• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python solveset.solveset_complex函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sympy.solvers.solveset.solveset_complex函数的典型用法代码示例。如果您正苦于以下问题:Python solveset_complex函数的具体用法?Python solveset_complex怎么用?Python solveset_complex使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了solveset_complex函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_solveset_complex_exp

def test_solveset_complex_exp():
    from sympy.abc import x, n

    assert solveset_complex(exp(x) - 1, x) == imageset(Lambda(n, I * 2 * n * pi), S.Integers)
    assert solveset_complex(exp(x) - I, x) == imageset(Lambda(n, I * (2 * n * pi + pi / 2)), S.Integers)
    assert solveset_complex(1 / exp(x), x) == S.EmptySet
    assert solveset_complex(sinh(x).rewrite(exp), x) == imageset(Lambda(n, n * pi * I), S.Integers)
开发者ID:pabloferz,项目名称:sympy,代码行数:7,代码来源:test_solveset.py


示例2: test_garbage_input

def test_garbage_input():
    raises(ValueError, lambda: solveset_real([x], x))
    raises(ValueError, lambda: solveset_real(x, pi))
    raises(ValueError, lambda: solveset_real(x, x ** 2))

    raises(ValueError, lambda: solveset_complex([x], x))
    raises(ValueError, lambda: solveset_complex(x, pi))
开发者ID:LuckyStrikes1090,项目名称:sympy,代码行数:7,代码来源:test_solveset.py


示例3: test_solve_complex_sqrt

def test_solve_complex_sqrt():
    assert solveset_complex(sqrt(5*x + 6) - 2 - x, x) == \
        FiniteSet(-S(1), S(2))
    assert solveset_complex(sqrt(5*x + 6) - (2 + 2*I) - x, x) == \
        FiniteSet(-S(2), 3 - 4*I)
    assert solveset_complex(4*x*(1 - a * sqrt(x)), x) == \
        FiniteSet(S(0), 1 / a ** 2)
开发者ID:nickle8424,项目名称:sympy,代码行数:7,代码来源:test_solveset.py


示例4: test_solveset_complex_rational

def test_solveset_complex_rational():
    assert solveset_complex((x - 1)*(x - I)/(x - 3), x) == \
        FiniteSet(1, I)

    assert solveset_complex((x - y**3)/((y**2)*sqrt(1 - y**2)), x) == \
        FiniteSet(y**3)
    assert solveset_complex(-x**2 - I, x) == \
        FiniteSet(-sqrt(2)/2 + sqrt(2)*I/2, sqrt(2)/2 - sqrt(2)*I/2)
开发者ID:nickle8424,项目名称:sympy,代码行数:8,代码来源:test_solveset.py


示例5: test_solve_polynomial_symbolic_param

def test_solve_polynomial_symbolic_param():
    assert solveset_complex((x**2 - 1)**2 - a, x) == \
        FiniteSet(sqrt(1 + sqrt(a)), -sqrt(1 + sqrt(a)),
                  sqrt(1 - sqrt(a)), -sqrt(1 - sqrt(a)))

    # issue 4507
    assert solveset_complex(y - b/(1 + a*x), x) == \
        FiniteSet((b/y - 1)/a) - FiniteSet(-1/a)

    # issue 4508
    assert solveset_complex(y - b*x/(a + x), x) == \
        FiniteSet(-a*y/(y - b)) - FiniteSet(-a)
开发者ID:Kogorushi,项目名称:sympy,代码行数:12,代码来源:test_solveset.py


示例6: test_solve_quintics

def test_solve_quintics():
    skip("This test is too slow")
    f = x**5 - 110*x**3 - 55*x**2 + 2310*x + 979
    s = solveset_complex(f, x)
    for root in s:
        res = f.subs(x, root.n()).n()
        assert tn(res, 0)

    f = x**5 + 15*x + 12
    s = solveset_complex(f, x)
    for root in s:
        res = f.subs(x, root.n()).n()
        assert tn(res, 0)
开发者ID:nickle8424,项目名称:sympy,代码行数:13,代码来源:test_solveset.py


示例7: test_solveset_complex_polynomial

def test_solveset_complex_polynomial():
    from sympy.abc import x, a, b, c
    assert solveset_complex(a*x**2 + b*x + c, x) == \
        FiniteSet(-b/(2*a) - sqrt(-4*a*c + b**2)/(2*a),
                  -b/(2*a) + sqrt(-4*a*c + b**2)/(2*a))

    assert solveset_complex(x - y**3, y) == FiniteSet(
        (-x**Rational(1, 3))/2 + I*sqrt(3)*x**Rational(1, 3)/2,
        x**Rational(1, 3),
        (-x**Rational(1, 3))/2 - I*sqrt(3)*x**Rational(1, 3)/2)

    assert solveset_complex(x + 1/x - 1, x) == \
        FiniteSet(Rational(1, 2) + I*sqrt(3)/2, Rational(1, 2) - I*sqrt(3)/2)
开发者ID:nickle8424,项目名称:sympy,代码行数:13,代码来源:test_solveset.py


示例8: test_solve_sqrt_3

def test_solve_sqrt_3():
    R = Symbol("R")
    eq = sqrt(2) * R * sqrt(1 / (R + 1)) + (R + 1) * (sqrt(2) * sqrt(1 / (R + 1)) - 1)
    sol = solveset_complex(eq, R)

    assert sol == FiniteSet(
        *[
            S(5) / 3 + 4 * sqrt(10) * cos(atan(3 * sqrt(111) / 251) / 3) / 3,
            -sqrt(10) * cos(atan(3 * sqrt(111) / 251) / 3) / 3
            + 40 * re(1 / ((-S(1) / 2 - sqrt(3) * I / 2) * (S(251) / 27 + sqrt(111) * I / 9) ** (S(1) / 3))) / 9
            + sqrt(30) * sin(atan(3 * sqrt(111) / 251) / 3) / 3
            + S(5) / 3
            + I
            * (
                -sqrt(30) * cos(atan(3 * sqrt(111) / 251) / 3) / 3
                - sqrt(10) * sin(atan(3 * sqrt(111) / 251) / 3) / 3
                + 40 * im(1 / ((-S(1) / 2 - sqrt(3) * I / 2) * (S(251) / 27 + sqrt(111) * I / 9) ** (S(1) / 3))) / 9
            ),
        ]
    )

    # the number of real roots will depend on the value of m: for m=1 there are 4
    # and for m=-1 there are none.
    eq = -sqrt((m - q) ** 2 + (-m / (2 * q) + S(1) / 2) ** 2) + sqrt(
        (-m ** 2 / 2 - sqrt(4 * m ** 4 - 4 * m ** 2 + 8 * m + 1) / 4 - S(1) / 4) ** 2
        + (m ** 2 / 2 - m - sqrt(4 * m ** 4 - 4 * m ** 2 + 8 * m + 1) / 4 - S(1) / 4) ** 2
    )
    raises(NotImplementedError, lambda: solveset_real(eq, q))
开发者ID:LuckyStrikes1090,项目名称:sympy,代码行数:28,代码来源:test_solveset.py


示例9: test_solve_trig

def test_solve_trig():
    from sympy.abc import n

    assert solveset_real(sin(x), x) == Union(
        imageset(Lambda(n, 2 * pi * n), S.Integers), imageset(Lambda(n, 2 * pi * n + pi), S.Integers)
    )

    assert solveset_real(sin(x) - 1, x) == imageset(Lambda(n, 2 * pi * n + pi / 2), S.Integers)

    assert solveset_real(cos(x), x) == Union(
        imageset(Lambda(n, 2 * pi * n - pi / 2), S.Integers), imageset(Lambda(n, 2 * pi * n + pi / 2), S.Integers)
    )

    assert solveset_real(sin(x) + cos(x), x) == Union(
        imageset(Lambda(n, 2 * n * pi - pi / 4), S.Integers), imageset(Lambda(n, 2 * n * pi + 3 * pi / 4), S.Integers)
    )

    assert solveset_real(sin(x) ** 2 + cos(x) ** 2, x) == S.EmptySet

    assert solveset_complex(cos(x) - S.Half, x) == Union(
        imageset(Lambda(n, 2 * n * pi + pi / 3), S.Integers), imageset(Lambda(n, 2 * n * pi - pi / 3), S.Integers)
    )

    y, a = symbols("y,a")
    assert solveset(sin(y + a) - sin(y), a, domain=S.Reals) == Union(
        imageset(Lambda(n, 2 * n * pi), S.Integers),
        imageset(Lambda(n, -I * (I * (2 * n * pi + arg(-exp(-2 * I * y))) + 2 * im(y))), S.Integers),
    )
开发者ID:pabloferz,项目名称:sympy,代码行数:28,代码来源:test_solveset.py


示例10: test_solve_sqrt_3

def test_solve_sqrt_3():
    R = Symbol("R")
    eq = sqrt(2) * R * sqrt(1 / (R + 1)) + (R + 1) * (sqrt(2) * sqrt(1 / (R + 1)) - 1)
    sol = solveset_complex(eq, R)

    assert sol == FiniteSet(
        *[
            S(5) / 3 + 4 * sqrt(10) * cos(atan(3 * sqrt(111) / 251) / 3) / 3,
            -sqrt(10) * cos(atan(3 * sqrt(111) / 251) / 3) / 3
            + 40 * re(1 / ((-S(1) / 2 - sqrt(3) * I / 2) * (S(251) / 27 + sqrt(111) * I / 9) ** (S(1) / 3))) / 9
            + sqrt(30) * sin(atan(3 * sqrt(111) / 251) / 3) / 3
            + S(5) / 3
            + I
            * (
                -sqrt(30) * cos(atan(3 * sqrt(111) / 251) / 3) / 3
                - sqrt(10) * sin(atan(3 * sqrt(111) / 251) / 3) / 3
                + 40 * im(1 / ((-S(1) / 2 - sqrt(3) * I / 2) * (S(251) / 27 + sqrt(111) * I / 9) ** (S(1) / 3))) / 9
            ),
        ]
    )

    # the number of real roots will depend on the value of m: for m=1 there are 4
    # and for m=-1 there are none.
    eq = -sqrt((m - q) ** 2 + (-m / (2 * q) + S(1) / 2) ** 2) + sqrt(
        (-m ** 2 / 2 - sqrt(4 * m ** 4 - 4 * m ** 2 + 8 * m + 1) / 4 - S(1) / 4) ** 2
        + (m ** 2 / 2 - m - sqrt(4 * m ** 4 - 4 * m ** 2 + 8 * m + 1) / 4 - S(1) / 4) ** 2
    )
    unsolved_object = ConditionSet(
        q,
        Eq(
            (
                -2 * sqrt(4 * q ** 2 * (m - q) ** 2 + (-m + q) ** 2)
                + sqrt(
                    (-2 * m ** 2 - sqrt(4 * m ** 4 - 4 * m ** 2 + 8 * m + 1) - 1) ** 2
                    + (2 * m ** 2 - 4 * m - sqrt(4 * m ** 4 - 4 * m ** 2 + 8 * m + 1) - 1) ** 2
                )
                * Abs(q)
            )
            / Abs(q),
            0,
        ),
        S.Reals,
    )
    assert solveset_real(eq, q) == unsolved_object
开发者ID:pabloferz,项目名称:sympy,代码行数:44,代码来源:test_solveset.py


示例11: test_solve_sqrt_3

def test_solve_sqrt_3():
    R = Symbol('R')
    eq = sqrt(2)*R*sqrt(1/(R + 1)) + (R + 1)*(sqrt(2)*sqrt(1/(R + 1)) - 1)
    sol = solveset_complex(eq, R)

    assert sol == FiniteSet(*[(S(5)/3 + 40/(3*(251 + 3*sqrt(111)*I)**(S(1)/3)) +
                       (251 + 3*sqrt(111)*I)**(S(1)/3)/3,), ((-160 + (1 +
                       sqrt(3)*I)*(10 - (1 + sqrt(3)*I)*(251 +
                       3*sqrt(111)*I)**(S(1)/3))*(251 +
                       3*sqrt(111)*I)**(S(1)/3))/Mul(6, (1 +
                       sqrt(3)*I), (251 + 3*sqrt(111)*I)**(S(1)/3),
                       evaluate=False),)])

    eq = -sqrt((m - q)**2 + (-m/(2*q) + S(1)/2)**2) + sqrt((-m**2/2 - sqrt(
        4*m**4 - 4*m**2 + 8*m + 1)/4 - S(1)/4)**2 + (m**2/2 - m - sqrt(
            4*m**4 - 4*m**2 + 8*m + 1)/4 - S(1)/4)**2)
    assert solveset_real(eq, q) == FiniteSet(
        m**2/2 - sqrt(4*m**4 - 4*m**2 + 8*m + 1)/4 - S(1)/4,
        m**2/2 + sqrt(4*m**4 - 4*m**2 + 8*m + 1)/4 - S(1)/4)
开发者ID:AdrianPotter,项目名称:sympy,代码行数:19,代码来源:test_solveset.py


示例12: test_return_root_of

def test_return_root_of():
    f = x ** 5 - 15 * x ** 3 - 5 * x ** 2 + 10 * x + 20
    s = list(solveset_complex(f, x))
    for root in s:
        assert root.func == RootOf

    # if one uses solve to get the roots of a polynomial that has a RootOf
    # solution, make sure that the use of nfloat during the solve process
    # doesn't fail. Note: if you want numerical solutions to a polynomial
    # it is *much* faster to use nroots to get them than to solve the
    # equation only to get RootOf solutions which are then numerically
    # evaluated. So for eq = x**5 + 3*x + 7 do Poly(eq).nroots() rather
    # than [i.n() for i in solve(eq)] to get the numerical roots of eq.
    assert (
        nfloat(list(solveset_complex(x ** 5 + 3 * x ** 3 + 7, x))[0], exponent=False)
        == RootOf(x ** 5 + 3 * x ** 3 + 7, 0).n()
    )

    sol = list(solveset_complex(x ** 6 - 2 * x + 2, x))
    assert all(isinstance(i, RootOf) for i in sol) and len(sol) == 6

    f = x ** 5 - 15 * x ** 3 - 5 * x ** 2 + 10 * x + 20
    s = list(solveset_complex(f, x))
    for root in s:
        assert root.func == RootOf

    s = x ** 5 + 4 * x ** 3 + 3 * x ** 2 + S(7) / 4
    assert solveset_complex(s, x) == FiniteSet(*Poly(s * 4, domain="ZZ").all_roots())

    # XXX: this comparison should work without converting the FiniteSet to list
    # See #7876
    eq = x * (x - 1) ** 2 * (x + 1) * (x ** 6 - x + 1)
    assert list(solveset_complex(eq, x)) == list(
        FiniteSet(
            -1,
            0,
            1,
            RootOf(x ** 6 - x + 1, 0),
            RootOf(x ** 6 - x + 1, 1),
            RootOf(x ** 6 - x + 1, 2),
            RootOf(x ** 6 - x + 1, 3),
            RootOf(x ** 6 - x + 1, 4),
            RootOf(x ** 6 - x + 1, 5),
        )
    )
开发者ID:LuckyStrikes1090,项目名称:sympy,代码行数:45,代码来源:test_solveset.py


示例13: test_sol_zero_complex

def test_sol_zero_complex():
    # This should return the complex set after it is implemented
    raises(NotImplementedError, lambda: solveset_complex(0, x))
开发者ID:LuckyStrikes1090,项目名称:sympy,代码行数:3,代码来源:test_solveset.py


示例14: test_solve_complex_log

def test_solve_complex_log():
    assert solveset_complex(log(x), x) == FiniteSet(1)
    assert solveset_complex(1 - log(a + 4*x**2), x) == \
        FiniteSet(-sqrt(-a/4 + E/4), sqrt(-a/4 + E/4))
开发者ID:nickle8424,项目名称:sympy,代码行数:4,代码来源:test_solveset.py


示例15: test_solveset_complex_tan

def test_solveset_complex_tan():
    s = solveset_complex(tan(x).rewrite(exp), x)
    assert s == imageset(Lambda(n, pi*n), S.Integers) - \
        imageset(Lambda(n, pi*n + pi/2), S.Integers)
开发者ID:nickle8424,项目名称:sympy,代码行数:4,代码来源:test_solveset.py


示例16: test_sol_zero_complex

def test_sol_zero_complex():
    assert solveset_complex(0, x) == S.Complexes
开发者ID:nickle8424,项目名称:sympy,代码行数:2,代码来源:test_solveset.py


示例17: test_solve_complex_unsolvable

def test_solve_complex_unsolvable():
    unsolved_object = ConditionSet(x, Eq(2*cos(x) - 1, 0), S.Complexes)
    solution = solveset_complex(cos(x) - S.Half, x)
    assert solution == unsolved_object
开发者ID:nickle8424,项目名称:sympy,代码行数:4,代码来源:test_solveset.py


示例18: test_solve_polynomial_symbolic_param

def test_solve_polynomial_symbolic_param():
    assert solveset_complex((x**2 - 1)**2 - a, x) == \
        FiniteSet(sqrt(1 + sqrt(a)), -sqrt(1 + sqrt(a)),
                  sqrt(1 - sqrt(a)), -sqrt(1 - sqrt(a)))
开发者ID:nickle8424,项目名称:sympy,代码行数:4,代码来源:test_solveset.py


示例19: my_func

def my_func(y, t):
    eqn = -(4*z**3 - 9*t*z + 27)*(z**2 - 3*t) - y**2
    return solveset_complex(eqn, z)
开发者ID:haessar,项目名称:m2_spec,代码行数:3,代码来源:m2_spec.py


示例20: test_solve_invalid_sol

def test_solve_invalid_sol():
    assert 0 not in solveset_real(sin(x)/x, x)
    assert 0 not in solveset_complex((exp(x) - 1)/x, x)
开发者ID:nickle8424,项目名称:sympy,代码行数:3,代码来源:test_solveset.py



注:本文中的sympy.solvers.solveset.solveset_complex函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python solveset.solveset_real函数代码示例发布时间:2022-05-27
下一篇:
Python solveset.solveset函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap