本文整理汇总了Python中sympy.utilities.iterables.variations函数的典型用法代码示例。如果您正苦于以下问题:Python variations函数的具体用法?Python variations怎么用?Python variations使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了variations函数的16个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_equivalent_internal_lines_VT2conjT2_ambiguous_order_AT
def test_equivalent_internal_lines_VT2conjT2_ambiguous_order_AT():
# These diagrams invokes _determine_ambiguous() because the
# dummies can not be ordered unambiguously by the key alone
i, j, k, l, m, n = symbols("i j k l m n", below_fermi=True, cls=Dummy)
a, b, c, d, e, f = symbols("a b c d e f", above_fermi=True, cls=Dummy)
p1, p2, p3, p4 = symbols("p1 p2 p3 p4", above_fermi=True, cls=Dummy)
h1, h2, h3, h4 = symbols("h1 h2 h3 h4", below_fermi=True, cls=Dummy)
from sympy.utilities.iterables import variations
# atv(abcd)att(abij)att(cdij)
template = atv(p1, p2, p3, p4) * att(p1, p2, i, j) * att(p3, p4, i, j)
permutator = variations([a, b, c, d], 4)
base = template.subs(zip([p1, p2, p3, p4], permutator.next()))
for permut in permutator:
subslist = zip([p1, p2, p3, p4], permut)
expr = template.subs(subslist)
assert substitute_dummies(expr) == substitute_dummies(base)
template = atv(p1, p2, p3, p4) * att(p1, p2, j, i) * att(p3, p4, i, j)
permutator = variations([a, b, c, d], 4)
base = template.subs(zip([p1, p2, p3, p4], permutator.next()))
for permut in permutator:
subslist = zip([p1, p2, p3, p4], permut)
expr = template.subs(subslist)
assert substitute_dummies(expr) == substitute_dummies(base)
开发者ID:jenshnielsen,项目名称:sympy,代码行数:25,代码来源:test_secondquant.py
示例2: test_equivalent_internal_lines_VT2conjT2_ambiguous_order
def test_equivalent_internal_lines_VT2conjT2_ambiguous_order():
# These diagrams invokes _determine_ambiguous() because the
# dummies can not be ordered unambiguously by the key alone
i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy)
a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy)
p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy)
h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy)
from sympy.utilities.iterables import variations
v = Function('v')
t = Function('t')
dums = _get_ordered_dummies
# v(abcd)t(abij)t(cdij)
template = v(p1, p2, p3, p4)*t(p1, p2, i, j)*t(p3, p4, i, j)
permutator = variations([a, b, c, d], 4)
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
for permut in permutator:
subslist = zip([p1, p2, p3, p4], permut)
expr = template.subs(subslist)
assert dums(base) != dums(expr)
assert substitute_dummies(expr) == substitute_dummies(base)
template = v(p1, p2, p3, p4)*t(p1, p2, j, i)*t(p3, p4, i, j)
permutator = variations([a, b, c, d], 4)
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
for permut in permutator:
subslist = zip([p1, p2, p3, p4], permut)
expr = template.subs(subslist)
assert dums(base) != dums(expr)
assert substitute_dummies(expr) == substitute_dummies(base)
开发者ID:abhi98khandelwal,项目名称:sympy,代码行数:31,代码来源:test_secondquant.py
示例3: test_equivalent_internal_lines_VT2conjT2
def test_equivalent_internal_lines_VT2conjT2():
# this diagram requires special handling in TCE
i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy)
a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy)
p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy)
h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy)
from sympy.utilities.iterables import variations
v = Function('v')
t = Function('t')
dums = _get_ordered_dummies
# v(abcd)t(abij)t(ijcd)
template = v(p1, p2, p3, p4)*t(p1, p2, i, j)*t(i, j, p3, p4)
permutator = variations([a, b, c, d], 4)
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
for permut in permutator:
subslist = zip([p1, p2, p3, p4], permut)
expr = template.subs(subslist)
assert dums(base) != dums(expr)
assert substitute_dummies(expr) == substitute_dummies(base)
template = v(p1, p2, p3, p4)*t(p1, p2, j, i)*t(j, i, p3, p4)
permutator = variations([a, b, c, d], 4)
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
for permut in permutator:
subslist = zip([p1, p2, p3, p4], permut)
expr = template.subs(subslist)
assert dums(base) != dums(expr)
assert substitute_dummies(expr) == substitute_dummies(base)
# v(abcd)t(abij)t(jicd)
template = v(p1, p2, p3, p4)*t(p1, p2, i, j)*t(j, i, p3, p4)
permutator = variations([a, b, c, d], 4)
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
for permut in permutator:
subslist = zip([p1, p2, p3, p4], permut)
expr = template.subs(subslist)
assert dums(base) != dums(expr)
assert substitute_dummies(expr) == substitute_dummies(base)
template = v(p1, p2, p3, p4)*t(p1, p2, j, i)*t(i, j, p3, p4)
permutator = variations([a, b, c, d], 4)
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
for permut in permutator:
subslist = zip([p1, p2, p3, p4], permut)
expr = template.subs(subslist)
assert dums(base) != dums(expr)
assert substitute_dummies(expr) == substitute_dummies(base)
开发者ID:abhi98khandelwal,项目名称:sympy,代码行数:48,代码来源:test_secondquant.py
示例4: test_substitute_dummies_substitution_order
def test_substitute_dummies_substitution_order():
i, j, k, l = symbols("i j k l", below_fermi=True, cls=Dummy)
f = Function("f")
from sympy.utilities.iterables import variations
for permut in variations([i, j, k, l], 4):
assert substitute_dummies(f(*permut) - f(i, j, k, l)) == 0
开发者ID:jenshnielsen,项目名称:sympy,代码行数:7,代码来源:test_secondquant.py
示例5: period_find
def period_find(a, N):
"""Finds the period of a in modulo N arithmetic
This is quantum part of Shor's algorithm.It takes two registers,
puts first in superposition of states with Hadamards so: ``|k>|0>``
with k being all possible choices. It then does a controlled mod and
a QFT to determine the order of a.
"""
epsilon = .5
#picks out t's such that maintains accuracy within epsilon
t = int(2*math.ceil(log(N, 2)))
# make the first half of register be 0's |000...000>
start = [0 for x in range(t)]
#Put second half into superposition of states so we have |1>x|0> + |2>x|0> + ... |k>x>|0> + ... + |2**n-1>x|0>
factor = 1/sqrt(2**t)
qubits = 0
for arr in variations(range(2), t, repetition=True):
qbitArray = arr + start
qubits = qubits + Qubit(*qbitArray)
circuit = (factor*qubits).expand()
#Controlled second half of register so that we have:
# |1>x|a**1 %N> + |2>x|a**2 %N> + ... + |k>x|a**k %N >+ ... + |2**n-1=k>x|a**k % n>
circuit = CMod(t, a, N)*circuit
#will measure first half of register giving one of the a**k%N's
circuit = qapply(circuit)
print("controlled Mod'd")
for i in range(t):
circuit = measure_partial_oneshot(circuit, i)
# circuit = measure(i)*circuit
# circuit = qapply(circuit)
print("measured 1")
#Now apply Inverse Quantum Fourier Transform on the second half of the register
circuit = qapply(QFT(t, t*2).decompose()*circuit, floatingPoint=True)
print("QFT'd")
for i in range(t):
circuit = measure_partial_oneshot(circuit, i + t)
# circuit = measure(i+t)*circuit
# circuit = qapply(circuit)
print(circuit)
if isinstance(circuit, Qubit):
register = circuit
elif isinstance(circuit, Mul):
register = circuit.args[-1]
else:
register = circuit.args[-1].args[-1]
print(register)
n = 1
answer = 0
for i in range(len(register)/2):
answer += n*register[i + t]
n = n << 1
if answer == 0:
raise OrderFindingException(
"Order finder returned 0. Happens with chance %f" % epsilon)
#turn answer into r using continued fractions
g = getr(answer, 2**t, N)
print(g)
return g
开发者ID:AALEKH,项目名称:sympy,代码行数:59,代码来源:shor.py
示例6: test_dummy_order_ambiguous
def test_dummy_order_ambiguous():
aa, bb = symbols('ab', above_fermi=True)
i, j, k, l, m = symbols('i j k l m', below_fermi=True, cls=Dummy)
a, b, c, d, e = symbols('a b c d e', above_fermi=True, cls=Dummy)
p, q = symbols('p q', cls=Dummy)
p1,p2,p3,p4 = symbols('p1 p2 p3 p4',above_fermi=True, cls=Dummy)
p5,p6,p7,p8 = symbols('p5 p6 p7 p8',above_fermi=True, cls=Dummy)
h1,h2,h3,h4 = symbols('h1 h2 h3 h4',below_fermi=True, cls=Dummy)
h5,h6,h7,h8 = symbols('h5 h6 h7 h8',below_fermi=True, cls=Dummy)
A = Function('A')
B = Function('B')
dums = _get_ordered_dummies
from sympy.utilities.iterables import variations
# A*A*A*A*B -- ordering of p5 and p4 is used to figure out the rest
template = A(p1, p2)*A(p4, p1)*A(p2, p3)*A(p3, p5)*B(p5, p4)
permutator = variations([a,b,c,d,e], 5)
base = template.subs(zip([p1, p2, p3, p4, p5], permutator.next()))
for permut in permutator:
subslist = zip([p1, p2, p3, p4, p5], permut)
expr = template.subs(subslist)
assert substitute_dummies(expr) == substitute_dummies(base)
# A*A*A*A*A -- an arbitrary index is assigned and the rest are figured out
template = A(p1, p2)*A(p4, p1)*A(p2, p3)*A(p3, p5)*A(p5, p4)
permutator = variations([a,b,c,d,e], 5)
base = template.subs(zip([p1, p2, p3, p4, p5], permutator.next()))
for permut in permutator:
subslist = zip([p1, p2, p3, p4, p5], permut)
expr = template.subs(subslist)
assert substitute_dummies(expr) == substitute_dummies(base)
# A*A*A -- ordering of p5 and p4 is used to figure out the rest
template = A(p1, p2, p4, p1)*A(p2, p3, p3, p5)*A(p5, p4)
permutator = variations([a,b,c,d,e], 5)
base = template.subs(zip([p1, p2, p3, p4, p5], permutator.next()))
for permut in permutator:
subslist = zip([p1, p2, p3, p4, p5], permut)
expr = template.subs(subslist)
assert substitute_dummies(expr) == substitute_dummies(base)
开发者ID:Aang,项目名称:sympy,代码行数:42,代码来源:test_secondquant.py
示例7: symmetric
def symmetric(n):
"""
Generates the symmetric group of order n, Sn.
Examples:
>>> from sympy.combinatorics.generators import symmetric
>>> list(symmetric(3))
[Permutation([0, 1, 2]), Permutation([0, 2, 1]), Permutation([1, 0, 2]), \
Permutation([1, 2, 0]), Permutation([2, 0, 1]), Permutation([2, 1, 0])]
"""
for perm in variations(range(n), n):
yield Permutation(perm)
开发者ID:Ingwar,项目名称:sympy,代码行数:12,代码来源:generators.py
示例8: test_equivalent_internal_lines_VT2conjT2_AT
def test_equivalent_internal_lines_VT2conjT2_AT():
# this diagram requires special handling in TCE
i, j, k, l, m, n = symbols("i j k l m n", below_fermi=True, cls=Dummy)
a, b, c, d, e, f = symbols("a b c d e f", above_fermi=True, cls=Dummy)
p1, p2, p3, p4 = symbols("p1 p2 p3 p4", above_fermi=True, cls=Dummy)
h1, h2, h3, h4 = symbols("h1 h2 h3 h4", below_fermi=True, cls=Dummy)
from sympy.utilities.iterables import variations
# atv(abcd)att(abij)att(ijcd)
template = atv(p1, p2, p3, p4) * att(p1, p2, i, j) * att(i, j, p3, p4)
permutator = variations([a, b, c, d], 4)
base = template.subs(zip([p1, p2, p3, p4], permutator.next()))
for permut in permutator:
subslist = zip([p1, p2, p3, p4], permut)
expr = template.subs(subslist)
assert substitute_dummies(expr) == substitute_dummies(base)
template = atv(p1, p2, p3, p4) * att(p1, p2, j, i) * att(j, i, p3, p4)
permutator = variations([a, b, c, d], 4)
base = template.subs(zip([p1, p2, p3, p4], permutator.next()))
for permut in permutator:
subslist = zip([p1, p2, p3, p4], permut)
expr = template.subs(subslist)
assert substitute_dummies(expr) == substitute_dummies(base)
# atv(abcd)att(abij)att(jicd)
template = atv(p1, p2, p3, p4) * att(p1, p2, i, j) * att(j, i, p3, p4)
permutator = variations([a, b, c, d], 4)
base = template.subs(zip([p1, p2, p3, p4], permutator.next()))
for permut in permutator:
subslist = zip([p1, p2, p3, p4], permut)
expr = template.subs(subslist)
assert substitute_dummies(expr) == substitute_dummies(base)
template = atv(p1, p2, p3, p4) * att(p1, p2, j, i) * att(i, j, p3, p4)
permutator = variations([a, b, c, d], 4)
base = template.subs(zip([p1, p2, p3, p4], permutator.next()))
for permut in permutator:
subslist = zip([p1, p2, p3, p4], permut)
expr = template.subs(subslist)
assert substitute_dummies(expr) == substitute_dummies(base)
开发者ID:jenshnielsen,项目名称:sympy,代码行数:40,代码来源:test_secondquant.py
示例9: symmetric
def symmetric(n):
"""
Generates the symmetric group of order n, Sn.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> Permutation.print_cyclic = True
>>> from sympy.combinatorics.generators import symmetric
>>> list(symmetric(3))
[(2), (1 2), (2)(0 1), (0 1 2), (0 2 1), (0 2)]
"""
for perm in variations(list(range(n)), n):
yield Permutation(perm)
开发者ID:asmeurer,项目名称:sympy,代码行数:15,代码来源:generators.py
示例10: alternating
def alternating(n):
"""
Generates the alternating group of order n, An.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> Permutation.print_cyclic = True
>>> from sympy.combinatorics.generators import alternating
>>> list(alternating(3))
[Permutation(2), Permutation(0, 1, 2), Permutation(0, 2, 1)]
"""
for perm in variations(range(n), n):
p = Permutation(perm)
if p.is_even:
yield p
开发者ID:malikdiarra,项目名称:sympy,代码行数:17,代码来源:generators.py
示例11: alternating
def alternating(n):
"""
Generates the alternating group of order n, An.
Examples:
>>> from sympy.combinatorics.generators import alternating
>>> list(alternating(4))
[Permutation([0, 1, 2, 3]), Permutation([0, 2, 3, 1]), \
Permutation([0, 3, 1, 2]), Permutation([1, 0, 3, 2]), \
Permutation([1, 2, 0, 3]), Permutation([1, 3, 2, 0]), \
Permutation([2, 0, 1, 3]), Permutation([2, 1, 3, 0]), \
Permutation([2, 3, 0, 1]), Permutation([3, 0, 2, 1]), \
Permutation([3, 1, 0, 2]), Permutation([3, 2, 1, 0])]
"""
for perm in variations(range(n), n):
p = Permutation(perm)
if p.is_even:
yield p
开发者ID:Ingwar,项目名称:sympy,代码行数:18,代码来源:generators.py
示例12: test_issue2300
def test_issue2300():
args = [x, y, S(2), S.Half]
def ok(a):
"""Return True if the input args for diff are ok"""
if not a: return False
if a[0].is_Symbol is False: return False
s_at = [i for i in range(len(a)) if a[i].is_Symbol]
n_at = [i for i in range(len(a)) if not a[i].is_Symbol]
# every symbol is followed by symbol or int
# every number is followed by a symbol
return (all([a[i+1].is_Symbol or a[i+1].is_Integer
for i in s_at if i+1<len(a)]) and
all([a[i+1].is_Symbol
for i in n_at if i+1<len(a)]))
eq = x**10*y**8
for a in subsets(args):
for v in variations(a, len(a)):
if ok(v):
noraise = eq.diff(*v)
else:
raises(ValueError, 'eq.diff(*v)')
开发者ID:addisonc,项目名称:sympy,代码行数:21,代码来源:test_functions.py
示例13: factor_nc
#.........这里部分代码省略.........
break
bt, et = t[1][0].as_base_exp()
if et.is_Integer and bt == b:
e = min(e, et)
else:
break
else:
ok = hit = True
l = b**e
il = b**-e
for i, a in enumerate(args):
args[i][1][0] = il*args[i][1][0]
break
if not ok:
break
else:
hit = True
lenn = len(n)
l = Mul(*n)
for i, a in enumerate(args):
args[i][1] = args[i][1][lenn:]
# find any noncommutative common suffix
for i, a in enumerate(args):
if i == 0:
n = a[1][:]
else:
n = common_suffix(n, a[1])
if not n:
# is there a power that can be extracted?
if not args[0][1]:
break
b, e = args[0][1][-1].as_base_exp()
ok = False
if e.is_Integer:
for t in args:
if not t[1]:
break
bt, et = t[1][-1].as_base_exp()
if et.is_Integer and bt == b:
e = min(e, et)
else:
break
else:
ok = hit = True
r = b**e
il = b**-e
for i, a in enumerate(args):
args[i][1][-1] = args[i][1][-1]*il
break
if not ok:
break
else:
hit = True
lenn = len(n)
r = Mul(*n)
for i, a in enumerate(args):
args[i][1] = a[1][:len(a[1]) - lenn]
if hit:
mid = Add(*[Mul(*cc)*Mul(*nc) for cc, nc in args])
else:
mid = expr
# sort the symbols so the Dummys would appear in the same
# order as the original symbols, otherwise you may introduce
# a factor of -1, e.g. A**2 - B**2) -- {A:y, B:x} --> y**2 - x**2
# and the former factors into two terms, (A - B)*(A + B) while the
# latter factors into 3 terms, (-1)*(x - y)*(x + y)
rep1 = [(n, Dummy()) for n in sorted(nc_symbols, key=default_sort_key)]
unrep1 = [(v, k) for k, v in rep1]
unrep1.reverse()
new_mid, r2, _ = _mask_nc(mid.subs(rep1))
new_mid = factor(new_mid)
new_mid = new_mid.subs(r2).subs(unrep1)
if new_mid.is_Pow:
return _keep_coeff(c, g*l*new_mid*r)
if new_mid.is_Mul:
# XXX TODO there should be a way to inspect what order the terms
# must be in and just select the plausible ordering without
# checking permutations
cfac = []
ncfac = []
for f in new_mid.args:
if f.is_commutative:
cfac.append(f)
else:
b, e = f.as_base_exp()
assert e.is_Integer
ncfac.extend([b]*e)
pre_mid = g*Mul(*cfac)*l
target = _mexpand(expr/c)
for s in variations(ncfac, len(ncfac)):
ok = pre_mid*Mul(*s)*r
if _mexpand(ok) == target:
return _keep_coeff(c, ok)
# mid was an Add that didn't factor successfully
return _keep_coeff(c, g*l*mid*r)
开发者ID:FireJade,项目名称:sympy,代码行数:101,代码来源:exprtools.py
示例14: test_variations
def test_variations():
# permutations
l = range(4)
assert list(variations(l, 0, repetition=False)) == [()]
assert list(variations(l, 1, repetition=False)) == [(0,), (1,), (2,), (3,)]
assert list(variations(l, 2, repetition=False)) == [(0, 1), (0, 2), (0, 3), (1, 0), (1, 2), (1, 3), (2, 0), (2, 1), (2, 3), (3, 0), (3, 1), (3, 2)]
assert list(variations(l, 3, repetition=False)) == [(0, 1, 2), (0, 1, 3), (0, 2, 1), (0, 2, 3), (0, 3, 1), (0, 3, 2), (1, 0, 2), (1, 0, 3), (1, 2, 0), (1, 2, 3), (1, 3, 0), (1, 3, 2), (2, 0, 1), (2, 0, 3), (2, 1, 0), (2, 1, 3), (2, 3, 0), (2, 3, 1), (3, 0, 1), (3, 0, 2), (3, 1, 0), (3, 1, 2), (3, 2, 0), (3, 2, 1)]
assert list(variations(l, 0, repetition=True)) == [()]
assert list(variations(l, 1, repetition=True)) == [(0,), (1,), (2,), (3,)]
assert list(variations(l, 2, repetition=True)) == [(0, 0), (0, 1), (0, 2),
(0, 3), (1, 0), (1, 1),
(1, 2), (1, 3), (2, 0),
(2, 1), (2, 2), (2, 3),
(3, 0), (3, 1), (3, 2),
(3, 3)]
assert len(list(variations(l, 3, repetition=True))) == 64
assert len(list(variations(l, 4, repetition=True))) == 256
assert list(variations(l[:2], 3, repetition=False)) == []
assert list(variations(l[:2], 3, repetition=True)) == [
(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1),
(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)
]
开发者ID:Acebulf,项目名称:sympy,代码行数:22,代码来源:test_iterables.py
示例15: test_variations
def test_variations():
# permutations
l = range(4)
assert list(variations(l, 0, repetition=False)) == [[]]
assert list(variations(l, 1, repetition=False)) == [[0], [1], [2], [3]]
assert list(variations(l, 2, repetition=False)) == [[0, 1], [0, 2], [0, 3], [1, 0], [1, 2], [1, 3], [2, 0], [2, 1], [2, 3], [3, 0], [3, 1], [3, 2]]
assert list(variations(l, 3, repetition=False)) == [[0, 1, 2], [0, 1, 3], [0, 2, 1], [0, 2, 3], [0, 3, 1], [0, 3, 2], [1, 0, 2], [1, 0, 3], [1, 2, 0], [1, 2, 3], [1, 3, 0], [1, 3, 2], [2, 0, 1], [2, 0, 3], [2, 1, 0], [2, 1, 3], [2, 3, 0], [2, 3, 1], [3, 0, 1], [3, 0, 2], [3, 1, 0], [3, 1, 2], [3, 2, 0], [3, 2, 1]]
assert list(variations(l, 0, repetition=True)) == [[]]
assert list(variations(l, 1, repetition=True)) == [[0], [1], [2], [3]]
assert list(variations(l, 2, repetition=True)) == [[0, 0], [0, 1], [0, 2],
[0, 3], [1, 0], [1, 1],
[1, 2], [1, 3], [2, 0],
[2, 1], [2, 2], [2, 3],
[3, 0], [3, 1], [3, 2],
[3, 3]]
assert len(list(variations(l, 3, repetition=True))) == 64
assert len(list(variations(l, 4, repetition=True))) == 256
assert list(variations(l[:2], 3, repetition=False)) == []
assert list(variations(l[:2], 3, repetition=True)) == [[0, 0, 0], [0, 0, 1],
[0, 1, 0], [0, 1, 1],
[1, 0, 0], [1, 0, 1],
[1, 1, 0], [1, 1, 1]]
开发者ID:addisonc,项目名称:sympy,代码行数:22,代码来源:test_iterables.py
示例16: test_variations
def test_variations():
assert variations([1,2,3], 2) == [[1, 2], [1, 3], [2, 1], [2, 3], [3, 1], [3, 2]]
assert variations([1,2,3], 2, True) == [[1, 1], [1, 2], [1, 3], [2, 1], [2, 2], [2, 3], \
[3,1], [3,2], [3,3]]
开发者ID:KevinGoodsell,项目名称:sympy,代码行数:4,代码来源:test_iterables.py
注:本文中的sympy.utilities.iterables.variations函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论