函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tensorflow.argmax函数代码示例发布时间:2022-05-27
下一篇:
Python tensorflow.all_variables函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap