本文整理汇总了Python中sympy.utilities.randtest.verify_numerically函数的典型用法代码示例。如果您正苦于以下问题:Python verify_numerically函数的具体用法?Python verify_numerically怎么用?Python verify_numerically使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了verify_numerically函数的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_TRpower
def test_TRpower():
assert TRpower(1/sin(x)**2) == 1/sin(x)**2
assert TRpower(cos(x)**3*sin(x/2)**4) == \
(3*cos(x)/4 + cos(3*x)/4)*(-cos(x)/2 + cos(2*x)/8 + S(3)/8)
for k in range(2, 8):
assert verify_numerically(sin(x)**k, TRpower(sin(x)**k))
assert verify_numerically(cos(x)**k, TRpower(cos(x)**k))
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:7,代码来源:test_fu.py
示例2: test_roots_quartic
def test_roots_quartic():
assert roots_quartic(Poly(x**4, x)) == [0, 0, 0, 0]
assert roots_quartic(Poly(x**4 + x**3, x)) in [
[-1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, -1, 0],
[0, 0, 0, -1]
]
assert roots_quartic(Poly(x**4 - x**3, x)) in [
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]
]
lhs = roots_quartic(Poly(x**4 + x, x))
rhs = [S.Half + I*sqrt(3)/2, S.Half - I*sqrt(3)/2, S.Zero, -S.One]
assert sorted(lhs, key=hash) == sorted(rhs, key=hash)
# test of all branches of roots quartic
for i, (a, b, c, d) in enumerate([(1, 2, 3, 0),
(3, -7, -9, 9),
(1, 2, 3, 4),
(1, 2, 3, 4),
(-7, -3, 3, -6),
(-3, 5, -6, -4),
(6, -5, -10, -3)]):
if i == 2:
c = -a*(a**2/S(8) - b/S(2))
elif i == 3:
d = a*(a*(3*a**2/S(256) - b/S(16)) + c/S(4))
eq = x**4 + a*x**3 + b*x**2 + c*x + d
ans = roots_quartic(Poly(eq, x))
assert all(eq.subs(x, ai).n(chop=True) == 0 for ai in ans)
# not all symbolic quartics are unresolvable
eq = Poly(q*x + q/4 + x**4 + x**3 + 2*x**2 - Rational(1, 3), x)
sol = roots_quartic(eq)
assert all(verify_numerically(eq.subs(x, i), 0) for i in sol)
z = symbols('z', negative=True)
eq = x**4 + 2*x**3 + 3*x**2 + x*(z + 11) + 5
zans = roots_quartic(Poly(eq, x))
assert all([verify_numerically(eq.subs(((x, i), (z, -1))), 0) for i in zans])
# but some are (see also issue 4989)
# it's ok if the solution is not Piecewise, but the tests below should pass
eq = Poly(y*x**4 + x**3 - x + z, x)
ans = roots_quartic(eq)
assert all(type(i) == Piecewise for i in ans)
reps = (
dict(y=-Rational(1, 3), z=-Rational(1, 4)), # 4 real
dict(y=-Rational(1, 3), z=-Rational(1, 2)), # 2 real
dict(y=-Rational(1, 3), z=-2)) # 0 real
for rep in reps:
sol = roots_quartic(Poly(eq.subs(rep), x))
assert all([verify_numerically(w.subs(rep) - s, 0) for w, s in zip(ans, sol)])
开发者ID:NalinG,项目名称:sympy,代码行数:56,代码来源:test_polyroots.py
示例3: t
def t(a, b, arg, n):
from sympy import Mul
m1 = meijerg(a, b, arg)
m2 = Mul(*_inflate_g(m1, n))
# NOTE: (the random number)**9 must still be on the principal sheet.
# Thus make b&d small to create random numbers of small imaginary part.
return verify_numerically(m1.subs(subs), m2.subs(subs), x, b=0.1, d=-0.1)
开发者ID:chaffra,项目名称:sympy,代码行数:7,代码来源:test_meijerint.py
示例4: test_TR9
def test_TR9():
a = S(1)/2
b = 3*a
assert TR9(a) == a
assert TR9(cos(1) + cos(2)) == 2*cos(a)*cos(b)
assert TR9(cos(1) - cos(2)) == 2*sin(a)*sin(b)
assert TR9(sin(1) - sin(2)) == -2*sin(a)*cos(b)
assert TR9(sin(1) + sin(2)) == 2*sin(b)*cos(a)
assert TR9(cos(1) + 2*sin(1) + 2*sin(2)) == cos(1) + 4*sin(b)*cos(a)
assert TR9(cos(4) + cos(2) + 2*cos(1)*cos(3)) == 4*cos(1)*cos(3)
assert TR9((cos(4) + cos(2))/cos(3)/2 + cos(3)) == 2*cos(1)*cos(2)
assert TR9(cos(3) + cos(4) + cos(5) + cos(6)) == \
4*cos(S(1)/2)*cos(1)*cos(S(9)/2)
assert TR9(cos(3) + cos(3)*cos(2)) == cos(3) + cos(2)*cos(3)
assert TR9(-cos(y) + cos(x*y)) == -2*sin(x*y/2 - y/2)*sin(x*y/2 + y/2)
assert TR9(-sin(y) + sin(x*y)) == 2*sin(x*y/2 - y/2)*cos(x*y/2 + y/2)
c = cos(x)
s = sin(x)
for si in ((1, 1), (1, -1), (-1, 1), (-1, -1)):
for a in ((c, s), (s, c), (cos(x), cos(x*y)), (sin(x), sin(x*y))):
args = zip(si, a)
ex = Add(*[Mul(*ai) for ai in args])
t = TR9(ex)
assert not (a[0].func == a[1].func and (
not verify_numerically(ex, t.expand(trig=True)) or t.is_Add)
or a[1].func != a[0].func and ex != t)
开发者ID:AdrianPotter,项目名称:sympy,代码行数:26,代码来源:test_fu.py
示例5: mytn
def mytn(expr1, expr2, expr3, x, d=0):
from sympy.utilities.randtest import verify_numerically, random_complex_number
subs = {}
for a in expr1.free_symbols:
if a != x:
subs[a] = random_complex_number()
return expr2 == expr3 and verify_numerically(expr1.subs(subs),
expr2.subs(subs), x, d=d)
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:8,代码来源:test_error_functions.py
示例6: test_TR3
def test_TR3():
assert TR3(cos(y - x*(y - x))) == cos(x*(x - y) + y)
assert cos(pi/2 + x) == -sin(x)
assert cos(30*pi/2 + x) == -cos(x)
for f in (cos, sin, tan, cot, csc, sec):
i = f(3*pi/7)
j = TR3(i)
assert verify_numerically(i, j) and i.func != j.func
开发者ID:AdrianPotter,项目名称:sympy,代码行数:9,代码来源:test_fu.py
示例7: test_reflect
def test_reflect():
b = Symbol("b")
m = Symbol("m")
l = Line((0, b), slope=m)
p = Point(x, y)
r = p.reflect(l)
dp = l.perpendicular_segment(p).length
dr = l.perpendicular_segment(r).length
assert verify_numerically(dp, dr)
t = Triangle((0, 0), (1, 0), (2, 3))
assert t.area == -t.reflect(l).area
e = Ellipse((1, 0), 1, 2)
assert e.area == -e.reflect(Line((1, 0), slope=0)).area
assert e.area == -e.reflect(Line((1, 0), slope=oo)).area
raises(NotImplementedError, lambda: e.reflect(Line((1, 0), slope=m)))
assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=oo)) == Triangle(
Point(5, 0), Point(4, 0), Point(4, 2)
)
assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=oo)) == Triangle(
Point(-1, 0), Point(-2, 0), Point(-2, 2)
)
assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=0)) == Triangle(
Point(1, 6), Point(2, 6), Point(2, 4)
)
assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=0)) == Triangle(
Point(1, 0), Point(2, 0), Point(2, -2)
)
# test entity overrides
c = Circle((x, y), 3)
cr = c.reflect(l)
assert cr == Circle(r, -3)
assert c.area == -cr.area
pent = RegularPolygon((1, 2), 1, 5)
l = Line((0, pi), slope=sqrt(2))
rpent = pent.reflect(l)
poly_pent = Polygon(*pent.vertices)
assert rpent.center == pent.center.reflect(l)
assert str([w.n(3) for w in rpent.vertices]) == (
"[Point2D(-0.586, 4.27), Point2D(-1.69, 4.66), "
"Point2D(-2.41, 3.73), Point2D(-1.74, 2.76), "
"Point2D(-0.616, 3.10)]"
)
assert pent.area.equals(-rpent.area)
开发者ID:guanlongtianzi,项目名称:sympy,代码行数:44,代码来源:test_geometry.py
示例8: test_reflect
def test_reflect():
x = Symbol('x', real=True)
y = Symbol('y', real=True)
b = Symbol('b')
m = Symbol('m')
l = Line((0, b), slope=m)
p = Point(x, y)
r = p.reflect(l)
dp = l.perpendicular_segment(p).length
dr = l.perpendicular_segment(r).length
assert verify_numerically(dp, dr)
t = Triangle((0, 0), (1, 0), (2, 3))
assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=oo)) \
== Triangle(Point(5, 0), Point(4, 0), Point(4, 2))
assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=oo)) \
== Triangle(Point(-1, 0), Point(-2, 0), Point(-2, 2))
assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=0)) \
== Triangle(Point(1, 6), Point(2, 6), Point(2, 4))
assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=0)) \
== Triangle(Point(1, 0), Point(2, 0), Point(2, -2))
开发者ID:alexako,项目名称:sympy,代码行数:21,代码来源:test_polygon.py
示例9: test_fresnel
#.........这里部分代码省略.........
assert fresnels(z).diff(z) == sin(pi*z**2/2)
assert fresnels(z).rewrite(erf) == (S.One + I)/4 * (
erf((S.One + I)/2*sqrt(pi)*z) - I*erf((S.One - I)/2*sqrt(pi)*z))
assert fresnels(z).rewrite(hyper) == \
pi*z**3/6 * hyper([S(3)/4], [S(3)/2, S(7)/4], -pi**2*z**4/16)
assert fresnels(z).series(z, n=15) == \
pi*z**3/6 - pi**3*z**7/336 + pi**5*z**11/42240 + O(z**15)
assert fresnels(w).is_real is True
assert fresnels(z).as_real_imag() == \
((fresnels(re(z) - I*re(z)*Abs(im(z))/Abs(re(z)))/2 +
fresnels(re(z) + I*re(z)*Abs(im(z))/Abs(re(z)))/2,
I*(fresnels(re(z) - I*re(z)*Abs(im(z))/Abs(re(z))) -
fresnels(re(z) + I*re(z)*Abs(im(z))/Abs(re(z)))) *
re(z)*Abs(im(z))/(2*im(z)*Abs(re(z)))))
assert fresnels(2 + 3*I).as_real_imag() == (
fresnels(2 + 3*I)/2 + fresnels(2 - 3*I)/2,
I*(fresnels(2 - 3*I) - fresnels(2 + 3*I))/2
)
assert expand_func(integrate(fresnels(z), z)) == \
z*fresnels(z) + cos(pi*z**2/2)/pi
assert fresnels(z).rewrite(meijerg) == sqrt(2)*pi*z**(S(9)/4) * \
meijerg(((), (1,)), ((S(3)/4,),
(S(1)/4, 0)), -pi**2*z**4/16)/(2*(-z)**(S(3)/4)*(z**2)**(S(3)/4))
assert fresnelc(0) == 0
assert fresnelc(oo) == S.Half
assert fresnelc(-oo) == -S.Half
assert fresnelc(z) == fresnelc(z)
assert fresnelc(-z) == -fresnelc(z)
assert fresnelc(I*z) == I*fresnelc(z)
assert fresnelc(-I*z) == -I*fresnelc(z)
assert conjugate(fresnelc(z)) == fresnelc(conjugate(z))
assert fresnelc(z).diff(z) == cos(pi*z**2/2)
assert fresnelc(z).rewrite(erf) == (S.One - I)/4 * (
erf((S.One + I)/2*sqrt(pi)*z) + I*erf((S.One - I)/2*sqrt(pi)*z))
assert fresnelc(z).rewrite(hyper) == \
z * hyper([S.One/4], [S.One/2, S(5)/4], -pi**2*z**4/16)
assert fresnelc(z).series(z, n=15) == \
z - pi**2*z**5/40 + pi**4*z**9/3456 - pi**6*z**13/599040 + O(z**15)
# issue 6510
assert fresnels(z).series(z, S.Infinity) == \
(-1/(pi**2*z**3) + O(z**(-6), (z, oo)))*sin(pi*z**2/2) + \
(3/(pi**3*z**5) - 1/(pi*z) + O(z**(-6), (z, oo)))*cos(pi*z**2/2) + S.Half
assert fresnelc(z).series(z, S.Infinity) == \
(-1/(pi**2*z**3) + O(z**(-6), (z, oo)))*cos(pi*z**2/2) + \
(-3/(pi**3*z**5) + 1/(pi*z) + O(z**(-6), (z, oo)))*sin(pi*z**2/2) + S.Half
assert fresnels(1/z).series(z) == \
(-z**3/pi**2 + O(z**6))*sin(pi/(2*z**2)) + (-z/pi + 3*z**5/pi**3 + \
O(z**6))*cos(pi/(2*z**2)) + S.Half
assert fresnelc(1/z).series(z) == \
(-z**3/pi**2 + O(z**6))*cos(pi/(2*z**2)) + (z/pi - 3*z**5/pi**3 + \
O(z**6))*sin(pi/(2*z**2)) + S.Half
assert fresnelc(w).is_real is True
assert fresnelc(z).as_real_imag() == \
((fresnelc(re(z) - I*re(z)*Abs(im(z))/Abs(re(z)))/2 +
fresnelc(re(z) + I*re(z)*Abs(im(z))/Abs(re(z)))/2,
I*(fresnelc(re(z) - I*re(z)*Abs(im(z))/Abs(re(z))) -
fresnelc(re(z) + I*re(z)*Abs(im(z))/Abs(re(z)))) *
re(z)*Abs(im(z))/(2*im(z)*Abs(re(z)))))
assert fresnelc(2 + 3*I).as_real_imag() == (
fresnelc(2 - 3*I)/2 + fresnelc(2 + 3*I)/2,
I*(fresnelc(2 - 3*I) - fresnelc(2 + 3*I))/2
)
assert expand_func(integrate(fresnelc(z), z)) == \
z*fresnelc(z) - sin(pi*z**2/2)/pi
assert fresnelc(z).rewrite(meijerg) == sqrt(2)*pi*z**(S(3)/4) * \
meijerg(((), (1,)), ((S(1)/4,),
(S(3)/4, 0)), -pi**2*z**4/16)/(2*(-z)**(S(1)/4)*(z**2)**(S(1)/4))
from sympy.utilities.randtest import verify_numerically
verify_numerically(re(fresnels(z)), fresnels(z).as_real_imag()[0], z)
verify_numerically(im(fresnels(z)), fresnels(z).as_real_imag()[1], z)
verify_numerically(fresnels(z), fresnels(z).rewrite(hyper), z)
verify_numerically(fresnels(z), fresnels(z).rewrite(meijerg), z)
verify_numerically(re(fresnelc(z)), fresnelc(z).as_real_imag()[0], z)
verify_numerically(im(fresnelc(z)), fresnelc(z).as_real_imag()[1], z)
verify_numerically(fresnelc(z), fresnelc(z).rewrite(hyper), z)
verify_numerically(fresnelc(z), fresnelc(z).rewrite(meijerg), z)
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:101,代码来源:test_error_functions.py
示例10: ok
def ok(a, b, n):
e = (a + I*b)**n
return verify_numerically(e, expand_multinomial(e))
开发者ID:AdrianPotter,项目名称:sympy,代码行数:3,代码来源:test_expand.py
示例11: test_issue_6828
def test_issue_6828():
f = 1/(1.08*x**2 - 4.3)
g = integrate(f, x).diff(x)
assert verify_numerically(f, g, tol=1e-12)
开发者ID:baoqchau,项目名称:sympy,代码行数:4,代码来源:test_integrals.py
示例12: u
def u(expr, x):
from sympy import Add, exp, exp_polar
r = _rewrite_single(expr, x)
e = Add(*[res[0] * res[2] for res in r[0]]).replace(exp_polar, exp) # XXX Hack?
assert verify_numerically(e, expr, x)
开发者ID:Carreau,项目名称:sympy,代码行数:6,代码来源:test_meijerint.py
注:本文中的sympy.utilities.randtest.verify_numerically函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论