• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python sqfreetools.dmp_sqf_part函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sympy.polys.sqfreetools.dmp_sqf_part函数的典型用法代码示例。如果您正苦于以下问题:Python dmp_sqf_part函数的具体用法?Python dmp_sqf_part怎么用?Python dmp_sqf_part使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了dmp_sqf_part函数的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_dmp_sqf

def test_dmp_sqf():
    assert dmp_sqf_part([[]], 1, ZZ) == [[]]
    assert dmp_sqf_p([[]], 1, ZZ) == True

    assert dmp_sqf_part([[7]], 1, ZZ) == [[1]]
    assert dmp_sqf_p([[7]], 1, ZZ) == True

    assert dmp_sqf_p(f_0, 2, ZZ) == True
    assert dmp_sqf_p(dmp_sqr(f_0, 2, ZZ), 2, ZZ) == False
    assert dmp_sqf_p(f_1, 2, ZZ) == True
    assert dmp_sqf_p(dmp_sqr(f_1, 2, ZZ), 2, ZZ) == False
    assert dmp_sqf_p(f_2, 2, ZZ) == True
    assert dmp_sqf_p(dmp_sqr(f_2, 2, ZZ), 2, ZZ) == False
    assert dmp_sqf_p(f_3, 2, ZZ) == True
    assert dmp_sqf_p(dmp_sqr(f_3, 2, ZZ), 2, ZZ) == False
    assert dmp_sqf_p(f_5, 2, ZZ) == False
    assert dmp_sqf_p(dmp_sqr(f_5, 2, ZZ), 2, ZZ) == False

    assert dmp_sqf_p(f_4, 2, ZZ) == True
    assert dmp_sqf_part(f_4, 2, ZZ) == dmp_neg(f_4, 2, ZZ)
    assert dmp_sqf_p(f_6, 3, ZZ) == True
    assert dmp_sqf_part(f_6, 3, ZZ) == f_6

    assert dmp_sqf_part(f_5, 2, ZZ) == [[[1]], [[1], [-1, 0]]]

    assert dup_sqf_list([], ZZ) == (ZZ(0), [])
    assert dup_sqf_list_include([], ZZ) == [([], 1)]

    assert dmp_sqf_list([[ZZ(3)]], 1, ZZ) == (ZZ(3), [])
    assert dmp_sqf_list_include([[ZZ(3)]], 1, ZZ) == [([[ZZ(3)]], 1)]

    f = [-1,1,0,0,1,-1]

    assert dmp_sqf_list(f, 0, ZZ) == \
        (-1, [([1,1,1,1], 1), ([1,-1], 2)])
    assert dmp_sqf_list_include(f, 0, ZZ) == \
        [([-1,-1,-1,-1], 1), ([1,-1], 2)]

    f = [[-1],[1],[],[],[1],[-1]]

    assert dmp_sqf_list(f, 1, ZZ) == \
        (-1, [([[1],[1],[1],[1]], 1), ([[1],[-1]], 2)])
    assert dmp_sqf_list_include(f, 1, ZZ) == \
        [([[-1],[-1],[-1],[-1]], 1), ([[1],[-1]], 2)]

    K = FF(2)

    f = [[-1], [2], [-1]]

    assert dmp_sqf_list_include(f, 1, ZZ) == \
        [([[-1]], 1), ([[1], [-1]], 2)]

    raises(DomainError, "dmp_sqf_list([[K(1), K(0), K(1)]], 1, K)")
开发者ID:101man,项目名称:sympy,代码行数:53,代码来源:test_sqfreetools.py


示例2: dmp_ext_factor

def dmp_ext_factor(f, u, K):
    """Factor multivariate polynomials over algebraic number fields. """
    if not u:
        return dup_ext_factor(f, K)

    lc = dmp_ground_LC(f, u, K)
    f = dmp_ground_monic(f, u, K)

    if all([ d <= 0 for d in dmp_degree_list(f, u) ]):
        return lc, []

    f, F = dmp_sqf_part(f, u, K), f
    s, g, r = dmp_sqf_norm(f, u, K)

    factors = dmp_factor_list_include(r, u, K.dom)

    if len(factors) == 1:
        coeff, factors = lc, [f]
    else:
        H = dmp_raise([K.one, s*K.unit], u, 0, K)

        for i, (factor, _) in enumerate(factors):
            h = dmp_convert(factor, u, K.dom, K)
            h, _, g = dmp_inner_gcd(h, g, u, K)
            h = dmp_compose(h, H, u, K)
            factors[i] = h

    return lc, dmp_trial_division(F, factors, u, K)
开发者ID:TeddyBoomer,项目名称:wxgeometrie,代码行数:28,代码来源:factortools.py


示例3: dmp_zz_factor

def dmp_zz_factor(f, u, K):
    """
    Factor (non square-free) polynomials in `Z[X]`.

    Given a multivariate polynomial `f` in `Z[x]` computes its complete
    factorization `f_1, ..., f_n` into irreducibles over integers::

                 f = content(f) f_1**k_1 ... f_n**k_n

    The factorization is computed by reducing the input polynomial
    into a primitive square-free polynomial and factoring it using
    Enhanced Extended Zassenhaus (EEZ) algorithm. Trial division
    is used to recover the multiplicities of factors.

    The result is returned as a tuple consisting of::

             (content(f), [(f_1, k_1), ..., (f_n, k_n))

    Consider polynomial `f = 2*(x**2 - y**2)`::

        >>> from sympy.polys.factortools import dmp_zz_factor
        >>> from sympy.polys.domains import ZZ

        >>> dmp_zz_factor([[2], [], [-2, 0, 0]], 1, ZZ)
        (2, [([[1], [-1, 0]], 1), ([[1], [1, 0]], 1)])

    In result we got the following factorization::

                    f = 2 (x - y) (x + y)

    **References**

    1. [Gathen99]_

    """
    if not u:
        return dup_zz_factor(f, K)

    if dmp_zero_p(f, u):
        return K.zero, []

    cont, g = dmp_ground_primitive(f, u, K)

    if dmp_ground_LC(g, u, K) < 0:
        cont, g = -cont, dmp_neg(g, u, K)

    if all([ d <= 0 for d in dmp_degree_list(g, u) ]):
        return cont, []

    G, g = dmp_primitive(g, u, K)

    factors = []

    if dmp_degree(g, u) > 0:
        g = dmp_sqf_part(g, u, K)
        H = dmp_zz_wang(g, u, K)

        for h in H:
            k = 0

            while True:
                q, r = dmp_div(f, h, u, K)

                if dmp_zero_p(r, u):
                    f, k = q, k+1
                else:
                    break

            factors.append((h, k))

    for g, k in dmp_zz_factor(G, u-1, K)[1]:
        factors.insert(0, ([g], k))

    return cont, _sort_factors(factors)
开发者ID:TeddyBoomer,项目名称:wxgeometrie,代码行数:74,代码来源:factortools.py


示例4: sqf_part

 def sqf_part(f):
     """Computes square-free part of `f`. """
     return f.per(dmp_sqf_part(f.rep, f.lev, f.dom))
开发者ID:fxkr,项目名称:sympy,代码行数:3,代码来源:polyclasses.py


示例5: dmp_zz_factor

def dmp_zz_factor(f, u, K):
    """
    Factor (non square-free) polynomials in `Z[X]`.

    Given a multivariate polynomial `f` in `Z[x]` computes its complete
    factorization `f_1, ..., f_n` into irreducibles over integers::

                 f = content(f) f_1**k_1 ... f_n**k_n

    The factorization is computed by reducing the input polynomial
    into a primitive square-free polynomial and factoring it using
    Enhanced Extended Zassenhaus (EEZ) algorithm. Trial division
    is used to recover the multiplicities of factors.

    The result is returned as a tuple consisting of::

             (content(f), [(f_1, k_1), ..., (f_n, k_n))

    Consider polynomial `f = 2*(x**2 - y**2)`::

        >>> from sympy.polys import ring, ZZ
        >>> R, x,y = ring("x,y", ZZ)

        >>> R.dmp_zz_factor(2*x**2 - 2*y**2)
        (2, [(x - y, 1), (x + y, 1)])

    In result we got the following factorization::

                    f = 2 (x - y) (x + y)

    References
    ==========

    1. [Gathen99]_

    """
    if not u:
        return dup_zz_factor(f, K)

    if dmp_zero_p(f, u):
        return K.zero, []

    cont, g = dmp_ground_primitive(f, u, K)

    if dmp_ground_LC(g, u, K) < 0:
        cont, g = -cont, dmp_neg(g, u, K)

    if all(d <= 0 for d in dmp_degree_list(g, u)):
        return cont, []

    G, g = dmp_primitive(g, u, K)

    factors = []

    if dmp_degree(g, u) > 0:
        g = dmp_sqf_part(g, u, K)
        H = dmp_zz_wang(g, u, K)
        factors = dmp_trial_division(f, H, u, K)

    for g, k in dmp_zz_factor(G, u - 1, K)[1]:
        factors.insert(0, ([g], k))

    return cont, _sort_factors(factors)
开发者ID:abhi98khandelwal,项目名称:sympy,代码行数:63,代码来源:factortools.py



注:本文中的sympy.polys.sqfreetools.dmp_sqf_part函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python sqfreetools.dup_sqf_part函数代码示例发布时间:2022-05-27
下一篇:
Python specialpolys.cyclotomic_poly函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap