• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python utilities.filldedent函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sympy.utilities.filldedent函数的典型用法代码示例。如果您正苦于以下问题:Python filldedent函数的具体用法?Python filldedent怎么用?Python filldedent使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了filldedent函数的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: set

 def set(self):
     rv = self.symbols
     if len(self.symbols) > 1:
         raise NotImplementedError(filldedent('''
             Multivariate condtional domains are not yet implemented.'''))
     rv = list(rv)[0]
     return reduce_rational_inequalities_wrap(self.condition,
         rv).intersect(self.fulldomain.set)
开发者ID:normalhuman,项目名称:sympy,代码行数:8,代码来源:drv.py


示例2: restricted_domain

 def restricted_domain(self, condition):
     rvs = random_symbols(condition)
     assert all(r.symbol in self.symbols for r in rvs)
     if (len(rvs) > 1):
         raise NotImplementedError(filldedent('''Multivariate discrete
         random variables are not yet supported.'''))
     conditional_domain = reduce_rational_inequalities_wrap(condition,
         rvs[0])
     conditional_domain = conditional_domain.intersect(self.domain.set)
     return conditional_domain
开发者ID:carstimon,项目名称:sympy,代码行数:10,代码来源:drv.py


示例3: _check

 def _check(orig_f, period):
     '''Return the checked period or raise an error.'''
     new_f = orig_f.subs(symbol, symbol + period)
     if new_f.equals(orig_f):
         return period
     else:
         raise NotImplementedError(filldedent('''
             The period of the given function cannot be verified.
             When `%s` was replaced with `%s + %s` in `%s`, the result
             was `%s` which was not recognized as being the same as
             the original function.
             So either the period was wrong or the two forms were
             not recognized as being equal.
             Set check=False to obtain the value.''' %
             (symbol, symbol, period, orig_f, new_f)))
开发者ID:tclose,项目名称:sympy,代码行数:15,代码来源:util.py


示例4: eval_prob

 def eval_prob(self, _domain):
     if isinstance(_domain, Range):
         n = symbols('n')
         inf, sup, step = (r for r in _domain.args)
         summand = ((self.pdf).replace(
             self.symbol, inf + n*step))
         rv = summation(summand,
             (n, 0, floor((sup - inf)/step - 1))).doit()
         return rv
     elif isinstance(_domain, FiniteSet):
         pdf = Lambda(self.symbol, self.pdf)
         rv = sum(pdf(x) for x in _domain)
         return rv
     elif isinstance(_domain, Union):
         rv = sum(self.eval_prob(x) for x in _domain.args)
         return rv
     else:
         raise NotImplementedError(filldedent('''Probability for
             the domain %s cannot be calculated.'''%(_domain)))
开发者ID:carstimon,项目名称:sympy,代码行数:19,代码来源:drv.py


示例5: _eval_rewrite_as_SingularityFunction

    def _eval_rewrite_as_SingularityFunction(self, args):
        """
        Returns the Heaviside expression written in the form of Singularity Functions.

        """
        from sympy.solvers import solve
        from sympy.functions import SingularityFunction
        if self == Heaviside(0):
            return SingularityFunction(0, 0, 0)
        free = self.free_symbols
        if len(free) == 1:
            x = (free.pop())
            return SingularityFunction(x, solve(args, x)[0], 0)
            # TODO
            # ((x - 5)**3*Heaviside(x - 5)).rewrite(SingularityFunction) should output
            # SingularityFunction(x, 5, 0) instead of (x - 5)**3*SingularityFunction(x, 5, 0)
        else:
            # I dont know how to handle the case for Heaviside expressions
            # having arguments with more than one variable.
            raise TypeError(filldedent('''
                rewrite(SingularityFunction) doesn't support arguments with more that 1 variable.'''))
开发者ID:sixpearls,项目名称:sympy,代码行数:21,代码来源:delta_functions.py


示例6: _solve_abs

def _solve_abs(f, symbol, domain):
    """ Helper function to solve equation involving absolute value function """
    if not domain.is_subset(S.Reals):
        raise ValueError(filldedent('''
            Absolute values cannot be inverted in the
            complex domain.'''))
    p, q, r = Wild('p'), Wild('q'), Wild('r')
    pattern_match = f.match(p*Abs(q) + r) or {}
    if not pattern_match.get(p, S.Zero).is_zero:
        f_p, f_q, f_r = pattern_match[p], pattern_match[q], pattern_match[r]
        q_pos_cond = solve_univariate_inequality(f_q >= 0, symbol,
                                                 relational=False)
        q_neg_cond = solve_univariate_inequality(f_q < 0, symbol,
                                                 relational=False)

        sols_q_pos = solveset_real(f_p*f_q + f_r,
                                           symbol).intersect(q_pos_cond)
        sols_q_neg = solveset_real(f_p*(-f_q) + f_r,
                                           symbol).intersect(q_neg_cond)
        return Union(sols_q_pos, sols_q_neg)
    else:
        return ConditionSet(symbol, Eq(f, 0), domain)
开发者ID:A-turing-machine,项目名称:sympy,代码行数:22,代码来源:solveset.py


示例7: _eval_expand_diracdelta

    def _eval_expand_diracdelta(self, **hints):
        """Compute a simplified representation of the function using
           property number 4. Pass wrt as a hint to expand the expression
           with respect to a particular variable.

           wrt is:

           - a variable with respect to which a DiracDelta expression will
           get expanded.

           Examples
           ========

           >>> from sympy import DiracDelta
           >>> from sympy.abc import x, y

           >>> DiracDelta(x*y).expand(diracdelta=True, wrt=x)
           DiracDelta(x)/Abs(y)
           >>> DiracDelta(x*y).expand(diracdelta=True, wrt=y)
           DiracDelta(y)/Abs(x)

           >>> DiracDelta(x**2 + x - 2).expand(diracdelta=True, wrt=x)
           DiracDelta(x - 1)/3 + DiracDelta(x + 2)/3

           See Also
           ========

           is_simple, Diracdelta

        """
        from sympy.polys.polyroots import roots

        wrt = hints.get('wrt', None)
        if wrt is None:
            free = self.free_symbols
            if len(free) == 1:
                wrt = free.pop()
            else:
                raise TypeError(filldedent('''
            When there is more than 1 free symbol or variable in the expression,
            the 'wrt' keyword is required as a hint to expand when using the
            DiracDelta hint.'''))

        if not self.args[0].has(wrt) or (len(self.args) > 1 and self.args[1] != 0 ):
            return self
        try:
            argroots = roots(self.args[0], wrt)
            result = 0
            valid = True
            darg = abs(diff(self.args[0], wrt))
            for r, m in argroots.items():
                if r.is_real is not False and m == 1:
                    result += self.func(wrt - r)/darg.subs(wrt, r)
                else:
                    # don't handle non-real and if m != 1 then
                    # a polynomial will have a zero in the derivative (darg)
                    # at r
                    valid = False
                    break
            if valid:
                return result
        except PolynomialError:
            pass
        return self
开发者ID:sixpearls,项目名称:sympy,代码行数:64,代码来源:delta_functions.py


示例8: solveset


#.........这里部分代码省略.........
    solveset_complex: solver for complex domain

    Examples
    ========

    >>> from sympy import exp, sin, Symbol, pprint, S
    >>> from sympy.solvers.solveset import solveset, solveset_real

    * The default domain is complex. Not specifying a domain will lead
      to the solving of the equation in the complex domain (and this
      is not affected by the assumptions on the symbol):

    >>> x = Symbol('x')
    >>> pprint(solveset(exp(x) - 1, x), use_unicode=False)
    {2*n*I*pi | n in Integers()}

    >>> x = Symbol('x', real=True)
    >>> pprint(solveset(exp(x) - 1, x), use_unicode=False)
    {2*n*I*pi | n in Integers()}

    * If you want to use `solveset` to solve the equation in the
      real domain, provide a real domain. (Using `solveset\_real`
      does this automatically.)

