• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tableau.Tableau类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tableau.Tableau的典型用法代码示例。如果您正苦于以下问题:Python Tableau类的具体用法?Python Tableau怎么用?Python Tableau使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了Tableau类的18个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: e_hat

def e_hat(tab, star=0):
    """
    The Young projection operator, an idempotent in the rational group algebra.

    EXAMPLES::
    
        sage: from sage.combinat.symmetric_group_algebra import e_hat
        sage: e_hat([[1,2,3]])
        1/6*[1, 2, 3] + 1/6*[1, 3, 2] + 1/6*[2, 1, 3] + 1/6*[2, 3, 1] + 1/6*[3, 1, 2] + 1/6*[3, 2, 1]
        sage: e_hat([[1],[2]])
        1/2*[1, 2] - 1/2*[2, 1]

    There are differing conventions for the order of the symmetrizers
    and antisymmetrizers.  This example illustrates our conventions::

        sage: e_hat([[1,2],[3]])
        1/3*[1, 2, 3] + 1/3*[2, 1, 3] - 1/3*[3, 1, 2] - 1/3*[3, 2, 1]
    """
    t = Tableau(tab)
    if star:
        t = t.restrict(t.size()-star)
    if t in ehat_cache:
        res = ehat_cache[t]
    else:
        res = (1/kappa(t.shape()))*e(t)
    return res
开发者ID:bgxcpku,项目名称:sagelib,代码行数:26,代码来源:symmetric_group_algebra.py


示例2: e_hat

def e_hat(tab, star=0):
    """
    The Young projection operator corresponding to the Young tableau
    ``tab`` (which is supposed to contain every integer from `1` to
    its size precisely once, but may and may not be standard). This
    is an idempotent in the rational group algebra.

    EXAMPLES::

        sage: from sage.combinat.symmetric_group_algebra import e_hat
        sage: e_hat([[1,2,3]])
        1/6*[1, 2, 3] + 1/6*[1, 3, 2] + 1/6*[2, 1, 3] + 1/6*[2, 3, 1] + 1/6*[3, 1, 2] + 1/6*[3, 2, 1]
        sage: e_hat([[1],[2]])
        1/2*[1, 2] - 1/2*[2, 1]

    There are differing conventions for the order of the symmetrizers
    and antisymmetrizers.  This example illustrates our conventions::

        sage: e_hat([[1,2],[3]])
        1/3*[1, 2, 3] + 1/3*[2, 1, 3] - 1/3*[3, 1, 2] - 1/3*[3, 2, 1]
    """
    t = Tableau(tab)
    if star:
        t = t.restrict(t.size()-star)
    if t in ehat_cache:
        res = ehat_cache[t]
    else:
        res = (1/kappa(t.shape()))*e(t)
    return res
开发者ID:jhpalmieri,项目名称:sage,代码行数:29,代码来源:symmetric_group_algebra.py


示例3: b

def b(tableau, star=0):
    r"""
    The column projection operator corresponding to the Young tableau
    ``tableau`` (which is supposed to contain every integer from
    `1` to its size precisely once, but may and may not be standard).

    This is the signed sum (in the group algebra of the relevant
    symmetric group over `\QQ`) of all the permutations which
    preserve the column of ``tableau`` (where the signs are the usual
    signs of the permutations). It is called `b_{\text{tableau}}` in
    [EtRT]_, Section 4.2.

    EXAMPLES::

        sage: from sage.combinat.symmetric_group_algebra import b
        sage: b([[1,2]])
        [1, 2]
        sage: b([[1],[2]])
        [1, 2] - [2, 1]
        sage: b([])
        []
        sage: b([[1, 2, 4], [5, 3]])
        [1, 2, 3, 4, 5] - [1, 3, 2, 4, 5] - [5, 2, 3, 4, 1] + [5, 3, 2, 4, 1]

    With the `l2r` setting for multiplication, the unnormalized
    Young symmetrizer ``e(tableau)`` should be the product
    ``b(tableau) * a(tableau)`` for every ``tableau``. Let us check
    this on the standard tableaux of size 5::

        sage: from sage.combinat.symmetric_group_algebra import a, b, e
        sage: all( e(t) == b(t) * a(t) for t in StandardTableaux(5) )
        True
    """
    t = Tableau(tableau)
    if star:
        t = t.restrict(t.size()-star)

    cs = t.column_stabilizer().list()
    n = t.size()

    # This all should be over ZZ, not over QQ, but symmetric group
    # algebras don't seem to preserve coercion (the one over ZZ
    # doesn't coerce into the one over QQ even for the same n),
    # and the QQ version of this method is more important, so let
    # me stay with QQ.
    # TODO: Fix this.
    sgalg = SymmetricGroupAlgebra(QQ, n)
    one = QQ.one()
    P = permutation.Permutation

    # Ugly hack for the case of an empty tableau, due to the
    # annoyance of Permutation(Tableau([]).row_stabilizer()[0])
    # being [1] rather than [] (which seems to have its origins in
    # permutation group code).
    # TODO: Fix this.
    if len(tableau) == 0:
        return sgalg.one()

    cd = dict((P(v), v.sign()*one) for v in cs)
    return sgalg._from_dict(cd)
开发者ID:jhpalmieri,项目名称:sage,代码行数:60,代码来源:symmetric_group_algebra.py


示例4: GenRegionVoronoi

class GenRegionVoronoi(GenRegion):
    def __init__(self, largeur, hauteur, nb=10):
        GenRegion.__init__(self, nb)
        self.tab = Tableau(largeur, hauteur)
        for x, y in self.tab.iterC():
            self.tab[x, y] = Case(x, y)
            self.tab[x, y].value = -1
        self.init = []
        self.liste = [elt for elt in self.tab.iterB()]
        for i in range(nb):
            case = self.tab[self.liste[randrange(len(self.liste))]]
            case.value = i
            self.init.append(case)
            self.regions.append(Region(nb, interieur=[case]))
        for case in self.tab.values():
            distance = self.tab.X * self.tab.Y
            id = -1
            for init in self.init:
                if case.Distance(init) < distance:
                    distance = case.Distance(init)
                    id = init.value
            case.value = id
            voisins = [
                self.tab[elt]
                for elt in case.Voisins()
                if elt in self.tab and self.tab[elt].value != -1 and self.tab[elt].value != id
            ]
            if len(voisins):
                self.regions[id].addFro(case)
                for elt in voisins:
                    if elt in self.regions[id].interieur:
                        self.regions[id].interieur.remove(elt)
                        self.regions[id].addFro(elt)
                    else:
                        self.regions[id].addInt(case)
开发者ID:Bm0c,项目名称:MapGenerator,代码行数:35,代码来源:genRegion.py


示例5: a

def a(tableau, star=0):
    r"""
    The row projection operator corresponding to the Young tableau
    ``tableau`` (which is supposed to contain every integer from
    `1` to its size precisely once, but may and may not be standard).

    This is the sum (in the group algebra of the relevant symmetric
    group over `\QQ`) of all the permutations which preserve
    the rows of ``tableau``. It is called `a_{\text{tableau}}` in
    [EtRT]_, Section 4.2.

    REFERENCES:

    .. [EtRT] Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai
       Liu, Alex Schwendner, Dmitry Vaintrob, Elena Yudovina,
       "Introduction to representation theory",
       :arXiv:`0901.0827v5`.

    EXAMPLES::

        sage: from sage.combinat.symmetric_group_algebra import a
        sage: a([[1,2]])
        [1, 2] + [2, 1]
        sage: a([[1],[2]])
        [1, 2]
        sage: a([])
        []
        sage: a([[1, 5], [2, 3], [4]])
        [1, 2, 3, 4, 5] + [1, 3, 2, 4, 5] + [5, 2, 3, 4, 1] + [5, 3, 2, 4, 1]
    """
    t = Tableau(tableau)
    if star:
        t = t.restrict(t.size()-star)

    rs = t.row_stabilizer().list()
    n = t.size()

    # This all should be over ZZ, not over QQ, but symmetric group
    # algebras don't seem to preserve coercion (the one over ZZ
    # doesn't coerce into the one over QQ even for the same n),
    # and the QQ version of this method is more important, so let
    # me stay with QQ.
    # TODO: Fix this.
    sgalg = SymmetricGroupAlgebra(QQ, n)
    one = QQ.one()
    P = permutation.Permutation

    # Ugly hack for the case of an empty tableau, due to the
    # annoyance of Permutation(Tableau([]).row_stabilizer()[0])
    # being [1] rather than [] (which seems to have its origins in
    # permutation group code).
    # TODO: Fix this.
    if len(tableau) == 0:
        return sgalg.one()

    rd = dict((P(h), one) for h in rs)
    return sgalg._from_dict(rd)
开发者ID:jhpalmieri,项目名称:sage,代码行数:57,代码来源:symmetric_group_algebra.py


示例6: __init__

class Seed:

    def __init__(self,largeur,hauteur,noeud = {"type" : "plaque"},minValue = 0,maxValue = 255, value = 0):
        self.function = {"rand" : self.rand, "degrade" : self.degrade, "plaque" : self.plaque}
        self.maxValue = maxValue
        self.minValue = minValue
        self.X = largeur
        self.Y = hauteur
        self.tab = Tableau(self.X,self.Y)
        if "args" in noeud:
            self.function[noeud["type"]](noeud["args"])
        else :
            self.function[noeud["type"]]()

    def degrade(self,args = {"direction":"Y","evolution":"increase"}):
        if args["direction"] == "Y":
            c = self.Y
            current = lambda x,y : y
        else:
            c =  self.X 
            current = lambda x,y : x - self.ligne(y) 
        if args["evolution"] == "increase":
            fun = lambda x,y : self.maxValue * current(x,y) // c
        elif args["evolution"] == "decrease":
            fun = lambda x,y : self.maxValue * (c - (1 + current(x,y))) // c
        elif args["evolution"] == "center":
            fun = lambda x,y : min(self.maxValue * current(x,y) // c,self.maxValue * (c - (1 + current(x,y))) //c) * 2
        elif args["evolution"] == "border":
            fun = lambda x,y : max(self.maxValue * current(x,y) // c,self.maxValue * (c - (1 + current(x,y))) //c) - ( self.maxValue // 2) * 2
        for(x,y) in self.tab.iterC():
            self.tab[x,y] = Case(x,y)
            self.tab[x,y].value = fun(x,y) 

    def rand(self,args = {}):
        for(x,y) in self.tab.iterC():
            self.tab[x,y] = Case(x,y)
            self.tab[x,y].value = randint(self.minValue,self.maxValue) 

    def plaque(self,args = {"nombre" : 5, "plaques" : 8}):
        for x,y in self.tab.iterC():
            self.tab[x,y] = Case(x,y)
            self.tab[x,y].value = 0
        liste = [ elt for elt in self.tab.iterB(1) ]
        nombre = args["nombre"]
        plaque = args["plaques"]
        plaques = GenRegionPasse(self.tab,None,plaque,5)
        plaques.finalisation()
        liste_plaque = [ (elt.interieur,elt.frontiere) for elt in plaques.regions]
        for i in range(nombre):
            li,lf = liste_plaque[randrange(len(liste_plaque))]
            liste_plaque.remove((li,lf))
            for elt in [ (elt.u,elt.v)  for elt in li if (elt.u,elt.v) in liste]:
                #self.tab[elt].value = randint((self.minValue + self.maxValue)  * 3 // 4 , self.maxValue )
                self.tab[elt].value = int(((plaques.iteration - self.tab[elt].nb + 1) / plaques.iteration)* self.maxValue)
开发者ID:Bm0c,项目名称:MapGenerator,代码行数:54,代码来源:seed.py


示例7: epsilon_ik

def epsilon_ik(itab, ktab, star=0):
    """
    EXAMPLES::
    
        sage: from sage.combinat.symmetric_group_algebra import epsilon_ik
        sage: epsilon_ik([[1,2],[3]], [[1,3],[2]])
        1/4*[1, 3, 2] - 1/4*[2, 3, 1] + 1/4*[3, 1, 2] - 1/4*[3, 2, 1]
        sage: epsilon_ik([[1,2],[3]], [[1,3],[2]], star=1)
        Traceback (most recent call last):
        ...
        ValueError: the two tableaux must be of the same shape
    """
    it = Tableau(itab)
    kt = Tableau(ktab)
    if star:
        it = it.restrict(it.size() - star)
        kt = kt.restrict(kt.size() - star)

    if it.shape() != kt.shape():
        raise ValueError, "the two tableaux must be of the same shape"

    mult = permutation_options['mult']
    permutation_options['mult'] = 'l2r'
    if kt == it:
        res = epsilon(itab)
    elif (it, kt) in epsilon_ik_cache:
        res =  epsilon_ik_cache[(it,kt)]
    else:
        epsilon_ik_cache[(it,kt)] = epsilon(it, star+1)*e_ik(it,kt,star)*epsilon(kt, star+1) * (1/kappa(it.shape()))
        res =  epsilon_ik_cache[(it,kt)]

    permutation_options['mult'] = mult
    return res
开发者ID:bgxcpku,项目名称:sagelib,代码行数:33,代码来源:symmetric_group_algebra.py


示例8: e_ik

def e_ik(itab, ktab, star=0):
    """
    EXAMPLES::
    
        sage: from sage.combinat.symmetric_group_algebra import e_ik
        sage: e_ik([[1,2,3]], [[1,2,3]])
        [1, 2, 3] + [1, 3, 2] + [2, 1, 3] + [2, 3, 1] + [3, 1, 2] + [3, 2, 1]
        sage: e_ik([[1,2,3]], [[1,2,3]], star=1)
        [1, 2] + [2, 1]
    """
    it = Tableau(itab)
    kt = Tableau(ktab)
    if star:
        it = it.restrict(it.size() - star)
        kt = kt.restrict(kt.size() - star)

    if it.shape() != kt.shape():
        raise ValueError, "the two tableaux must be of the same shape"

    mult = permutation_options['mult']
    permutation_options['mult'] = 'l2r'
    
    if kt == it:
        res =  e(it)
    elif (it, kt) in e_ik_cache:
        res = e_ik_cache[(it,kt)]
    else:
        pi = pi_ik(it,kt)
        e_ik_cache[(it,kt)] = e(it)*pi
        res = e_ik_cache[(it,kt)]

    permutation_options['mult'] = mult    
    return res
开发者ID:bgxcpku,项目名称:sagelib,代码行数:33,代码来源:symmetric_group_algebra.py


示例9: __init__

 def __init__(self, strategy, visual=False, screen=None):
     S = getattr(strategies, strategy)
     strategy = S()
     self.tableau = Tableau()
     self.redeals = 2
     self.strategy = strategy
     self.visual = visual
     self.screen = screen
开发者ID:jdiller,项目名称:gaps,代码行数:8,代码来源:game.py


示例10: Game

class Game(object):
    def __init__(self, strategy, visual=False, screen=None):
        S = getattr(strategies, strategy)
        strategy = S()
        self.tableau = Tableau()
        self.redeals = 2
        self.strategy = strategy
        self.visual = visual
        self.screen = screen

    def play(self):
        while True:
            while self.tableau.has_moves():
                if self.visual and self.screen:
                    self.screen.addstr(1,0,self.tableau.dump().encode("utf_8"))
                    self.screen.refresh()
                self.strategy.apply_strategy(self.tableau)
                if self.visual and self.screen:
                    self.screen.getch()
            if not self.tableau.is_complete() and self.redeals > 0:
                self.tableau.redeal()
                self.redeals -= 1
            else:
                break
            
    def in_progress(self):
        return self.tableau.has_moves()

    def game_won(self):
        return self.tableau.is_complete()
开发者ID:jdiller,项目名称:gaps,代码行数:30,代码来源:game.py


示例11: setUp

 def setUp(self):
     # variables
     pre_var = [(0, True), (0, False), (0, False), (0, True), (0, True)]
     self.vars = [Variable(*v) for v in pre_var]
     # row lines
     pre_row = [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [1, 1, -1, 0, 0],
                     [2, -1, 0, -1, 0], [-1, 2, 0, 0, -1]]
     self.rows = [RowLine(r) for r in pre_row]
     # tableau
     self.table = Tableau(self.vars, self.rows)
开发者ID:strviola,项目名称:SimplexMethod,代码行数:10,代码来源:test_unit.py


示例12: pi_ik

def pi_ik(itab, ktab):
    """
    EXAMPLES::
    
        sage: from sage.combinat.symmetric_group_algebra import pi_ik
        sage: pi_ik([[1,3],[2]], [[1,2],[3]])
        [1, 3, 2]
    """
    it = Tableau(itab)
    kt = Tableau(ktab)

    p = [None]*kt.size()        
    for i in range(len(kt)):
        for j in range(len(kt[i])):
            p[ it[i][j] -1 ] = kt[i][j]

    QSn = SymmetricGroupAlgebra(QQ, it.size())
    p = permutation.Permutation(p)
    return QSn(p)
开发者ID:bgxcpku,项目名称:sagelib,代码行数:19,代码来源:symmetric_group_algebra.py


示例13: __init__

 def __init__(self, largeur, hauteur, modele):  # X,Y,Liste_Coeff
     self.X = largeur
     self.Y = hauteur
     self.MAXVALUE = 256
     self.tab = Tableau(self.X, self.Y)
     self.modele = Modele("patron.xml")
     self.seed = [(key, Seed(self.X, self.Y, elt["seed"])) for key, elt in self.modele.racine["couche"].items()]
     for x, y in self.tab.iterC():
         self.tab[x, y] = Case(x, y)
         for key, s in self.seed:
             self.tab[x, y].biome.set(key, s.tab[x, y].value)
开发者ID:Bm0c,项目名称:MapGenerator,代码行数:11,代码来源:genMap.py


示例14: Test

class Test(unittest.TestCase):
    def setUp(self):
        # variables
        pre_var = [(0, True), (0, False), (0, False), (0, True), (0, True)]
        self.vars = [Variable(*v) for v in pre_var]
        # row lines
        pre_row = [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [1, 1, -1, 0, 0],
                        [2, -1, 0, -1, 0], [-1, 2, 0, 0, -1]]
        self.rows = [RowLine(r) for r in pre_row]
        # tableau
        self.table = Tableau(self.vars, self.rows)

    def tearDown(self):
        pass

    # tests about operators to help Gaussian elimination
    def test_row_subtraction(self):
        t_sub = self.rows[3] - self.rows[2]
        self.assertListEqual(t_sub.coef, [1, -2, 1, -1, 0])

    def test_row_multiplication(self):
        t_mul = self.rows[4] * 3
        self.assertListEqual(t_mul.coef, [-3, 6, 0, 0, -3])

    def test_row_division(self):
        t_div = self.rows[2] / 5
        self.assertListEqual(t_div.coef, [0.2, 0.2, -0.2, 0, 0])

    def test_getitem(self):
        # originally, this operation should be written self.rows[2].coef[0]
        # RowLine has __getitem__ method, so this abbreviation is able
        self.assertEqual(self.rows[2][0], 1)

    # main test
    def test_gaussian_elimination(self):
        self.table.gaussian_elimination(2, 0)
        coef = [r.coef for r in self.table.rows]
        self.assertListEqual(coef, [[-1, -1, 1, 0, 0], [0, 0, 0, 0, 0],
                             [1, 1, -1, 0, 0], [0, -3, 2, -1, 0],
                             [0, 3, -1, 0, -1]])
开发者ID:strviola,项目名称:SimplexMethod,代码行数:40,代码来源:test_unit.py


示例15: epsilon

def epsilon(tab, star=0):
    """
    EXAMPLES::
    
        sage: from sage.combinat.symmetric_group_algebra import epsilon
        sage: epsilon([[1,2]])
        1/2*[1, 2] + 1/2*[2, 1]
        sage: epsilon([[1],[2]])
        1/2*[1, 2] - 1/2*[2, 1]
    """
    t = Tableau(tab)

    if star:
        t = t.restrict(t.size() - star)

    mult = permutation_options['mult']
    permutation_options['mult'] = 'l2r'
    
    if t in epsilon_cache:
        res = epsilon_cache[t]
    else:
        if t.size() == 2:
            epsilon_cache[t] = e(t)*(1/kappa(t.shape()))
            res =  epsilon_cache[t]
        elif t == Tableau([[1]]):
            epsilon_cache[t] = e(t)
            res =  epsilon_cache[t]
        else:
            epsilon_cache[t] =  epsilon(t, 1)*e(t)*epsilon(t,1)*( 1 / kappa(t.shape()))
            res = epsilon_cache[t]

    permutation_options['mult'] = mult
    return res
开发者ID:bgxcpku,项目名称:sagelib,代码行数:33,代码来源:symmetric_group_algebra.py


示例16: e

def e(tableau, star=0):
    """
    The unnormalized Young projection operator.

    EXAMPLES::
    
        sage: from sage.combinat.symmetric_group_algebra import e
        sage: e([[1,2]])
        [1, 2] + [2, 1]
        sage: e([[1],[2]])
        [1, 2] - [2, 1]

    There are differing conventions for the order of the symmetrizers
    and antisymmetrizers.  This example illustrates our conventions::

        sage: e([[1,2],[3]])
        [1, 2, 3] + [2, 1, 3] - [3, 1, 2] - [3, 2, 1]
    """
    t = Tableau(tableau)
    if star:
        t = t.restrict(t.size()-star)

    mult = permutation_options['mult']
    permutation_options['mult'] = 'l2r'
    
    if t in e_cache:
        res = e_cache[t]
    else:
        rs = t.row_stabilizer().list()
        cs = t.column_stabilizer().list()
        n = t.size()

        QSn = SymmetricGroupAlgebra(QQ, n)
        one = QQ(1)
        P = permutation.Permutation

        rd = dict((P(h), one) for h in rs)
        sym = QSn._from_dict(rd)

        cd = dict((P(v), v.sign()*one) for v in cs)
        antisym = QSn._from_dict(cd)

        res = antisym*sym

        e_cache[t] = res

    permutation_options['mult'] = mult    
    return res
开发者ID:bgxcpku,项目名称:sagelib,代码行数:48,代码来源:symmetric_group_algebra.py


示例17: e

def e(tableau, star=0):
    """
    The unnormalized Young projection operator corresponding to
    the Young tableau ``tableau`` (which is supposed to contain
    every integer from `1` to its size precisely once, but may
    and may not be standard).

    EXAMPLES::

        sage: from sage.combinat.symmetric_group_algebra import e
        sage: e([[1,2]])
        [1, 2] + [2, 1]
        sage: e([[1],[2]])
        [1, 2] - [2, 1]
        sage: e([])
        []

    There are differing conventions for the order of the symmetrizers
    and antisymmetrizers.  This example illustrates our conventions::

        sage: e([[1,2],[3]])
        [1, 2, 3] + [2, 1, 3] - [3, 1, 2] - [3, 2, 1]
    """
    t = Tableau(tableau)
    if star:
        t = t.restrict(t.size()-star)

    mult = permutation_options['mult']
    permutation_options['mult'] = 'l2r'

    if t in e_cache:
        res = e_cache[t]
    else:
        rs = t.row_stabilizer().list()
        cs = t.column_stabilizer().list()
        n = t.size()

        QSn = SymmetricGroupAlgebra(QQ, n)
        one = QQ.one()
        P = permutation.Permutation

        rd = dict((P(h), one) for h in rs)
        sym = QSn._from_dict(rd)

        cd = dict((P(v), v.sign()*one) for v in cs)
        antisym = QSn._from_dict(cd)

        res = antisym*sym

        # Ugly hack for the case of an empty tableau, due to the
        # annoyance of Permutation(Tableau([]).row_stabilizer()[0])
        # being [1] rather than [] (which seems to have its origins in
        # permutation group code).
        # TODO: Fix this.
        if len(tableau) == 0:
            res = QSn.one()

        e_cache[t] = res

    permutation_options['mult'] = mult

    return res
开发者ID:jhpalmieri,项目名称:sage,代码行数:62,代码来源:symmetric_group_algebra.py


示例18: range

        curses.endwin()

        # convert the input to simplex tableau
        print exit_mes
        print buf

        # do simplex method
        if input_ok:
            # split buffers to formulas
            formulas = [b.split() for b in buf]  # formulas[var_num] is ineq
            # make variables
            var_list = []
            for vi in range(var_num):
                var_list.append(Variable(0, False))
            for fe in formulas:
                var_list.append(Variable(0, True, float(fe[var_num + 1]),
                                         fe[var_num]))  # ineq type
            # make coefficient tableau
            row_list = []
            for ri in range(var_num):
                row_list.append(RowLine([0] * (var_num + for_num)))
            for i, fe in enumerate(formulas):
                tmp_f = [float(e) for e in fe[:var_num]]
                tmp_zeros = [0] * for_num
                tmp_zeros[i] = -1
                row_list.append(RowLine(tmp_f + tmp_zeros))
            # simplex tableau
            table = Tableau(var_list, row_list)
            # do simplex method
            table.simplex_method()
开发者ID:strviola,项目名称:SimplexMethod,代码行数:30,代码来源:Main.py



注:本文中的tableau.Tableau类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python contentsparser.ContentsParser类代码示例发布时间:2022-05-27
下一篇:
Python table_fu.TableFu类代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap