• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python iterables.variations函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sympy.utilities.iterables.variations函数的典型用法代码示例。如果您正苦于以下问题:Python variations函数的具体用法?Python variations怎么用?Python variations使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了variations函数的16个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_equivalent_internal_lines_VT2conjT2_ambiguous_order_AT

def test_equivalent_internal_lines_VT2conjT2_ambiguous_order_AT():
    # These diagrams invokes _determine_ambiguous() because the
    # dummies can not be ordered unambiguously by the key alone
    i, j, k, l, m, n = symbols("i j k l m n", below_fermi=True, cls=Dummy)
    a, b, c, d, e, f = symbols("a b c d e f", above_fermi=True, cls=Dummy)
    p1, p2, p3, p4 = symbols("p1 p2 p3 p4", above_fermi=True, cls=Dummy)
    h1, h2, h3, h4 = symbols("h1 h2 h3 h4", below_fermi=True, cls=Dummy)

    from sympy.utilities.iterables import variations

    # atv(abcd)att(abij)att(cdij)
    template = atv(p1, p2, p3, p4) * att(p1, p2, i, j) * att(p3, p4, i, j)
    permutator = variations([a, b, c, d], 4)
    base = template.subs(zip([p1, p2, p3, p4], permutator.next()))
    for permut in permutator:
        subslist = zip([p1, p2, p3, p4], permut)
        expr = template.subs(subslist)
        assert substitute_dummies(expr) == substitute_dummies(base)
    template = atv(p1, p2, p3, p4) * att(p1, p2, j, i) * att(p3, p4, i, j)
    permutator = variations([a, b, c, d], 4)
    base = template.subs(zip([p1, p2, p3, p4], permutator.next()))
    for permut in permutator:
        subslist = zip([p1, p2, p3, p4], permut)
        expr = template.subs(subslist)
        assert substitute_dummies(expr) == substitute_dummies(base)
开发者ID:jenshnielsen,项目名称:sympy,代码行数:25,代码来源:test_secondquant.py


示例2: test_equivalent_internal_lines_VT2conjT2_ambiguous_order

def test_equivalent_internal_lines_VT2conjT2_ambiguous_order():
    # These diagrams invokes _determine_ambiguous() because the
    # dummies can not be ordered unambiguously by the key alone
    i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy)
    a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy)
    p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy)
    h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy)

    from sympy.utilities.iterables import variations

    v = Function('v')
    t = Function('t')
    dums = _get_ordered_dummies

    # v(abcd)t(abij)t(cdij)
    template = v(p1, p2, p3, p4)*t(p1, p2, i, j)*t(p3, p4, i, j)
    permutator = variations([a, b, c, d], 4)
    base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
    for permut in permutator:
        subslist = zip([p1, p2, p3, p4], permut)
        expr = template.subs(subslist)
        assert dums(base) != dums(expr)
        assert substitute_dummies(expr) == substitute_dummies(base)
    template = v(p1, p2, p3, p4)*t(p1, p2, j, i)*t(p3, p4, i, j)
    permutator = variations([a, b, c, d], 4)
    base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
    for permut in permutator:
        subslist = zip([p1, p2, p3, p4], permut)
        expr = template.subs(subslist)
        assert dums(base) != dums(expr)
        assert substitute_dummies(expr) == substitute_dummies(base)
开发者ID:abhi98khandelwal,项目名称:sympy,代码行数:31,代码来源:test_secondquant.py


示例3: test_equivalent_internal_lines_VT2conjT2

def test_equivalent_internal_lines_VT2conjT2():
    # this diagram requires special handling in TCE
    i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy)
    a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy)
    p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy)
    h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy)

    from sympy.utilities.iterables import variations

    v = Function('v')
    t = Function('t')
    dums = _get_ordered_dummies

    # v(abcd)t(abij)t(ijcd)
    template = v(p1, p2, p3, p4)*t(p1, p2, i, j)*t(i, j, p3, p4)
    permutator = variations([a, b, c, d], 4)
    base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
    for permut in permutator:
        subslist = zip([p1, p2, p3, p4], permut)
        expr = template.subs(subslist)
        assert dums(base) != dums(expr)
        assert substitute_dummies(expr) == substitute_dummies(base)
    template = v(p1, p2, p3, p4)*t(p1, p2, j, i)*t(j, i, p3, p4)
    permutator = variations([a, b, c, d], 4)
    base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
    for permut in permutator:
        subslist = zip([p1, p2, p3, p4], permut)
        expr = template.subs(subslist)
        assert dums(base) != dums(expr)
        assert substitute_dummies(expr) == substitute_dummies(base)