    >>> R = S.Reals
    >>> x = Symbol('x')
    >>> solveset(exp(x) - 1, x, R)
    {0}
    >>> solveset_real(exp(x) - 1, x)
    {0}

    The solution is mostly unaffected by assumptions on the symbol,
    but there may be some slight difference:

    >>> pprint(solveset(sin(x)/x,x), use_unicode=False)
    ({2*n*pi | n in Integers()} \ {0}) U ({2*n*pi + pi | n in Integers()} \ {0})

    >>> p = Symbol('p', positive=True)
    >>> pprint(solveset(sin(p)/p, p), use_unicode=False)
    {2*n*pi | n in Integers()} U {2*n*pi + pi | n in Integers()}

    * Inequalities can be solved over the real domain only. Use of a complex
      domain leads to a NotImplementedError.

    >>> solveset(exp(x) > 1, x, R)
    (0, oo)

    """
    f = sympify(f)

    if f is S.true:
        return domain

    if f is S.false:
        return S.EmptySet

    if not isinstance(f, (Expr, Number)):
        raise ValueError("%s is not a valid SymPy expression" % (f))

    free_symbols = f.free_symbols

    if not free_symbols:
        b = Eq(f, 0)
        if b is S.true:
            return domain
        elif b is S.false:
            return S.EmptySet
        else:
            raise NotImplementedError(filldedent('''
                relationship between value and 0 is unknown: %s''' % b))

    if symbol is None:
        if len(free_symbols) == 1:
            symbol = free_symbols.pop()
        else:
            raise ValueError(filldedent('''
                The independent variable must be specified for a
                multivariate equation.'''))
    elif not getattr(symbol, 'is_Symbol', False):
        raise ValueError('A Symbol must be given, not type %s: %s' %
            (type(symbol), symbol))

    if isinstance(f, Eq):
        from sympy.core import Add
        f = Add(f.lhs, - f.rhs, evaluate=False)
    elif f.is_Relational:
        if not domain.is_subset(S.Reals):
            raise NotImplementedError(filldedent('''
                Inequalities in the complex domain are
                not supported. Try the real domain by
                setting domain=S.Reals'''))
        try:
            result = solve_univariate_inequality(
            f, symbol, relational=False) - _invalid_solutions(
            f, symbol, domain)
        except NotImplementedError:
            result = ConditionSet(symbol, f, domain)
        return result

    return _solveset(f, symbol, domain, _check=True)
开发者ID:A-turing-machine,项目名称:sympy,代码行数:101,代码来源:solveset.py


示例9: solveset

def solveset(f, symbol=None):
    """Solves a given inequality or equation with set as output

    Parameters
    ==========

    f : Expr or a relational.
        The target equation or inequality
    symbol : Symbol
        The variable for which the equation is solved

    Returns
    =======

    Set
        A set of values for `symbol` for which `f` is True or is equal to
        zero. An `EmptySet` is returned if no solution is found.

    `solveset` claims to be complete in the solution set that it returns.

    Raises
    ======

    NotImplementedError
        The algorithms for to find the solution of the given equation are
        not yet implemented.
    ValueError
        The input is not valid.
    RuntimeError
        It is a bug, please report to the github issue tracker.


    `solveset` uses two underlying functions `solveset_real` and
    `solveset_complex` to solve equations. They are
    the solvers for real and complex domain respectively. The domain of
    the solver is decided by the assumption on the variable for which the
    equation is being solved.


    See Also
    ========

    solveset_real: solver for real domain
    solveset_complex: solver for complex domain

    Examples
    ========

    >>> from sympy import exp, Symbol, Eq, pprint
    >>> from sympy.solvers.solveset import solveset
    >>> from sympy.abc import x

    Symbols in Sympy are complex by default. A complex variable
    will lead to the solving of the equation in complex domain
    >>> pprint(solveset(exp(x) - 1, x), use_unicode=False)
    {2*n*I*pi | n in Integers()}

    If you want to solve equation in real domain by the `solveset`
    interface, then specify the variable to real. Alternatively use
    `solveset_real`.
    >>> x = Symbol('x', real=True)
    >>> solveset(exp(x) - 1, x)
    {0}
    >>> solveset(Eq(exp(x), 1), x)
    {0}

    Inequalities are always solved in the real domain irrespective of
    the assumption on the variable for which the inequality is solved.
    >>> solveset(exp(x) > 1, x)
    (0, oo)

    """

    from sympy.solvers.inequalities import solve_univariate_inequality

    if symbol is None:
        free_symbols = f.free_symbols
        if len(free_symbols) == 1:
            symbol = free_symbols.pop()
        else:
            raise ValueError(filldedent('''
                The independent variable must be specified for a
                multivariate equation.'''))
    elif not symbol.is_Symbol:
        raise ValueError('A Symbol must be given, not type %s: %s' % (type(symbol), symbol))

    real = (symbol.is_real is True)

    f = sympify(f)

    if isinstance(f, Eq):
        f = f.lhs - f.rhs

    if f.is_Relational:
        if real is False:
            warnings.warn(filldedent('''
                The variable you are solving for is complex
                but will assumed to be real since solving complex
                inequalities is not supported.
            '''))
#.........这里部分代码省略.........
开发者ID:AdrianPotter,项目名称:sympy,代码行数:101,代码来源:solveset.py


示例10: solveset

def solveset(f, symbol=None, domain=S.Complexes):
    """Solves a given inequality or equation with set as output

    Parameters
    ==========

    f : Expr or a relational.
        The target equation or inequality
    symbol : Symbol
        The variable for which the equation is solved
    domain : Set
        The domain over which the equation is solved

    Returns
    =======

    Set
        A set of values for `symbol` for which `f` is True or is equal to
        zero. An `EmptySet` is returned if no solution is found.
        A `ConditionSet` is returned as unsolved object if algorithms
        to evaluatee complete solution are not yet implemented.

    `solveset` claims to be complete in the solution set that it returns.

    Raises
    ======

    NotImplementedError
        The algorithms to solve inequalities in complex domain  are
        not yet implemented.
    ValueError
        The input is not valid.
    RuntimeError
        It is a bug, please report to the github issue tracker.


    `solveset` uses two underlying functions `solveset_real` and
    `solveset_complex` to solve equations. They are the solvers for real and
    complex domain respectively. `solveset` ignores the assumptions on the
    variable being solved for and instead, uses the `domain` parameter to
    decide which solver to use.


    See Also
    ========

    solveset_real: solver for real domain
    solveset_complex: solver for complex domain

    Examples
    ========

    >>> from sympy import exp, Symbol, Eq, pprint, S, solveset
    >>> from sympy.abc import x

    * The default domain is complex. Not specifying a domain will lead to the
      solving of the equation in the complex domain.

    >>> pprint(solveset(exp(x) - 1, x), use_unicode=False)
    {2*n*I*pi | n in Integers()}

    * If you want to solve equation in real domain by the `solveset`
      interface, then specify that the domain is real. Alternatively use
      `solveset\_real`.

    >>> x = Symbol('x')
    >>> solveset(exp(x) - 1, x, S.Reals)
    {0}
    >>> solveset(Eq(exp(x), 1), x, S.Reals)
    {0}

    * Inequalities can be solved over the real domain only. Use of a complex
      domain leads to a NotImplementedError.

    >>> solveset(exp(x) > 1, x, S.Reals)
    (0, oo)

    """

    from sympy.solvers.inequalities import solve_univariate_inequality

    if symbol is None:
        free_symbols = f.free_symbols
        if len(free_symbols) == 1:
            symbol = free_symbols.pop()
        else:
            raise ValueError(filldedent('''
                The independent variable must be specified for a
                multivariate equation.'''))
    elif not symbol.is_Symbol:
        raise ValueError('A Symbol must be given, not type %s: %s' % (type(symbol), symbol))

    f = sympify(f)

    if f is S.false:
        return EmptySet()

    if f is S.true:
        return domain

#.........这里部分代码省略.........
开发者ID:Davidjohnwilson,项目名称:sympy,代码行数:101,代码来源:solveset.py


示例11: periodicity


#.........这里部分代码省略.........

    The value returned might not be the "fundamental" period of the given
    function i.e. it may not be the smallest periodic value of the function.

    The verification of the period through the `check` flag is not reliable
    due to internal simplification of the given expression. Hence, it is set
    to `False` by default.

    Examples
    ========
    >>> from sympy import Symbol, sin, cos, tan, exp
    >>> from sympy.calculus.util import periodicity
    >>> x = Symbol('x')
    >>> f = sin(x) + sin(2*x) + sin(3*x)
    >>> periodicity(f, x)
    2*pi
    >>> periodicity(sin(x)*cos(x), x)
    pi
    >>> periodicity(exp(tan(2*x) - 1), x)
    pi/2
    >>> periodicity(sin(4*x)**cos(2*x), x)
    pi
    >>> periodicity(exp(x), x)

    """
    from sympy import simplify, lcm_list
    from sympy.functions.elementary.trigonometric import TrigonometricFunction
    from sympy.solvers.decompogen import decompogen

    orig_f = f
    f = simplify(orig_f)
    period = None

    if not f.has(symbol):
        return S.Zero

    if isinstance(f, TrigonometricFunction):
        try:
            period = f.period(symbol)
        except NotImplementedError:
            pass

    if f.is_Pow:
        base, expo = f.args
        base_has_sym = base.has(symbol)
        expo_has_sym = expo.has(symbol)

        if base_has_sym and not expo_has_sym:
            period = periodicity(base, symbol)

        elif expo_has_sym and not base_has_sym:
            period = periodicity(expo, symbol)

        else:
            period = _periodicity(f.args, symbol)

    elif f.is_Mul:
        coeff, g = f.as_independent(symbol, as_Add=False)
        if isinstance(g, TrigonometricFunction) or coeff is not S.One:
            period = periodicity(g, symbol)

        else:
            period = _periodicity(g.args, symbol)

    elif f.is_Add:
        k, g = f.as_independent(symbol)
        if k is not S.Zero:
            return periodicity(g, symbol)

        period = _periodicity(g.args, symbol)

    elif period is None:
        from sympy.solvers.decompogen import compogen
        g_s = decompogen(f, symbol)
        num_of_gs = len(g_s)
        if num_of_gs > 1:
            for index, g in enumerate(reversed(g_s)):
                start_index = num_of_gs - 1 - index
                g = compogen(g_s[start_index:], symbol)
                if g != f:
                    period = periodicity(g, symbol)
                    if period is None:
                        continue

                    else:
                        break

    if period is not None:
        if check:
            if orig_f.subs(symbol, symbol + period) == orig_f:
                return period

            else:
                raise NotImplementedError(filldedent('''
                    The period of the given function cannot be verified.
                    Set check=False to obtain the value.'''))

        return period

    return None
开发者ID:hacman,项目名称:sympy,代码行数:101,代码来源:util.py


示例12: function_range

def function_range(f, symbol, domain):
    """
    Finds the range of a function in a given domain.
    This method is limited by the ability to determine the singularities and
    determine limits.

    Parameters
    ==========

    f : Expr
        The concerned function.
    symbol : Symbol
        The variable for which the range of function is to be determined.
    domain : Interval
        The domain under which the range of the function has to be found.

    Examples
    ========

    >>> from sympy import Symbol, S, exp, log, pi, sqrt, sin, tan
    >>> from sympy.sets import Interval
    >>> from sympy.calculus.util import function_range
    >>> x = Symbol('x')
    >>> function_range(sin(x), x, Interval(0, 2*pi))
    Interval(-1, 1)
    >>> function_range(tan(x), x, Interval(-pi/2, pi/2))
    Interval(-oo, oo)
    >>> function_range(1/x, x, S.Reals)
    Union(Interval.open(-oo, 0), Interval.open(0, oo))
    >>> function_range(exp(x), x, S.Reals)
    Interval.open(0, oo)
    >>> function_range(log(x), x, S.Reals)
    Interval(-oo, oo)
    >>> function_range(sqrt(x), x , Interval(-5, 9))
    Interval(0, 3)

    Returns
    =======

    Interval
        Union of all ranges for all intervals under domain where function is continuous.

    Raises
    ======
    NotImplementedError
        If any of the intervals, in the given domain, for which function
        is continuous are not finite or real,
        OR if the critical points of the function on the domain can't be found.
    """
    from sympy.solvers.solveset import solveset

    if isinstance(domain, EmptySet):
        return S.EmptySet

    period = periodicity(f, symbol)
    if period is S.Zero:
        # the expression is constant wrt symbol
        return FiniteSet(f.expand())

    if period is not None:
        if isinstance(domain, Interval):
            if (domain.inf - domain.sup).is_infinite:
                domain = Interval(0, period)
        elif isinstance(domain, Union):
            for sub_dom in domain.args:
                if isinstance(sub_dom, Interval) and \
                ((sub_dom.inf - sub_dom.sup).is_infinite):
                    domain = Interval(0, period)

    intervals = continuous_domain(f, symbol, domain)
    range_int = S.EmptySet
    if isinstance(intervals,(Interval, FiniteSet)):
        interval_iter = (intervals,)

    elif isinstance(intervals, Union):
        interval_iter = intervals.args

    else:
            raise NotImplementedError(filldedent('''
                Unable to find range for the given domain.
                '''))

    for interval in interval_iter:
        if isinstance(interval, FiniteSet):
            for singleton in interval:
                if singleton in domain:
                    range_int += FiniteSet(f.subs(symbol, singleton))
        elif isinstance(interval, Interval):
            vals = S.EmptySet
            critical_points = S.EmptySet
            critical_values = S.EmptySet
            bounds = ((interval.left_open, interval.inf, '+'),
                   (interval.right_open, interval.sup, '-'))

            for is_open, limit_point, direction in bounds:
                if is_open:
                    critical_values += FiniteSet(limit(f, symbol, limit_point, direction))
                    vals += critical_values

                else:
#.........这里部分代码省略.........
开发者ID:gamechanger98,项目名称:sympy,代码行数:101,代码来源:util.py


示例13: eval

    def eval(cls, arg, k=0):
        """
        Returns a simplified form or a value of DiracDelta depending on the
        argument passed by the DiracDelta object.

        The ``eval()`` method is automatically called when the ``DiracDelta`` class
        is about to be instantiated and it returns either some simplified instance
        or the unevaluated instance depending on the argument passed. In other words,
        ``eval()`` method is not needed to be called explicitly, it is being called
        and evaluated once the object is called.

        Examples
        ========

        >>> from sympy import DiracDelta, S, Subs
        >>> from sympy.abc import x

        >>> DiracDelta(x)
        DiracDelta(x)

        >>> DiracDelta(-x, 1)
        -DiracDelta(x, 1)

        >>> DiracDelta(1)
        0

        >>> DiracDelta(5, 1)
        0

        >>> DiracDelta(0)
        DiracDelta(0)

        >>> DiracDelta(-1)
        0

        >>> DiracDelta(S.NaN)
        nan

        >>> DiracDelta(x).eval(1)
        0

        >>> DiracDelta(x - 100).subs(x, 5)
        0

        >>> DiracDelta(x - 100).subs(x, 100)
        DiracDelta(0)

        """
        k = sympify(k)
        if not k.is_Integer or k.is_negative:
            raise ValueError("Error: the second argument of DiracDelta must be \
            a non-negative integer, %s given instead." % (k,))
        arg = sympify(arg)
        if arg is S.NaN:
            return S.NaN
        if arg.is_nonzero:
            return S.Zero
        if fuzzy_not(im(arg).is_zero):
            raise ValueError(filldedent('''
                Function defined only for Real Values.
                Complex part: %s  found in %s .''' % (
                repr(im(arg)), repr(arg))))
        c, nc = arg.args_cnc()
        if c and c[0] == -1:
            # keep this fast and simple instead of using
            # could_extract_minus_sign
            if k % 2 == 1:
                return -cls(-arg, k)
            elif k % 2 == 0:
                return cls(-arg, k) if k else cls(-arg)
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:70,代码来源:delta_functions.py



注:本文中的sympy.utilities.filldedent函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python utilities.flatten函数代码示例发布时间:2022-05-27
下一篇:
Python utilities.any函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap