本文整理汇总了Python中sympy.simplify.hyperexpand.hyperexpand函数的典型用法代码示例。如果您正苦于以下问题:Python hyperexpand函数的具体用法?Python hyperexpand怎么用?Python hyperexpand使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了hyperexpand函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_polynomial
def test_polynomial():
from sympy import oo
assert hyperexpand(hyper([], [-1], z)) == oo
assert hyperexpand(hyper([-2], [-1], z)) == oo
assert hyperexpand(hyper([0, 0], [-1], z)) == 1
assert can_do([-5, -2, randcplx(), randcplx()], [-10, randcplx()])
assert hyperexpand(hyper((-1, 1), (-2,), z)) == 1 + z/2
开发者ID:abhi98khandelwal,项目名称:sympy,代码行数:7,代码来源:test_hyperexpand.py
示例2: test_branch_bug
def test_branch_bug():
assert hyperexpand(hyper((-S(1)/3, S(1)/2), (S(2)/3, S(3)/2), -z)) == \
-z**S('1/3')*lowergamma(exp_polar(I*pi)/3, z)/5 \
+ sqrt(pi)*erf(sqrt(z))/(5*sqrt(z))
assert hyperexpand(meijerg([S(7)/6, 1], [], [S(2)/3], [S(1)/6, 0], z)) == \
2*z**S('2/3')*(2*sqrt(pi)*erf(sqrt(z))/sqrt(z) - 2*lowergamma(
S(2)/3, z)/z**S('2/3'))*gamma(S(2)/3)/gamma(S(5)/3)
开发者ID:vprusso,项目名称:sympy,代码行数:7,代码来源:test_hyperexpand.py
示例3: test_partial_simp
def test_partial_simp():
# First test that hypergeometric function formulae work.
a, b, c, d, e = map(lambda _: randcplx(), range(5))
for func in [Hyper_Function([a, b, c], [d, e]),
Hyper_Function([], [a, b, c, d, e])]:
f = build_hypergeometric_formula(func)
z = f.z
assert f.closed_form == func(z)
deriv1 = f.B.diff(z)*z
deriv2 = f.M*f.B
for func1, func2 in zip(deriv1, deriv2):
assert tn(func1, func2, z)
# Now test that formulae are partially simplified.
from sympy.abc import a, b, z
assert hyperexpand(hyper([3, a], [1, b], z)) == \
(-a*b/2 + a*z/2 + 2*a)*hyper([a + 1], [b], z) \
+ (a*b/2 - 2*a + 1)*hyper([a], [b], z)
assert tn(
hyperexpand(hyper([3, d], [1, e], z)), hyper([3, d], [1, e], z), z)
assert hyperexpand(hyper([3], [1, a, b], z)) == \
hyper((), (a, b), z) \
+ z*hyper((), (a + 1, b), z)/(2*a) \
- z*(b - 4)*hyper((), (a + 1, b + 1), z)/(2*a*b)
assert tn(
hyperexpand(hyper([3], [1, d, e], z)), hyper([3], [1, d, e], z), z)
开发者ID:vprusso,项目名称:sympy,代码行数:26,代码来源:test_hyperexpand.py
示例4: test_meijerg_expand
def test_meijerg_expand():
from sympy import combsimp, simplify
# from mpmath docs
assert hyperexpand(meijerg([[], []], [[0], []], -z)) == exp(z)
assert hyperexpand(meijerg([[1, 1], []], [[1], [0]], z)) == \
log(z + 1)
assert hyperexpand(meijerg([[1, 1], []], [[1], [1]], z)) == \
z/(z + 1)
assert hyperexpand(meijerg([[], []], [[S(1)/2], [0]], (z/2)**2)) \
== sin(z)/sqrt(pi)
assert hyperexpand(meijerg([[], []], [[0], [S(1)/2]], (z/2)**2)) \
== cos(z)/sqrt(pi)
assert can_do_meijer([], [a], [a - 1, a - S.Half], [])
assert can_do_meijer([], [], [a/2], [-a/2], False) # branches...
assert can_do_meijer([a], [b], [a], [b, a - 1])
# wikipedia
assert hyperexpand(meijerg([1], [], [], [0], z)) == \
Piecewise((0, abs(z) < 1), (1, abs(1/z) < 1),
(meijerg([1], [], [], [0], z), True))
assert hyperexpand(meijerg([], [1], [0], [], z)) == \
Piecewise((1, abs(z) < 1), (0, abs(1/z) < 1),
(meijerg([], [1], [0], [], z), True))
# The Special Functions and their Approximations
assert can_do_meijer([], [], [a + b/2], [a, a - b/2, a + S.Half])
assert can_do_meijer(
[], [], [a], [b], False) # branches only agree for small z
assert can_do_meijer([], [S.Half], [a], [-a])
assert can_do_meijer([], [], [a, b], [])
assert can_do_meijer([], [], [a, b], [])
assert can_do_meijer([], [], [a, a + S.Half], [b, b + S.Half])
assert can_do_meijer([], [], [a, -a], [0, S.Half], False) # dito
assert can_do_meijer([], [], [a, a + S.Half, b, b + S.Half], [])
assert can_do_meijer([S.Half], [], [0], [a, -a])
assert can_do_meijer([S.Half], [], [a], [0, -a], False) # dito
assert can_do_meijer([], [a - S.Half], [a, b], [a - S.Half], False)
assert can_do_meijer([], [a + S.Half], [a + b, a - b, a], [], False)
assert can_do_meijer([a + S.Half], [], [b, 2*a - b, a], [], False)
# This for example is actually zero.
assert can_do_meijer([], [], [], [a, b])
# Testing a bug:
assert hyperexpand(meijerg([0, 2], [], [], [-1, 1], z)) == \
Piecewise((0, abs(z) < 1),
(z*(1 - 1/z**2)/2, abs(1/z) < 1),
(meijerg([0, 2], [], [], [-1, 1], z), True))
# Test that the simplest possible answer is returned:
assert combsimp(
simplify(hyperexpand(meijerg([1], [1 - a], [-a/2, -a/2 + S(1)/2],
[], 1/z)))) == \
-2*sqrt(pi)*(sqrt(z + 1) + 1)**a/a
# Test that hyper is returned
assert hyperexpand(meijerg([1], [], [a], [0, 0], z)) == \
z**a*gamma(a)*hyper(
(a,), (a + 1, a + 1), z*exp_polar(I*pi))/gamma(a + 1)**2
开发者ID:jenshnielsen,项目名称:sympy,代码行数:60,代码来源:test_hyperexpand.py
示例5: test_hyperexpand_parametric
def test_hyperexpand_parametric():
assert (
hyperexpand(hyper([a, S(1) / 2 + a], [S(1) / 2], z))
== (1 + sqrt(z)) ** (-2 * a) / 2 + (1 - sqrt(z)) ** (-2 * a) / 2
)
assert hyperexpand(hyper([a, -S(1) / 2 + a], [2 * a], z)) == 2 ** (2 * a - 1) * ((-z + 1) ** (S(1) / 2) + 1) ** (
-2 * a + 1
)
开发者ID:mattpap,项目名称:sympy,代码行数:8,代码来源:test_hyperexpand.py
示例6: test_meijerg_lookup
def test_meijerg_lookup():
from sympy import uppergamma
assert hyperexpand(meijerg([a], [], [b, a], [], z)) == z ** b * exp(z) * gamma(-a + b + 1) * uppergamma(a - b, z)
assert hyperexpand(meijerg([0], [], [0, 0], [], z)) == exp(z) * uppergamma(0, z)
assert can_do_meijer([a], [], [b, a + 1], [])
assert can_do_meijer([a], [], [b + 2, a], [])
assert can_do_meijer([a], [], [b - 2, a], [])
开发者ID:kristenmills,项目名称:sympy,代码行数:8,代码来源:test_hyperexpand.py
示例7: test_hyperexpand
def test_hyperexpand():
# Luke, Y. L. (1969), The Special Functions and Their Approximations,
# Volume 1, section 6.2
assert hyperexpand(hyper([], [], z)) == exp(z)
assert hyperexpand(hyper([1, 1], [2], -z) * z) == log(1 + z)
assert hyperexpand(hyper([], [S.Half], -z ** 2 / 4)) == cos(z)
assert hyperexpand(z * hyper([], [S("3/2")], -z ** 2 / 4)) == sin(z)
assert hyperexpand(hyper([S("1/2"), S("1/2")], [S("3/2")], z ** 2) * z) == asin(z)
开发者ID:mattpap,项目名称:sympy,代码行数:9,代码来源:test_hyperexpand.py
示例8: test_hyperexpand_special
def test_hyperexpand_special():
assert hyperexpand(hyper([a, b], [c], 1)) == \
gamma(c)*gamma(c - a - b)/gamma(c - a)/gamma(c - b)
assert hyperexpand(hyper([a, b], [1 + a - b], -1)) == \
gamma(1 + a/2)*gamma(1 + a - b)/gamma(1 + a)/gamma(1 + a/2 - b)
assert hyperexpand(hyper([a, b], [1 + b - a], -1)) == \
gamma(1 + b/2)*gamma(1 + b - a)/gamma(1 + b)/gamma(1 + b/2 - a)
assert hyperexpand(meijerg([1 - z - a/2], [1 - z + a/2], [b/2], [-b/2], 1)) == \
gamma(1 - 2*z)*gamma(z + a/2 + b/2)/gamma(1 - z + a/2 - b/2) \
/gamma(1 - z - a/2 + b/2)/gamma(1 - z + a/2 + b/2)
开发者ID:ALGHeArT,项目名称:sympy,代码行数:10,代码来源:test_hyperexpand.py
示例9: test_hyperexpand
def test_hyperexpand():
# Luke, Y. L. (1969), The Special Functions and Their Approximations,
# Volume 1, section 6.2
assert hyperexpand(hyper([], [], z)) == exp(z)
assert hyperexpand(hyper([1, 1], [2], -z)*z) == log(1 + z)
assert hyperexpand(hyper([], [S.Half], -z**2/4)) == cos(z)
assert hyperexpand(z*hyper([], [S('3/2')], -z**2/4)) == sin(z)
assert hyperexpand(hyper([S('1/2'), S('1/2')], [S('3/2')], z**2)*z) \
== asin(z)
assert isinstance(Sum(binomial(2, z)*z**2, (z, 0, a)).doit(), Expr)
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:11,代码来源:test_hyperexpand.py
示例10: test_hyperexpand_bases
def test_hyperexpand_bases():
assert (
hyperexpand(hyper([2], [a], z))
== a + z ** (-a + 1) * (-a ** 2 + 3 * a + z * (a - 1) - 2) * exp(z) * lowergamma(a - 1, z) - 1
)
# TODO [a+1, a-S.Half], [2*a]
assert hyperexpand(hyper([1, 2], [3], z)) == -2 / z - 2 * log(exp_polar(-I * pi) * z + 1) / z ** 2
assert hyperexpand(hyper([S.Half, 2], [S(3) / 2], z)) == -1 / (2 * z - 2) + log((sqrt(z) + 1) / (-sqrt(z) + 1)) / (
4 * sqrt(z)
)
assert hyperexpand(hyper([S(1) / 2, S(1) / 2], [S(5) / 2], z)) == (-3 * z + 3) / 4 / (z * sqrt(-z + 1)) + (
6 * z - 3
) * asin(sqrt(z)) / (4 * z ** (S(3) / 2))
assert hyperexpand(hyper([1, 2], [S(3) / 2], z)) == -1 / (2 * z - 2) - asin(sqrt(z)) / (
sqrt(z) * (2 * z - 2) * sqrt(-z + 1)
)
assert hyperexpand(hyper([-S.Half - 1, 1, 2], [S.Half, 3], z)) == sqrt(z) * (6 * z / 7 - S(6) / 5) * atanh(
sqrt(z)
) + (-30 * z ** 2 + 32 * z - 6) / 35 / z - 6 * log(-z + 1) / (35 * z ** 2)
assert hyperexpand(hyper([1 + S.Half, 1, 1], [2, 2], z)) == -4 * log(sqrt(-z + 1) / 2 + S(1) / 2) / z
# TODO hyperexpand(hyper([a], [2*a + 1], z))
# TODO [S.Half, a], [S(3)/2, a+1]
assert hyperexpand(hyper([2], [b, 1], z)) == z ** (-b / 2 + S(1) / 2) * besseli(b - 1, 2 * sqrt(z)) * gamma(
b
) + z ** (-b / 2 + 1) * besseli(b, 2 * sqrt(z)) * gamma(b)
开发者ID:kendhia,项目名称:sympy,代码行数:25,代码来源:test_hyperexpand.py
示例11: test_shifted_sum
def test_shifted_sum():
from sympy import simplify
assert (
simplify(hyperexpand(z ** 4 * hyper([2], [3, S("3/2")], -z ** 2)))
== z * sin(2 * z) + (-z ** 2 + S.Half) * cos(2 * z) - S.Half
)
开发者ID:mattpap,项目名称:sympy,代码行数:7,代码来源:test_hyperexpand.py
示例12: can_do_meijer
def can_do_meijer(a1, a2, b1, b2, numeric=True):
"""
This helper function tries to hyperexpand() the meijer g-function
corresponding to the parameters a1, a2, b1, b2.
It returns False if this expansion still contains g-functions.
If numeric is True, it also tests the so-obtained formula numerically
(at random values) and returns False if the test fails.
Else it returns True.
"""
from sympy import unpolarify, expand
r = hyperexpand(meijerg(a1, a2, b1, b2, z))
if r.has(meijerg):
return False
# NOTE hyperexpand() returns a truly branched function, whereas numerical
# evaluation only works on the main branch. Since we are evaluating on
# the main branch, this should not be a problem, but expressions like
# exp_polar(I*pi/2*x)**a are evaluated incorrectly. We thus have to get
# rid of them. The expand heuristically does this...
r = unpolarify(expand(r, force=True, power_base=True, power_exp=False,
mul=False, log=False, multinomial=False, basic=False))
if not numeric:
return True
repl = {}
for n, a in enumerate(meijerg(a1, a2, b1, b2, z).free_symbols - set([z])):
repl[a] = randcplx(n)
return tn(meijerg(a1, a2, b1, b2, z).subs(repl), r.subs(repl), z)
开发者ID:vprusso,项目名称:sympy,代码行数:28,代码来源:test_hyperexpand.py
示例13: test_meijerg_with_Floats
def test_meijerg_with_Floats():
# see issue #10681
from sympy import RR
f = meijerg(((3.0, 1), ()), ((S(3)/2,), (0,)), z)
a = -2.3632718012073
g = a*z**(S(3)/2)*hyper((-0.5, S(3)/2), (S(5)/2,), z*exp_polar(I*pi))
assert RR.almosteq((hyperexpand(f)/g).n(), 1.0, 1e-12)
开发者ID:chaffra,项目名称:sympy,代码行数:7,代码来源:test_hyperexpand.py
示例14: test_meijerg_lookup
def test_meijerg_lookup():
from sympy import uppergamma, Si, Ci
assert hyperexpand(meijerg([a], [], [b, a], [], z)) == \
z**b*exp(z)*gamma(-a + b + 1)*uppergamma(a - b, z)
assert hyperexpand(meijerg([0], [], [0, 0], [], z)) == \
exp(z)*uppergamma(0, z)
assert can_do_meijer([a], [], [b, a + 1], [])
assert can_do_meijer([a], [], [b + 2, a], [])
assert can_do_meijer([a], [], [b - 2, a], [])
assert hyperexpand(meijerg([a], [], [a, a, a - S(1)/2], [], z)) == \
-sqrt(pi)*z**(a - S(1)/2)*(2*cos(2*sqrt(z))*(Si(2*sqrt(z)) - pi/2)
- 2*sin(2*sqrt(z))*Ci(2*sqrt(z))) == \
hyperexpand(meijerg([a], [], [a, a - S(1)/2, a], [], z)) == \
hyperexpand(meijerg([a], [], [a - S(1)/2, a, a], [], z))
assert can_do_meijer([a - 1], [], [a + 2, a - S(3)/2, a + 1], [])
开发者ID:vprusso,项目名称:sympy,代码行数:16,代码来源:test_hyperexpand.py
示例15: can_do
def can_do(ap, bq, numerical=True):
r = hyperexpand(hyper(ap, bq, z))
if r.has(hyper):
return False
if not numerical:
return True
repl = {}
for n, a in enumerate(r.free_symbols - set([z])):
repl[a] = randcplx(n)
return tn(hyper(ap, bq, z).subs(repl), r.subs(repl), z)
开发者ID:TeddyBoomer,项目名称:wxgeometrie,代码行数:12,代码来源:test_hyperexpand.py
示例16: test_meijerg_expand
def test_meijerg_expand():
# from mpmath docs
assert hyperexpand(meijerg([[],[]], [[0],[]], -z)) == exp(z)
assert hyperexpand(meijerg([[1,1],[]], [[1],[0]], z)) == \
log(z + 1)
assert hyperexpand(meijerg([[1,1],[]], [[1],[1]], z)) == \
z/(z + 1)
assert hyperexpand(meijerg([[],[]], [[S(1)/2],[0]], (z/2)**2)) \
== sin(z)/sqrt(pi)
assert hyperexpand(meijerg([[],[]], [[0], [S(1)/2]], (z/2)**2)) \
== cos(z)/sqrt(pi)
assert can_do_meijer([], [a], [a-1, a-S.Half], [])
assert can_do_meijer([], [], [a/2], [-a/2], False) # branches...
assert can_do_meijer([a], [b], [a], [b, a - 1])
# wikipedia
assert hyperexpand(meijerg([1], [], [], [0], z)) == \
Piecewise((0, abs(z) < 1), (1, abs(1/z) < 1),
(meijerg([1], [], [], [0], z), True))
assert hyperexpand(meijerg([], [1], [0], [], z)) == \
Piecewise((1, abs(z) < 1), (0, abs(1/z) < 1),
(meijerg([], [1], [0], [], z), True))
# The Special Functions and their Approximations
assert can_do_meijer([], [], [a + b/2], [a, a - b/2, a + S.Half])
assert can_do_meijer([], [], [a], [b], False) # branches only agree for small z
assert can_do_meijer([], [S.Half], [a], [-a])
assert can_do_meijer([], [], [a, b], [])
assert can_do_meijer([], [], [a, b], [])
assert can_do_meijer([], [], [a, a+S.Half], [b, b+S.Half])
assert can_do_meijer([], [], [a, -a], [0, S.Half], False) # dito
assert can_do_meijer([], [], [a, a+S.Half, b, b+S.Half], [])
assert can_do_meijer([S.Half], [], [0], [a, -a])
assert can_do_meijer([S.Half], [], [a], [0, -a], False) # dito
assert can_do_meijer([], [a - S.Half], [a, b], [a - S.Half], False)
assert can_do_meijer([], [a+S.Half], [a+b, a-b, a], [], False)
assert can_do_meijer([a+S.Half], [], [b, 2*a-b, a], [], False)
# This for example is actually zero.
assert can_do_meijer([], [], [], [a, b])
# Testing a bug:
assert hyperexpand(meijerg([0, 2], [], [], [-1, 1], z)) == \
Piecewise((0, abs(z) < 1),
(z*(1 - 1/z**2)/2, abs(1/z) < 1),
(meijerg([0, 2], [], [], [-1, 1], z), True))
开发者ID:TeddyBoomer,项目名称:wxgeometrie,代码行数:47,代码来源:test_hyperexpand.py
示例17: t
def t(m, a, b):
from sympy import sympify, Piecewise
a, b = sympify([a, b])
m_ = m
m = hyperexpand(m)
if not m == Piecewise((a, abs(z) < 1), (b, abs(1/z) < 1), (m_, True)):
return False
if not (m.args[0].args[0] == a and m.args[1].args[0] == b):
return False
z0 = randcplx()/10
if abs(m.subs(z, z0).n() - a.subs(z, z0).n()).n() > 1e-10:
return False
if abs(m.subs(z, 1/z0).n() - b.subs(z, 1/z0).n()).n() > 1e-10:
return False
return True
开发者ID:vprusso,项目名称:sympy,代码行数:15,代码来源:test_hyperexpand.py
示例18: can_do
def can_do(ap, bq, numerical=True, div=1, lowerplane=False):
from sympy import exp_polar, exp
r = hyperexpand(hyper(ap, bq, z))
if r.has(hyper):
return False
if not numerical:
return True
repl = {}
for n, a in enumerate(r.free_symbols - set([z])):
repl[a] = randcplx(n) / div
[a, b, c, d] = [2, -1, 3, 1]
if lowerplane:
[a, b, c, d] = [2, -2, 3, -1]
return tn(hyper(ap, bq, z).subs(repl), r.replace(exp_polar, exp).subs(repl), z, a=a, b=b, c=c, d=d)
开发者ID:mattpap,项目名称:sympy,代码行数:15,代码来源:test_hyperexpand.py
示例19: can_do_meijer
def can_do_meijer(a1, a2, b1, b2, numeric=True):
"""
This helper function tries to hyperexpand() the meijer g-function
corresponding to the parameters a1, a2, b1, b2.
It returns False if this expansion still contains g-functions.
If numeric is True, it also tests the so-obtained formula numerically
(at random values) and returns False if the test fails.
Else it returns True.
"""
r = hyperexpand(meijerg(a1, a2, b1, b2, z))
if r.has(meijerg):
return False
if not numeric:
return True
repl = {}
for n, a in enumerate(meijerg(a1, a2, b1, b2, z).free_symbols - set([z])):
repl[a] = randcplx(n)
return tn(meijerg(a1, a2, b1, b2, z).subs(repl), r.subs(repl), z)
开发者ID:TeddyBoomer,项目名称:wxgeometrie,代码行数:20,代码来源:test_hyperexpand.py
示例20: test_hyperexpand_bases
def test_hyperexpand_bases():
assert hyperexpand(hyper([2], [a], z)) == \
a + z**(-a + 1)*(-a**2 + 3*a + z*(a - 1) - 2)*exp(z)*lowergamma(a - 1, z) - 1
# TODO [a+1, a-S.Half], [2*a]
assert hyperexpand(hyper([1, 2], [3], z)) == -2/z - 2*log(-z + 1)/z**2
assert hyperexpand(hyper([S.Half, 2], [S(3)/2], z)) == \
-1/(2*z - 2) + log((z**(S(1)/2) + 1)/(-z**(S(1)/2) + 1))/(4*z**(S(1)/2))
assert hyperexpand(hyper([S(1)/2, S(1)/2], [S(5)/2], z)) == \
(-3*z + 3)/(4*z*(-z + 1)**(S(1)/2)) \
+ (6*z - 3)*asin(z**(S(1)/2))/(4*z**(S(3)/2))
assert hyperexpand(hyper([1, 2], [S(3)/2], z)) == -1/(2*z - 2) \
- asin(z**(S(1)/2))/(z**(S(1)/2)*(2*z - 2)*(-z + 1)**(S(1)/2))
assert hyperexpand(hyper([-S.Half - 1, 1, 2], [S.Half, 3], z)) == \
z**(S(1)/2)*(6*z/7 - S(6)/5)*atanh(z**(S(1)/2)) \
+ (-30*z**2 + 32*z - 6)/(35*z) - 6*log(-z + 1)/(35*z**2)
assert hyperexpand(hyper([1+S.Half, 1, 1], [2, 2], z)) == \
-4*log((-z + 1)**(S(1)/2)/2 + S(1)/2)/z
# TODO hyperexpand(hyper([a], [2*a + 1], z))
# TODO [S.Half, a], [S(3)/2, a+1]
assert hyperexpand(hyper([2], [b, 1], z)) == \
z**(-b/2 + S(1)/2)*besseli(b - 1, 2*z**(S(1)/2))*gamma(b) \
+ z**(-b/2 + 1)*besseli(b, 2*z**(S(1)/2))*gamma(b)
开发者ID:TeddyBoomer,项目名称:wxgeometrie,代码行数:22,代码来源:test_hyperexpand.py
注:本文中的sympy.simplify.hyperexpand.hyperexpand函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论