本文整理汇总了Python中sympy.polys.polytools.PurePoly类的典型用法代码示例。如果您正苦于以下问题:Python PurePoly类的具体用法?Python PurePoly怎么用?Python PurePoly使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了PurePoly类的17个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: __new__
def __new__(cls, f, x, index=None, radicals=False, expand=True):
""" Construct an indexed complex root of a polynomial.
See ``rootof`` for the parameters.
The default value of ``radicals`` is ``False`` to satisfy
``eval(srepr(expr) == expr``.
"""
x = sympify(x)
if index is None and x.is_Integer:
x, index = None, x
else:
index = sympify(index)
if index is not None and index.is_Integer:
index = int(index)
else:
raise ValueError("expected an integer root index, got %s" % index)
poly = PurePoly(f, x, greedy=False, expand=expand)
if not poly.is_univariate:
raise PolynomialError("only univariate polynomials are allowed")
if not poly.gen.is_Symbol:
# PurePoly(sin(x) + 1) == PurePoly(x + 1) but the roots of
# x for each are not the same: issue 8617
raise PolynomialError("generator must be a Symbol")
degree = poly.degree()
if degree <= 0:
raise PolynomialError("can't construct CRootOf object for %s" % f)
if index < -degree or index >= degree:
raise IndexError("root index out of [%d, %d] range, got %d" %
(-degree, degree - 1, index))
elif index < 0:
index += degree
dom = poly.get_domain()
if not dom.is_Exact:
poly = poly.to_exact()
roots = cls._roots_trivial(poly, radicals)
if roots is not None:
return roots[index]
coeff, poly = preprocess_roots(poly)
dom = poly.get_domain()
if not dom.is_ZZ:
raise NotImplementedError("CRootOf is not supported over %s" % dom)
root = cls._indexed_root(poly, index)
return coeff * cls._postprocess_root(root, radicals)
开发者ID:asmeurer,项目名称:sympy,代码行数:59,代码来源:rootoftools.py
示例2: __new__
def __new__(cls, f, x, index=None, radicals=True, expand=True):
"""Construct a new ``RootOf`` object for ``k``-th root of ``f``. """
x = sympify(x)
if index is None and x.is_Integer:
x, index = None, x
else:
index = sympify(index)
if index.is_Integer:
index = int(index)
else:
raise ValueError("expected an integer root index, got %d" % index)
poly = PurePoly(f, x, greedy=False, expand=expand)
if not poly.is_univariate:
raise PolynomialError("only univariate polynomials are allowed")
degree = poly.degree()
if degree <= 0:
raise PolynomialError("can't construct RootOf object for %s" % f)
if index < -degree or index >= degree:
raise IndexError("root index out of [%d, %d] range, got %d" %
(-degree, degree - 1, index))
elif index < 0:
index += degree
dom = poly.get_domain()
if not dom.is_Exact:
poly = poly.to_exact()
roots = cls._roots_trivial(poly, radicals)
if roots is not None:
return roots[index]
coeff, poly = preprocess_roots(poly)
dom = poly.get_domain()
if not dom.is_ZZ:
raise NotImplementedError("RootOf is not supported over %s" % dom)
root = cls._indexed_root(poly, index)
return coeff*cls._postprocess_root(root, radicals)
开发者ID:AALEKH,项目名称:sympy,代码行数:48,代码来源:rootoftools.py
示例3: gegenbauer_poly
def gegenbauer_poly(n, a, x=None, polys=False):
"""Generates Gegenbauer polynomial of degree `n` in `x`.
Parameters
==========
n : int
`n` decides the degree of polynomial
x : optional
a
Decides minimal domain for the list of
coefficients.
polys : bool, optional
``polys=True`` returns an expression, otherwise
(default) returns an expression.
"""
if n < 0:
raise ValueError(
"can't generate Gegenbauer polynomial of degree %s" % n)
K, a = construct_domain(a, field=True)
poly = DMP(dup_gegenbauer(int(n), a, K), K)
if x is not None:
poly = Poly.new(poly, x)
else:
poly = PurePoly.new(poly, Dummy('x'))
return poly if polys else poly.as_expr()
开发者ID:asmeurer,项目名称:sympy,代码行数:29,代码来源:orthopolys.py
示例4: chebyshevu_poly
def chebyshevu_poly(n, x=None, polys=False):
"""Generates Chebyshev polynomial of the second kind of degree `n` in `x`.
Parameters
==========
n : int
`n` decides the degree of polynomial
x : optional
polys : bool, optional
``polys=True`` returns an expression, otherwise
(default) returns an expression.
"""
if n < 0:
raise ValueError(
"can't generate 2nd kind Chebyshev polynomial of degree %s" % n)
poly = DMP(dup_chebyshevu(int(n), ZZ), ZZ)
if x is not None:
poly = Poly.new(poly, x)
else:
poly = PurePoly.new(poly, Dummy('x'))
return poly if polys else poly.as_expr()
开发者ID:asmeurer,项目名称:sympy,代码行数:25,代码来源:orthopolys.py
示例5: jacobi_poly
def jacobi_poly(n, a, b, x=None, polys=False):
"""Generates Jacobi polynomial of degree `n` in `x`.
Parameters
==========
n : int
`n` decides the degree of polynomial
a
Lower limit of minimal domain for the list of
coefficients.
b
Upper limit of minimal domain for the list of
coefficients.
x : optional
polys : bool, optional
``polys=True`` returns an expression, otherwise
(default) returns an expression.
"""
if n < 0:
raise ValueError("can't generate Jacobi polynomial of degree %s" % n)
K, v = construct_domain([a, b], field=True)
poly = DMP(dup_jacobi(int(n), v[0], v[1], K), K)
if x is not None:
poly = Poly.new(poly, x)
else:
poly = PurePoly.new(poly, Dummy('x'))
return poly if polys else poly.as_expr()
开发者ID:asmeurer,项目名称:sympy,代码行数:31,代码来源:orthopolys.py
示例6: laguerre_poly
def laguerre_poly(n, x=None, alpha=None, polys=False):
"""Generates Laguerre polynomial of degree `n` in `x`.
Parameters
==========
n : int
`n` decides the degree of polynomial
x : optional
alpha
Decides minimal domain for the list
of coefficients.
polys : bool, optional
``polys=True`` returns an expression, otherwise
(default) returns an expression.
"""
if n < 0:
raise ValueError("can't generate Laguerre polynomial of degree %s" % n)
if alpha is not None:
K, alpha = construct_domain(
alpha, field=True) # XXX: ground_field=True
else:
K, alpha = QQ, QQ(0)
poly = DMP(dup_laguerre(int(n), alpha, K), K)
if x is not None:
poly = Poly.new(poly, x)
else:
poly = PurePoly.new(poly, Dummy('x'))
return poly if polys else poly.as_expr()
开发者ID:asmeurer,项目名称:sympy,代码行数:33,代码来源:orthopolys.py
示例7: as_poly
def as_poly(self, x=None):
"""Create a Poly instance from ``self``. """
if x is not None:
return Poly.new(self.rep, x)
else:
if self.alias is not None:
return Poly.new(self.rep, self.alias)
else:
return PurePoly.new(self.rep, Dummy('x'))
开发者ID:thilinarmtb,项目名称:sympy,代码行数:9,代码来源:numberfields.py
示例8: spherical_bessel_fn
def spherical_bessel_fn(n, x=None, polys=False):
"""
Coefficients for the spherical Bessel functions.
Those are only needed in the jn() function.
The coefficients are calculated from:
fn(0, z) = 1/z
fn(1, z) = 1/z**2
fn(n-1, z) + fn(n+1, z) == (2*n+1)/z * fn(n, z)
Parameters
==========
n : int
`n` decides the degree of polynomial
x : optional
polys : bool, optional
``polys=True`` returns an expression, otherwise
(default) returns an expression.
Examples
========
>>> from sympy.polys.orthopolys import spherical_bessel_fn as fn
>>> from sympy import Symbol
>>> z = Symbol("z")
>>> fn(1, z)
z**(-2)
>>> fn(2, z)
-1/z + 3/z**3
>>> fn(3, z)
-6/z**2 + 15/z**4
>>> fn(4, z)
1/z - 45/z**3 + 105/z**5
"""
if n < 0:
dup = dup_spherical_bessel_fn_minus(-int(n), ZZ)
else:
dup = dup_spherical_bessel_fn(int(n), ZZ)
poly = DMP(dup, ZZ)
if x is not None:
poly = Poly.new(poly, 1/x)
else:
poly = PurePoly.new(poly, 1/Dummy('x'))
return poly if polys else poly.as_expr()
开发者ID:asmeurer,项目名称:sympy,代码行数:52,代码来源:orthopolys.py
示例9: legendre_poly
def legendre_poly(n, x=None, **args):
"""Generates Legendre polynomial of degree `n` in `x`. """
if n < 0:
raise ValueError("can't generate Legendre polynomial of degree %s" % n)
poly = DMP(dup_legendre(int(n), QQ), QQ)
if x is not None:
poly = Poly.new(poly, x)
else:
poly = PurePoly.new(poly, Dummy('x'))
if not args.get('polys', False):
return poly.as_expr()
else:
return poly
开发者ID:A-turing-machine,项目名称:sympy,代码行数:16,代码来源:orthopolys.py
示例10: chebyshevu_poly
def chebyshevu_poly(n, x=None, **args):
"""Generates Chebyshev polynomial of the second kind of degree `n` in `x`. """
if n < 0:
raise ValueError("can't generate 2nd kind Chebyshev polynomial of degree %s" % n)
poly = DMP(dup_chebyshevu(int(n), ZZ), ZZ)
if x is not None:
poly = Poly.new(poly, x)
else:
poly = PurePoly.new(poly, Dummy('x'))
if not args.get('polys', False):
return poly.as_expr()
else:
return poly
开发者ID:ALGHeArT,项目名称:sympy,代码行数:16,代码来源:orthopolys.py
示例11: cyclotomic_poly
def cyclotomic_poly(n, x=None, **args):
"""Generates cyclotomic polynomial of order `n` in `x`. """
if n <= 0:
raise ValueError("can't generate cyclotomic polynomial of order %s" % n)
poly = DMP(dup_zz_cyclotomic_poly(int(n), ZZ), ZZ)
if x is not None:
poly = Poly.new(poly, x)
else:
poly = PurePoly.new(poly, Dummy('x'))
if not args.get('polys', False):
return poly.as_expr()
else:
return poly
开发者ID:ALGHeArT,项目名称:sympy,代码行数:16,代码来源:specialpolys.py
示例12: jacobi_poly
def jacobi_poly(n, a, b, x=None, **args):
"""Generates Jacobi polynomial of degree `n` in `x`. """
if n < 0:
raise ValueError("can't generate Jacobi polynomial of degree %s" % n)
K, v = construct_domain([a, b], field=True)
poly = DMP(dup_jacobi(int(n), v[0], v[1], K), K)
if x is not None:
poly = Poly.new(poly, x)
else:
poly = PurePoly.new(poly, Dummy('x'))
if not args.get('polys', False):
return poly.as_expr()
else:
return poly
开发者ID:A-turing-machine,项目名称:sympy,代码行数:17,代码来源:orthopolys.py
示例13: spherical_bessel_fn
def spherical_bessel_fn(n, x=None, **args):
"""
Coefficients for the spherical Bessel functions.
Those are only needed in the jn() function.
The coefficients are calculated from:
fn(0, z) = 1/z
fn(1, z) = 1/z**2
fn(n-1, z) + fn(n+1, z) == (2*n+1)/z * fn(n, z)
Examples
========
>>> from sympy.polys.orthopolys import spherical_bessel_fn as fn
>>> from sympy import Symbol
>>> z = Symbol("z")
>>> fn(1, z)
z**(-2)
>>> fn(2, z)
-1/z + 3/z**3
>>> fn(3, z)
-6/z**2 + 15/z**4
>>> fn(4, z)
1/z - 45/z**3 + 105/z**5
"""
from sympy import sympify
if n < 0:
dup = dup_spherical_bessel_fn_minus(-int(n), ZZ)
else:
dup = dup_spherical_bessel_fn(int(n), ZZ)
poly = DMP(dup, ZZ)
if x is not None:
poly = Poly.new(poly, 1/x)
else:
poly = PurePoly.new(poly, 1/Dummy('x'))
if not args.get('polys', False):
return poly.as_expr()
else:
return poly
开发者ID:SwaathiRamesh,项目名称:sympy,代码行数:46,代码来源:orthopolys.py
示例14: gegenbauer_poly
def gegenbauer_poly(n, a, x=None, **args):
"""Generates Gegenbauer polynomial of degree `n` in `x`. """
if n < 0:
raise ValueError("can't generate Gegenbauer polynomial of degree %s" % n)
K, a = construct_domain(a, field=True)
poly = DMP(dup_gegenbauer(int(n), a, K), K)
if x is not None:
poly = Poly.new(poly, x)
else:
poly = PurePoly.new(poly, Dummy('x'))
if not args.get('polys', False):
return poly.as_expr()
else:
return poly
开发者ID:StefenYin,项目名称:sympy,代码行数:17,代码来源:orthopolys.py
示例15: laguerre_poly
def laguerre_poly(n, x=None, alpha=None, **args):
"""Generates Laguerre polynomial of degree `n` in `x`. """
if n < 0:
raise ValueError("can't generate Laguerre polynomial of degree %s" % n)
if alpha is not None:
K, alpha = construct_domain(alpha, field=True) # XXX: ground_field=True
else:
K, alpha = QQ, QQ(0)
poly = DMP(dup_laguerre(int(n), alpha, K), K)
if x is not None:
poly = Poly.new(poly, x)
else:
poly = PurePoly.new(poly, Dummy('x'))
if not args.get('polys', False):
return poly.as_expr()
else:
return poly
开发者ID:ALGHeArT,项目名称:sympy,代码行数:21,代码来源:orthopolys.py
示例16: legendre_poly
def legendre_poly(n, x=None, polys=False):
"""Generates Legendre polynomial of degree `n` in `x`.
Parameters
----------
n : int
`n` decides the degree of polynomial
x : optional
polys : bool, optional
``polys=True`` returns an expression, otherwise
(default) returns an expression.
"""
if n < 0:
raise ValueError("can't generate Legendre polynomial of degree %s" % n)
poly = DMP(dup_legendre(int(n), QQ), QQ)
if x is not None:
poly = Poly.new(poly, x)
else:
poly = PurePoly.new(poly, Dummy('x'))
return poly if polys else poly.as_expr()
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:23,代码来源:orthopolys.py
示例17: cyclotomic_poly
def cyclotomic_poly(n, x=None, polys=False):
"""Generates cyclotomic polynomial of order `n` in `x`.
Parameters
----------
n : int
`n` decides the order of polynomial
x : optional
polys : bool, optional
``polys=True`` returns an expression, otherwise
(default) returns an expression.
"""
if n <= 0:
raise ValueError(
"can't generate cyclotomic polynomial of order %s" % n)
poly = DMP(dup_zz_cyclotomic_poly(int(n), ZZ), ZZ)
if x is not None:
poly = Poly.new(poly, x)
else:
poly = PurePoly.new(poly, Dummy('x'))
return poly if polys else poly.as_expr()
开发者ID:carstimon,项目名称:sympy,代码行数:24,代码来源:specialpolys.py
注:本文中的sympy.polys.polytools.PurePoly类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论