    # v(abcd)t(abij)t(jicd)
    template = v(p1, p2, p3, p4)*t(p1, p2, i, j)*t(j, i, p3, p4)
    permutator = variations([a, b, c, d], 4)
    base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
    for permut in permutator:
        subslist = zip([p1, p2, p3, p4], permut)
        expr = template.subs(subslist)
        assert dums(base) != dums(expr)
        assert substitute_dummies(expr) == substitute_dummies(base)
    template = v(p1, p2, p3, p4)*t(p1, p2, j, i)*t(i, j, p3, p4)
    permutator = variations([a, b, c, d], 4)
    base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
    for permut in permutator:
        subslist = zip([p1, p2, p3, p4], permut)
        expr = template.subs(subslist)
        assert dums(base) != dums(expr)
        assert substitute_dummies(expr) == substitute_dummies(base)
开发者ID:abhi98khandelwal,项目名称:sympy,代码行数:48,代码来源:test_secondquant.py


示例4: test_substitute_dummies_substitution_order

def test_substitute_dummies_substitution_order():
    i, j, k, l = symbols("i j k l", below_fermi=True, cls=Dummy)
    f = Function("f")
    from sympy.utilities.iterables import variations

    for permut in variations([i, j, k, l], 4):
        assert substitute_dummies(f(*permut) - f(i, j, k, l)) == 0
开发者ID:jenshnielsen,项目名称:sympy,代码行数:7,代码来源:test_secondquant.py


示例5: period_find

def period_find(a, N):
    """Finds the period of a in modulo N arithmetic

    This is quantum part of Shor's algorithm.It takes two registers,
    puts first in superposition of states with Hadamards so: ``|k>|0>``
    with k being all possible choices. It then does a controlled mod and
    a QFT to determine the order of a.
    """
    epsilon = .5
    #picks out t's such that maintains accuracy within epsilon
    t = int(2*math.ceil(log(N, 2)))
    # make the first half of register be 0's |000...000>
    start = [0 for x in range(t)]
    #Put second half into superposition of states so we have |1>x|0> + |2>x|0> + ... |k>x>|0> + ... + |2**n-1>x|0>
    factor = 1/sqrt(2**t)
    qubits = 0
    for arr in variations(range(2), t, repetition=True):
        qbitArray = arr + start
        qubits = qubits + Qubit(*qbitArray)
    circuit = (factor*qubits).expand()
    #Controlled second half of register so that we have:
    # |1>x|a**1 %N> + |2>x|a**2 %N> + ... + |k>x|a**k %N >+ ... + |2**n-1=k>x|a**k % n>
    circuit = CMod(t, a, N)*circuit
    #will measure first half of register giving one of the a**k%N's
    circuit = qapply(circuit)
    print("controlled Mod'd")
    for i in range(t):
        circuit = measure_partial_oneshot(circuit, i)
        # circuit = measure(i)*circuit
    # circuit = qapply(circuit)
    print("measured 1")
    #Now apply Inverse Quantum Fourier Transform on the second half of the register
    circuit = qapply(QFT(t, t*2).decompose()*circuit, floatingPoint=True)
    print("QFT'd")
    for i in range(t):
        circuit = measure_partial_oneshot(circuit, i + t)
        # circuit = measure(i+t)*circuit
    # circuit = qapply(circuit)
    print(circuit)
    if isinstance(circuit, Qubit):
        register = circuit
    elif isinstance(circuit, Mul):
        register = circuit.args[-1]
    else:
        register = circuit.args[-1].args[-1]

    print(register)
    n = 1
    answer = 0
    for i in range(len(register)/2):
        answer += n*register[i + t]
        n = n << 1
    if answer == 0:
        raise OrderFindingException(
            "Order finder returned 0. Happens with chance %f" % epsilon)
    #turn answer into r using continued fractions
    g = getr(answer, 2**t, N)
    print(g)
    return g
开发者ID:AALEKH,项目名称:sympy,代码行数:59,代码来源:shor.py


示例6: test_dummy_order_ambiguous

def test_dummy_order_ambiguous():
    aa, bb = symbols('ab', above_fermi=True)
    i, j, k, l, m = symbols('i j k l m', below_fermi=True, cls=Dummy)
    a, b, c, d, e = symbols('a b c d e', above_fermi=True, cls=Dummy)
    p, q = symbols('p q', cls=Dummy)
    p1,p2,p3,p4 = symbols('p1 p2 p3 p4',above_fermi=True, cls=Dummy)
    p5,p6,p7,p8 = symbols('p5 p6 p7 p8',above_fermi=True, cls=Dummy)
    h1,h2,h3,h4 = symbols('h1 h2 h3 h4',below_fermi=True, cls=Dummy)
    h5,h6,h7,h8 = symbols('h5 h6 h7 h8',below_fermi=True, cls=Dummy)

    A = Function('A')
    B = Function('B')
    dums = _get_ordered_dummies

    from sympy.utilities.iterables import variations

    # A*A*A*A*B  --  ordering of p5 and p4 is used to figure out the rest
    template = A(p1, p2)*A(p4, p1)*A(p2, p3)*A(p3, p5)*B(p5, p4)
    permutator = variations([a,b,c,d,e], 5)
    base = template.subs(zip([p1, p2, p3, p4, p5], permutator.next()))
    for permut in permutator:
        subslist = zip([p1, p2, p3, p4, p5], permut)
        expr = template.subs(subslist)
        assert substitute_dummies(expr) == substitute_dummies(base)

    # A*A*A*A*A  --  an arbitrary index is assigned and the rest are figured out
    template = A(p1, p2)*A(p4, p1)*A(p2, p3)*A(p3, p5)*A(p5, p4)
    permutator = variations([a,b,c,d,e], 5)
    base = template.subs(zip([p1, p2, p3, p4, p5], permutator.next()))
    for permut in permutator:
        subslist = zip([p1, p2, p3, p4, p5], permut)
        expr = template.subs(subslist)
        assert substitute_dummies(expr) == substitute_dummies(base)

    # A*A*A  --  ordering of p5 and p4 is used to figure out the rest
    template = A(p1, p2, p4, p1)*A(p2, p3, p3, p5)*A(p5, p4)
    permutator = variations([a,b,c,d,e], 5)
    base = template.subs(zip([p1, p2, p3, p4, p5], permutator.next()))
    for permut in permutator:
        subslist = zip([p1, p2, p3, p4, p5], permut)
        expr = template.subs(subslist)
        assert substitute_dummies(expr) == substitute_dummies(base)
开发者ID:Aang,项目名称:sympy,代码行数:42,代码来源:test_secondquant.py


示例7: symmetric

def symmetric(n):
    """
    Generates the symmetric group of order n, Sn.

    Examples:
    >>> from sympy.combinatorics.generators import symmetric
    >>> list(symmetric(3))
    [Permutation([0, 1, 2]), Permutation([0, 2, 1]), Permutation([1, 0, 2]), \
    Permutation([1, 2, 0]), Permutation([2, 0, 1]), Permutation([2, 1, 0])]
    """
    for perm in variations(range(n), n):
        yield Permutation(perm)
开发者ID:Ingwar,项目名称:sympy,代码行数:12,代码来源:generators.py


示例8: test_equivalent_internal_lines_VT2conjT2_AT

def test_equivalent_internal_lines_VT2conjT2_AT():
    # this diagram requires special handling in TCE
    i, j, k, l, m, n = symbols("i j k l m n", below_fermi=True, cls=Dummy)
    a, b, c, d, e, f = symbols("a b c d e f", above_fermi=True, cls=Dummy)
    p1, p2, p3, p4 = symbols("p1 p2 p3 p4", above_fermi=True, cls=Dummy)
    h1, h2, h3, h4 = symbols("h1 h2 h3 h4", below_fermi=True, cls=Dummy)

    from sympy.utilities.iterables import variations

    # atv(abcd)att(abij)att(ijcd)
    template = atv(p1, p2, p3, p4) * att(p1, p2, i, j) * att(i, j, p3, p4)
    permutator = variations([a, b, c, d], 4)
    base = template.subs(zip([p1, p2, p3, p4], permutator.next()))
    for permut in permutator:
        subslist = zip([p1, p2, p3, p4], permut)
        expr = template.subs(subslist)
        assert substitute_dummies(expr) == substitute_dummies(base)
    template = atv(p1, p2, p3, p4) * att(p1, p2, j, i) * att(j, i, p3, p4)
    permutator = variations([a, b, c, d], 4)
    base = template.subs(zip([p1, p2, p3, p4], permutator.next()))
    for permut in permutator:
        subslist = zip([p1, p2, p3, p4], permut)
        expr = template.subs(subslist)
        assert substitute_dummies(expr) == substitute_dummies(base)

    # atv(abcd)att(abij)att(jicd)
    template = atv(p1, p2, p3, p4) * att(p1, p2, i, j) * att(j, i, p3, p4)
    permutator = variations([a, b, c, d], 4)
    base = template.subs(zip([p1, p2, p3, p4], permutator.next()))
    for permut in permutator:
        subslist = zip([p1, p2, p3, p4], permut)
        expr = template.subs(subslist)
        assert substitute_dummies(expr) == substitute_dummies(base)
    template = atv(p1, p2, p3, p4) * att(p1, p2, j, i) * att(i, j, p3, p4)
    permutator = variations([a, b, c, d], 4)
    base = template.subs(zip([p1, p2, p3, p4], permutator.next()))
    for permut in permutator:
        subslist = zip([p1, p2, p3, p4], permut)
        expr = template.subs(subslist)
        assert substitute_dummies(expr) == substitute_dummies(base)
开发者ID:jenshnielsen,项目名称:sympy,代码行数:40,代码来源:test_secondquant.py


示例9: symmetric

def symmetric(n):
    """
    Generates the symmetric group of order n, Sn.

    Examples
    ========

    >>> from sympy.combinatorics.permutations import Permutation
    >>> Permutation.print_cyclic = True
    >>> from sympy.combinatorics.generators import symmetric
    >>> list(symmetric(3))
    [(2), (1 2), (2)(0 1), (0 1 2), (0 2 1), (0 2)]
    """
    for perm in variations(list(range(n)), n):
        yield Permutation(perm)
开发者ID:asmeurer,项目名称:sympy,代码行数:15,代码来源:generators.py


示例10: alternating

def alternating(n):
    """
    Generates the alternating group of order n, An.

    Examples
    ========

    >>> from sympy.combinatorics.permutations import Permutation
    >>> Permutation.print_cyclic = True
    >>> from sympy.combinatorics.generators import alternating
    >>> list(alternating(3))
    [Permutation(2), Permutation(0, 1, 2), Permutation(0, 2, 1)]
    """
    for perm in variations(range(n), n):
        p = Permutation(perm)
        if p.is_even:
            yield p
开发者ID:malikdiarra,项目名称:sympy,代码行数:17,代码来源:generators.py


示例11: alternating

def alternating(n):
    """
    Generates the alternating group of order n, An.

    Examples:
    >>> from sympy.combinatorics.generators import alternating
    >>> list(alternating(4))
    [Permutation([0, 1, 2, 3]), Permutation([0, 2, 3, 1]), \
    Permutation([0, 3, 1, 2]), Permutation([1, 0, 3, 2]), \
    Permutation([1, 2, 0, 3]), Permutation([1, 3, 2, 0]), \
    Permutation([2, 0, 1, 3]), Permutation([2, 1, 3, 0]), \
    Permutation([2, 3, 0, 1]), Permutation([3, 0, 2, 1]), \
    Permutation([3, 1, 0, 2]), Permutation([3, 2, 1, 0])]
    """
    for perm in variations(range(n), n):
        p = Permutation(perm)
        if p.is_even:
            yield p
开发者ID:Ingwar,项目名称:sympy,代码行数:18,代码来源:generators.py


示例12: test_issue2300

def test_issue2300():
    args = [x, y, S(2), S.Half]
    def ok(a):
        """Return True if the input args for diff are ok"""
        if not a: return False
        if a[0].is_Symbol is False: return False
        s_at = [i for i in range(len(a)) if a[i].is_Symbol]
        n_at = [i for i in range(len(a)) if not a[i].is_Symbol]
        # every symbol is followed by symbol or int
        # every number is followed by a symbol
        return (all([a[i+1].is_Symbol or a[i+1].is_Integer
            for i in s_at if i+1<len(a)]) and
            all([a[i+1].is_Symbol
            for i in n_at if i+1<len(a)]))
    eq = x**10*y**8
    for a in subsets(args):
        for v in variations(a, len(a)):
            if ok(v):
                noraise = eq.diff(*v)
            else:
                raises(ValueError, 'eq.diff(*v)')
开发者ID:addisonc,项目名称:sympy,代码行数:21,代码来源:test_functions.py


示例13: factor_nc


#.........这里部分代码省略.........
                            break
                        bt, et = t[1][0].as_base_exp()
                        if et.is_Integer and bt == b:
                            e = min(e, et)
                        else:
                            break
                    else:
                        ok = hit = True
                        l = b**e
                        il = b**-e
                        for i, a in enumerate(args):
                            args[i][1][0] = il*args[i][1][0]
                        break
                if not ok:
                    break
        else:
            hit = True
            lenn = len(n)
            l = Mul(*n)
            for i, a in enumerate(args):
                args[i][1] = args[i][1][lenn:]
        # find any noncommutative common suffix
        for i, a in enumerate(args):
            if i == 0:
                n = a[1][:]
            else:
                n = common_suffix(n, a[1])
            if not n:
                # is there a power that can be extracted?
                if not args[0][1]:
                    break
                b, e = args[0][1][-1].as_base_exp()
                ok = False
                if e.is_Integer:
                    for t in args:
                        if not t[1]:
                            break
                        bt, et = t[1][-1].as_base_exp()
                        if et.is_Integer and bt == b:
                            e = min(e, et)
                        else:
                            break
                    else:
                        ok = hit = True
                        r = b**e
                        il = b**-e
                        for i, a in enumerate(args):
                            args[i][1][-1] = args[i][1][-1]*il
                        break
                if not ok:
                    break
        else:
            hit = True
            lenn = len(n)
            r = Mul(*n)
            for i, a in enumerate(args):
                args[i][1] = a[1][:len(a[1]) - lenn]
        if hit:
            mid = Add(*[Mul(*cc)*Mul(*nc) for cc, nc in args])
        else:
            mid = expr

        # sort the symbols so the Dummys would appear in the same
        # order as the original symbols, otherwise you may introduce
        # a factor of -1, e.g. A**2 - B**2) -- {A:y, B:x} --> y**2 - x**2
        # and the former factors into two terms, (A - B)*(A + B) while the
        # latter factors into 3 terms, (-1)*(x - y)*(x + y)
        rep1 = [(n, Dummy()) for n in sorted(nc_symbols, key=default_sort_key)]
        unrep1 = [(v, k) for k, v in rep1]
        unrep1.reverse()
        new_mid, r2, _ = _mask_nc(mid.subs(rep1))
        new_mid = factor(new_mid)

        new_mid = new_mid.subs(r2).subs(unrep1)

        if new_mid.is_Pow:
            return _keep_coeff(c, g*l*new_mid*r)

        if new_mid.is_Mul:
            # XXX TODO there should be a way to inspect what order the terms
            # must be in and just select the plausible ordering without
            # checking permutations
            cfac = []
            ncfac = []
            for f in new_mid.args:
                if f.is_commutative:
                    cfac.append(f)
                else:
                    b, e = f.as_base_exp()
                    assert e.is_Integer
                    ncfac.extend([b]*e)
            pre_mid = g*Mul(*cfac)*l
            target = _mexpand(expr/c)
            for s in variations(ncfac, len(ncfac)):
                ok = pre_mid*Mul(*s)*r
                if _mexpand(ok) == target:
                    return _keep_coeff(c, ok)

        # mid was an Add that didn't factor successfully
        return _keep_coeff(c, g*l*mid*r)
开发者ID:FireJade,项目名称:sympy,代码行数:101,代码来源:exprtools.py


示例14: test_variations

def test_variations():
    # permutations
    l = range(4)
    assert list(variations(l, 0, repetition=False)) == [()]
    assert list(variations(l, 1, repetition=False)) == [(0,), (1,), (2,), (3,)]
    assert list(variations(l, 2, repetition=False)) == [(0, 1), (0, 2), (0, 3), (1, 0), (1, 2), (1, 3), (2, 0), (2, 1), (2, 3), (3, 0), (3, 1), (3, 2)]
    assert list(variations(l, 3, repetition=False)) == [(0, 1, 2), (0, 1, 3), (0, 2, 1), (0, 2, 3), (0, 3, 1), (0, 3, 2), (1, 0, 2), (1, 0, 3), (1, 2, 0), (1, 2, 3), (1, 3, 0), (1, 3, 2), (2, 0, 1), (2, 0, 3), (2, 1, 0), (2, 1, 3), (2, 3, 0), (2, 3, 1), (3, 0, 1), (3, 0, 2), (3, 1, 0), (3, 1, 2), (3, 2, 0), (3, 2, 1)]
    assert list(variations(l, 0, repetition=True)) == [()]
    assert list(variations(l, 1, repetition=True)) == [(0,), (1,), (2,), (3,)]
    assert list(variations(l, 2, repetition=True)) == [(0, 0), (0, 1), (0, 2),
                                                       (0, 3), (1, 0), (1, 1),
                                                       (1, 2), (1, 3), (2, 0),
                                                       (2, 1), (2, 2), (2, 3),
                                                       (3, 0), (3, 1), (3, 2),
                                                       (3, 3)]
    assert len(list(variations(l, 3, repetition=True))) == 64
    assert len(list(variations(l, 4, repetition=True))) == 256
    assert list(variations(l[:2], 3, repetition=False)) == []
    assert list(variations(l[:2], 3, repetition=True)) == [
        (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1),
        (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)
    ]
开发者ID:Acebulf,项目名称:sympy,代码行数:22,代码来源:test_iterables.py


示例15: test_variations

def test_variations():
    # permutations
    l = range(4)
    assert list(variations(l, 0, repetition=False)) == [[]]
    assert list(variations(l, 1, repetition=False)) == [[0], [1], [2], [3]]
    assert list(variations(l, 2, repetition=False)) == [[0, 1], [0, 2], [0, 3], [1, 0], [1, 2], [1, 3], [2, 0], [2, 1], [2, 3], [3, 0], [3, 1], [3, 2]]
    assert list(variations(l, 3, repetition=False)) == [[0, 1, 2], [0, 1, 3], [0, 2, 1], [0, 2, 3], [0, 3, 1], [0, 3, 2], [1, 0, 2], [1, 0, 3], [1, 2, 0], [1, 2, 3], [1, 3, 0], [1, 3, 2], [2, 0, 1], [2, 0, 3], [2, 1, 0], [2, 1, 3], [2, 3, 0], [2, 3, 1], [3, 0, 1], [3, 0, 2], [3, 1, 0], [3, 1, 2], [3, 2, 0], [3, 2, 1]]
    assert list(variations(l, 0, repetition=True)) == [[]]
    assert list(variations(l, 1, repetition=True)) == [[0], [1], [2], [3]]
    assert list(variations(l, 2, repetition=True)) == [[0, 0], [0, 1], [0, 2],
                                                       [0, 3], [1, 0], [1, 1],
                                                       [1, 2], [1, 3], [2, 0],
                                                       [2, 1], [2, 2], [2, 3],
                                                       [3, 0], [3, 1], [3, 2],
                                                       [3, 3]]
    assert len(list(variations(l, 3, repetition=True))) == 64
    assert len(list(variations(l, 4, repetition=True))) == 256
    assert list(variations(l[:2], 3, repetition=False)) == []
    assert list(variations(l[:2], 3, repetition=True)) == [[0, 0, 0], [0, 0, 1],
                                                           [0, 1, 0], [0, 1, 1],
                                                           [1, 0, 0], [1, 0, 1],
                                                           [1, 1, 0], [1, 1, 1]]
开发者ID:addisonc,项目名称:sympy,代码行数:22,代码来源:test_iterables.py


示例16: test_variations

def test_variations():
    assert variations([1,2,3], 2) == [[1, 2], [1, 3], [2, 1], [2, 3], [3, 1], [3, 2]]
    assert variations([1,2,3], 2, True) == [[1, 1], [1, 2], [1, 3], [2, 1], [2, 2], [2, 3], \
                        [3,1], [3,2], [3,3]]
开发者ID:KevinGoodsell,项目名称:sympy,代码行数:4,代码来源:test_iterables.py



注:本文中的sympy.utilities.iterables.variations函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python lambdify.implemented_function函数代码示例发布时间:2022-05-27
下一篇:
Python iterables.uniq函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap