• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python polyutils.basic_from_dict函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sympy.polys.polyutils.basic_from_dict函数的典型用法代码示例。如果您正苦于以下问题:Python basic_from_dict函数的具体用法?Python basic_from_dict怎么用?Python basic_from_dict使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了basic_from_dict函数的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: _eval_expand_multinomial

    def _eval_expand_multinomial(self, **hints):
        """(a+b+..) ** n -> a**n + n*a**(n-1)*b + .., n is nonzero integer"""

        base, exp = self.args
        result = self

        if exp.is_Rational and exp.p > 0 and base.is_Add:
            if not exp.is_Integer:
                n = Integer(exp.p // exp.q)

                if not n:
                    return result
                else:
                    radical, result = self.func(base, exp - n), []

                    expanded_base_n = self.func(base, n)
                    if expanded_base_n.is_Pow:
                        expanded_base_n = \
                            expanded_base_n._eval_expand_multinomial()
                    for term in Add.make_args(expanded_base_n):
                        result.append(term*radical)

                    return Add(*result)

            n = int(exp)

            if base.is_commutative:
                order_terms, other_terms = [], []

                for b in base.args:
                    if b.is_Order:
                        order_terms.append(b)
                    else:
                        other_terms.append(b)

                if order_terms:
                    # (f(x) + O(x^n))^m -> f(x)^m + m*f(x)^{m-1} *O(x^n)
                    f = Add(*other_terms)
                    o = Add(*order_terms)

                    if n == 2:
                        return expand_multinomial(f**n, deep=False) + n*f*o
                    else:
                        g = expand_multinomial(f**(n - 1), deep=False)
                        return expand_mul(f*g, deep=False) + n*g*o

                if base.is_number:
                    # Efficiently expand expressions of the form (a + b*I)**n
                    # where 'a' and 'b' are real numbers and 'n' is integer.
                    a, b = base.as_real_imag()

                    if a.is_Rational and b.is_Rational:
                        if not a.is_Integer:
                            if not b.is_Integer:
                                k = self.func(a.q * b.q, n)
                                a, b = a.p*b.q, a.q*b.p
                            else:
                                k = self.func(a.q, n)
                                a, b = a.p, a.q*b
                        elif not b.is_Integer:
                            k = self.func(b.q, n)
                            a, b = a*b.q, b.p
                        else:
                            k = 1

                        a, b, c, d = int(a), int(b), 1, 0

                        while n:
                            if n & 1:
                                c, d = a*c - b*d, b*c + a*d
                                n -= 1
                            a, b = a*a - b*b, 2*a*b
                            n //= 2

                        I = S.ImaginaryUnit

                        if k == 1:
                            return c + I*d
                        else:
                            return Integer(c)/k + I*d/k

                p = other_terms
                # (x+y)**3 -> x**3 + 3*x**2*y + 3*x*y**2 + y**3
                # in this particular example:
                # p = [x,y]; n = 3
                # so now it's easy to get the correct result -- we get the
                # coefficients first:
                from sympy import multinomial_coefficients
                from sympy.polys.polyutils import basic_from_dict
                expansion_dict = multinomial_coefficients(len(p), n)
                # in our example: {(3, 0): 1, (1, 2): 3, (0, 3): 1, (2, 1): 3}
                # and now construct the expression.
                return basic_from_dict(expansion_dict, *p)
            else:
                if n == 2:
                    return Add(*[f*g for f in base.args for g in base.args])
                else:
                    multi = (base**(n - 1))._eval_expand_multinomial()
                    if multi.is_Add:
                        return Add(*[f*g for f in base.args
#.........这里部分代码省略.........
开发者ID:hrashk,项目名称:sympy,代码行数:101,代码来源:power.py


示例2: to_sympy

 def to_sympy(self, a):
     """Convert `a` to a SymPy object. """
     return basic_from_dict(a.to_sympy_dict(), *self.gens)
开发者ID:malikdiarra,项目名称:sympy,代码行数:3,代码来源:polynomialring.py


示例3: _eval_expand_multinomial


#.........这里部分代码省略.........
            n = int(exp)

            if base.is_commutative:
                order_terms, other_terms = [], []

                for order in base.args:
                    if order.is_Order:
                        order_terms.append(order)
                    else:
                        other_terms.append(order)

                if order_terms:
                    # (f(x) + O(x^n))^m -> f(x)^m + m*f(x)^{m-1} *O(x^n)
                    f = Add(*other_terms)
                    g = (f**(n-1)).expand()

                    return (f*g).expand() + n*g*Add(*order_terms)

                if base.is_number:
                    # Efficiently expand expressions of the form (a + b*I)**n
                    # where 'a' and 'b' are real numbers and 'n' is integer.
                    a, b = base.as_real_imag()

                    if a.is_Rational and b.is_Rational:
                        if not a.is_Integer:
                            if not b.is_Integer:
                                k = Pow(a.q * b.q, n)
                                a, b = a.p*b.q, a.q*b.p
                            else:
                                k = Pow(a.q, n)
                                a, b = a.p, a.q*b
                        elif not b.is_Integer:
                            k = Pow(b.q, n)
                            a, b = a*b.q, b.p
                        else:
                            k = 1

                        a, b, c, d = int(a), int(b), 1, 0

                        while n:
                            if n & 1:
                                c, d = a*c-b*d, b*c+a*d
                                n -= 1
                            a, b = a*a-b*b, 2*a*b
                            n //= 2

                        I = S.ImaginaryUnit

                        if k == 1:
                            return c + I*d
                        else:
                            return Integer(c)/k + I*d/k

                p = other_terms
                # (x+y)**3 -> x**3 + 3*x**2*y + 3*x*y**2 + y**3
                # in this particular example:
                # p = [x,y]; n = 3
                # so now it's easy to get the correct result -- we get the
                # coefficients first:
                from sympy import multinomial_coefficients
                expansion_dict = multinomial_coefficients(len(p), n)
                # in our example: {(3, 0): 1, (1, 2): 3, (0, 3): 1, (2, 1): 3}
                # and now construct the expression.

                # An elegant way would be to use Poly, but unfortunately it is
                # slower than the direct method below, so it is commented out:
                #b = {}
                #for k in expansion_dict:
                #    b[k] = Integer(expansion_dict[k])
                #return Poly(b, *p).as_expr()

                from sympy.polys.polyutils import basic_from_dict
                result = basic_from_dict(expansion_dict, *p)
                return result
            else:
                if n == 2:
                    return Add(*[f*g for f in base.args for g in base.args])
                else:
                    multi = (base**(n-1))._eval_expand_multinomial(deep=False)
                    if multi.is_Add:
                        return Add(*[f*g for f in base.args for g in multi.args])
                    else:
                        return Add(*[f*multi for f in base.args])
        elif exp.is_Rational and exp.p < 0 and base.is_Add and abs(exp.p) > exp.q:
            return 1 / Pow(base, -exp)._eval_expand_multinomial(deep=False)
        elif exp.is_Add and base.is_Number:
            #  a + b      a  b
            # n      --> n  n  , where n, a, b are Numbers

            coeff, tail = S.One, S.Zero

            for term in exp.args:
                if term.is_Number:
                    coeff *= Pow(base, term)
                else:
                    tail += term

            return coeff * Pow(base, tail)
        else:
            return result
开发者ID:itsrg,项目名称:sympy,代码行数:101,代码来源:power.py



注:本文中的sympy.polys.polyutils.basic_from_dict函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python polyutils.dict_from_expr函数代码示例发布时间:2022-05-27
下一篇:
Python polyutils._sort_factors函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap