• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python polytools.factor_list函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sympy.polys.polytools.factor_list函数的典型用法代码示例。如果您正苦于以下问题:Python factor_list函数的具体用法?Python factor_list怎么用?Python factor_list使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了factor_list函数的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: _minpoly_cos

def _minpoly_cos(ex, x):
    """
    Returns the minimal polynomial of ``cos(ex)``
    see http://mathworld.wolfram.com/TrigonometryAngles.html
    """
    from sympy import sqrt
    c, a = ex.args[0].as_coeff_Mul()
    if a is pi:
        if c.is_rational:
            if c.p == 1:
                if c.q == 7:
                    return 8*x**3 - 4*x**2 - 4*x + 1
                if c.q == 9:
                    return 8*x**3 - 6*x + 1
            elif c.p == 2:
                q = sympify(c.q)
                if q.is_prime:
                    s = _minpoly_sin(ex, x)
                    return _mexpand(s.subs({x:sqrt((1 - x)/2)}))

            # for a = pi*p/q, cos(q*a) =T_q(cos(a)) = (-1)**p
            n = int(c.q)
            a = dup_chebyshevt(n, ZZ)
            a = [x**(n - i)*a[i] for i in range(n + 1)]
            r = Add(*a) - (-1)**c.p
            _, factors = factor_list(r)
            res = _choose_factor(factors, x, ex)
            return res

    raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex)
开发者ID:thilinarmtb,项目名称:sympy,代码行数:30,代码来源:numberfields.py


示例2: _minpoly_rootof

def _minpoly_rootof(ex, x):
    """
    Returns the minimal polynomial of a ``RootOf`` object.
    """
    p = ex.expr
    p = p.subs({ex.poly.gens[0]:x})
    _, factors = factor_list(p, x)
    result = _choose_factor(factors, x, ex)
    return result
开发者ID:thilinarmtb,项目名称:sympy,代码行数:9,代码来源:numberfields.py


示例3: _minimal_polynomial_sq

def _minimal_polynomial_sq(p, n, x):
    """
    Returns the minimal polynomial for the ``nth-root`` of a sum of surds
    or ``None`` if it fails.

    Parameters
    ==========

    p : sum of surds
    n : positive integer
    x : variable of the returned polynomial

    Examples
    ========

    >>> from sympy.polys.numberfields import _minimal_polynomial_sq
    >>> from sympy import sqrt
    >>> from sympy.abc import x
    >>> q = 1 + sqrt(2) + sqrt(3)
    >>> _minimal_polynomial_sq(q, 3, x)
    x**12 - 4*x**9 - 4*x**6 + 16*x**3 - 8

    """
    from sympy.simplify.simplify import _is_sum_surds

    p = sympify(p)
    n = sympify(n)
    r = _is_sum_surds(p)
    if not n.is_Integer or not n > 0 or not _is_sum_surds(p):
        return None
    pn = p**Rational(1, n)
    # eliminate the square roots
    p -= x
    while 1:
        p1 = _separate_sq(p)
        if p1 is p:
            p = p1.subs({x:x**n})
            break
        else:
            p = p1

    # _separate_sq eliminates field extensions in a minimal way, so that
    # if n = 1 then `p = constant*(minimal_polynomial(p))`
    # if n > 1 it contains the minimal polynomial as a factor.
    if n == 1:
        p1 = Poly(p)
        if p.coeff(x**p1.degree(x)) < 0:
            p = -p
        p = p.primitive()[1]
        return p
    # by construction `p` has root `pn`
    # the minimal polynomial is the factor vanishing in x = pn
    factors = factor_list(p)[1]

    result = _choose_factor(factors, x, pn)
    return result
开发者ID:thilinarmtb,项目名称:sympy,代码行数:56,代码来源:numberfields.py


示例4: _minpoly_pow

def _minpoly_pow(ex, pw, x, mp=None):
    """
    Returns ``minpoly(ex**pw, x)``

    Parameters
    ==========

    p  : algebraic number
    mp : minimal polynomial of ``p``
    pw : rational number
    x : indeterminate of the polynomial

    Examples
    ========

    >>> from sympy import sqrt
    >>> from sympy.polys.numberfields import _minpoly_pow, minpoly
    >>> from sympy.abc import x
    >>> p = sqrt(1 + sqrt(2))
    >>> _minpoly_pow(p, 2, x)
    x**2 - 2*x - 1
    >>> minpoly(p**2, x)
    x**2 - 2*x - 1
    """
    pw = sympify(pw)
    if not mp:
        mp = _minpoly1(ex, x)
    if not pw.is_rational:
        raise NotAlgebraic("%s doesn't seem to be an algebraic number" % ex)
    if pw < 0:
        if mp == x:
            raise ZeroDivisionError('%s is zero' % ex)
        mp = _invertx(mp, x)
        if pw == -1:
            return mp
        pw = -pw
        ex = 1/ex
    y = Dummy(str(x))
    mp = mp.subs({x:y})
    n, d = pw.as_numer_denom()
    res = resultant(mp, x**d - y**n, gens=[y])
    _, factors = factor_list(res)
    res = _choose_factor(factors, x, ex**pw)
    return res
开发者ID:abhishekkumawat23,项目名称:sympy,代码行数:44,代码来源:numberfields.py


示例5: field_isomorphism_factor

def field_isomorphism_factor(a, b):
    """Construct field isomorphism via factorization. """
    _, factors = factor_list(a.minpoly, extension=b)

    for f, _ in factors:
        if f.degree() == 1:
            coeffs = f.rep.TC().to_sympy_list()
            d, terms = len(coeffs) - 1, []

            for i, coeff in enumerate(coeffs):
                terms.append(coeff*b.root**(d - i))

            root = Add(*terms)

            if (a.root - root).evalf(chop=True) == 0:
                return coeffs

            if (a.root + root).evalf(chop=True) == 0:
                return [ -c for c in coeffs ]
    else:
        return None
开发者ID:thilinarmtb,项目名称:sympy,代码行数:21,代码来源:numberfields.py


示例6: _minpoly_sin

def _minpoly_sin(ex, x):
    """
    Returns the minimal polynomial of ``sin(ex)``
    see http://mathworld.wolfram.com/TrigonometryAngles.html
    """
    from sympy.functions.combinatorial.factorials import binomial
    c, a = ex.args[0].as_coeff_Mul()
    if a is pi:
        if c.is_rational:
            n = c.q
            q = sympify(n)
            if q.is_prime:
                # for a = pi*p/q with q odd prime, using chebyshevt
                # write sin(q*a) = mp(sin(a))*sin(a);
                # the roots of mp(x) are sin(pi*p/q) for p = 1,..., q - 1
                a = dup_chebyshevt(n, ZZ)
                return Add(*[x**(n - i - 1)*a[i] for i in range(n)])
            if c.p == 1:
                if q == 9:
                    return 64*x**6 - 96*x**4 + 36*x**2 - 3

            if n % 2 == 1:
                # for a = pi*p/q with q odd, use
                # sin(q*a) = 0 to see that the minimal polynomial must be
                # a factor of dup_chebyshevt(n, ZZ)
                a = dup_chebyshevt(n, ZZ)
                a = [x**(n - i)*a[i] for i in range(n + 1)]
                r = Add(*a)
                _, factors = factor_list(r)
                res = _choose_factor(factors, x, ex)
                return res

            expr = ((1 - C.cos(2*c*pi))/2)**S.Half
            res = _minpoly_compose(expr, x, QQ)
            return res

    raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex)
开发者ID:thilinarmtb,项目名称:sympy,代码行数:37,代码来源:numberfields.py


示例7: _minpoly_groebner


#.........这里部分代码省略.........
            elif ex.is_Rational:
                return ex
        elif ex.is_Add:
            return Add(*[ bottom_up_scan(g) for g in ex.args ])
        elif ex.is_Mul:
            return Mul(*[ bottom_up_scan(g) for g in ex.args ])
        elif ex.is_Pow:
            if ex.exp.is_Rational:
                if ex.exp < 0 and ex.base.is_Add:
                    coeff, terms = ex.base.as_coeff_add()
                    elt, _ = primitive_element(terms, polys=True)

                    alg = ex.base - coeff

                    # XXX: turn this into eval()
                    inverse = invert(elt.gen + coeff, elt).as_expr()
                    base = inverse.subs(elt.gen, alg).expand()

                    if ex.exp == -1:
                        return bottom_up_scan(base)
                    else:
                        ex = base**(-ex.exp)
                if not ex.exp.is_Integer:
                    base, exp = (
                        ex.base**ex.exp.p).expand(), Rational(1, ex.exp.q)
                else:
                    base, exp = ex.base, ex.exp
                base = bottom_up_scan(base)
                expr = base**exp

                if expr not in mapping:
                    return update_mapping(expr, 1/exp, -base)
                else:
                    return symbols[expr]
        elif ex.is_AlgebraicNumber:
            if ex.root not in mapping:
                return update_mapping(ex.root, ex.minpoly)
            else:
                return symbols[ex.root]

        raise NotAlgebraic("%s doesn't seem to be an algebraic number" % ex)

    def simpler_inverse(ex):
        """
        Returns True if it is more likely that the minimal polynomial
        algorithm works better with the inverse
        """
        if ex.is_Pow:
            if (1/ex.exp).is_integer and ex.exp < 0:
                if ex.base.is_Add:
                    return True
        if ex.is_Mul:
            hit = True
            a = []
            for p in ex.args:
                if p.is_Add:
                    return False
                if p.is_Pow:
                    if p.base.is_Add and p.exp > 0:
                        return False

            if hit:
                return True
        return False

    inverted = False
    ex = expand_multinomial(ex)
    if ex.is_AlgebraicNumber:
        return ex.minpoly.as_expr(x)
    elif ex.is_Rational:
        result = ex.q*x - ex.p
    else:
        inverted = simpler_inverse(ex)
        if inverted:
            ex = ex**-1
        res = None
        if ex.is_Pow and (1/ex.exp).is_Integer:
            n = 1/ex.exp
            res = _minimal_polynomial_sq(ex.base, n, x)

        elif _is_sum_surds(ex):
            res = _minimal_polynomial_sq(ex, S.One, x)

        if res is not None:
            result = res

        if res is None:
            bus = bottom_up_scan(ex)
            F = [x - bus] + list(mapping.values())
            G = groebner(F, list(symbols.values()) + [x], order='lex')

            _, factors = factor_list(G[-1])
            # by construction G[-1] has root `ex`
            result = _choose_factor(factors, x, ex)
    if inverted:
        result = _invertx(result, x)
        if result.coeff(x**degree(result, x)) < 0:
            result = expand_mul(-result)

    return result
开发者ID:thilinarmtb,项目名称:sympy,代码行数:101,代码来源:numberfields.py


示例8: minimal_polynomial

def minimal_polynomial(ex, x=None, **args):
    """
    Computes the minimal polynomial of an algebraic number.

    **Example**

    >>> from sympy import minimal_polynomial, sqrt
    >>> from sympy.abc import x

    >>> minimal_polynomial(sqrt(2), x)
    x**2 - 2
    >>> minimal_polynomial(sqrt(2) + sqrt(3), x)
    x**4 - 10*x**2 + 1

    """
    generator = numbered_symbols('a', cls=Dummy)
    mapping, symbols, replace = {}, {}, []

    ex = sympify(ex)

    if x is not None:
        x, cls = sympify(x), Poly
    else:
        x, cls = Dummy('x'), PurePoly

    def update_mapping(ex, exp, base=None):
        a = generator.next()
        symbols[ex] = a

        if base is not None:
            mapping[ex] = a**exp + base
        else:
            mapping[ex] = exp.as_expr(a)

        return a

    def bottom_up_scan(ex):
        if ex.is_Atom:
            if ex is S.ImaginaryUnit:
                if ex not in mapping:
                    return update_mapping(ex, 2, 1)
                else:
                    return symbols[ex]
            elif ex.is_Rational and ex.q != 0:
                return ex
        elif ex.is_Add:
            return Add(*[ bottom_up_scan(g) for g in ex.args ])
        elif ex.is_Mul:
            return Mul(*[ bottom_up_scan(g) for g in ex.args ])
        elif ex.is_Pow:
            if ex.exp.is_Rational:
                if ex.exp < 0 and ex.base.is_Add:
                    coeff, terms = ex.base.as_coeff_add()
                    elt, _ = primitive_element(terms, polys=True)

                    alg = ex.base - coeff

                    # XXX: turn this into eval()
                    inverse = invert(elt.gen + coeff, elt).as_expr()
                    base = inverse.subs(elt.gen, alg).expand()

                    if ex.exp == -1:
                        return bottom_up_scan(base)
                    else:
                        ex = base**(-ex.exp)

                if not ex.exp.is_Integer:
                    base, exp = (ex.base**ex.exp.p).expand(), Rational(1, ex.exp.q)
                else:
                    base, exp = ex.base, ex.exp

                base = bottom_up_scan(base)
                expr = base**exp

                if expr not in mapping:
                    return update_mapping(expr, 1/exp, -base)
                else:
                    return symbols[expr]
        elif ex.is_AlgebraicNumber:
            if ex.root not in mapping:
                return update_mapping(ex.root, ex.minpoly)
            else:
                return symbols[ex.root]

        raise NotAlgebraic("%s doesn't seem to be an algebraic number" % ex)

    polys = args.get('polys', False)

    if ex.is_AlgebraicNumber:
        if not polys:
            return ex.minpoly.as_expr(x)
        else:
            return ex.minpoly.replace(x)
    elif ex.is_Rational and ex.q != 0:
        result = ex.q*x - ex.p
    else:
        F = [x - bottom_up_scan(ex)] + mapping.values()
        G = groebner(F, symbols.values() + [x], order='lex')

        _, factors = factor_list(G[-1])
#.........这里部分代码省略.........
开发者ID:Ingwar,项目名称:sympy,代码行数:101,代码来源:numberfields.py


示例9: minimal_polynomial


#.........这里部分代码省略.........
            return Mul(*[ bottom_up_scan(g) for g in ex.args ])
        elif ex.is_Pow:
            if ex.exp.is_Rational:
                if ex.exp < 0 and ex.base.is_Add:
                    coeff, terms = ex.base.as_coeff_add()
                    elt, _ = primitive_element(terms, polys=True)

                    alg = ex.base - coeff

                    # XXX: turn this into eval()
                    inverse = invert(elt.gen + coeff, elt).as_expr()
                    base = inverse.subs(elt.gen, alg).expand()

                    if ex.exp == -1:
                        return bottom_up_scan(base)
                    else:
                        ex = base**(-ex.exp)
                if not ex.exp.is_Integer:
                    base, exp = (
                        ex.base**ex.exp.p).expand(), Rational(1, ex.exp.q)
                else:
                    base, exp = ex.base, ex.exp
                base = bottom_up_scan(base)
                expr = base**exp

                if expr not in mapping:
                    return update_mapping(expr, 1/exp, -base)
                else:
                    return symbols[expr]
        elif ex.is_AlgebraicNumber:
            if ex.root not in mapping:
                return update_mapping(ex.root, ex.minpoly)
            else:
                return symbols[ex.root]

        raise NotAlgebraic("%s doesn't seem to be an algebraic number" % ex)

    def simpler_inverse(ex):
        """
        Returns True if it is more likely that the minimal polynomial
        algorithm works better with the inverse
        """
        if ex.is_Pow:
            if (1/ex.exp).is_integer and ex.exp < 0:
                if ex.base.is_Add:
                    return True
        if ex.is_Mul:
            hit = True
            a = []
            for p in ex.args:
                if p.is_Add:
                    return False
                if p.is_Pow:
                    if p.base.is_Add and p.exp > 0:
                        return False

            if hit:
                return True
        return False

    inverted = False
    ex = expand_multinomial(ex)
    if ex.is_AlgebraicNumber:
        if not polys:
            return ex.minpoly.as_expr(x)
        else:
            return ex.minpoly.replace(x)
    elif ex.is_Rational:
        result = ex.q*x - ex.p
    else:
        inverted = simpler_inverse(ex)
        if inverted:
            ex = ex**-1
        res = None
        if ex.is_Pow and (1/ex.exp).is_Integer:
            n = 1/ex.exp
            res = _minimal_polynomial_sq(ex.base, n, x)

        elif _is_sum_surds(ex):
            res = _minimal_polynomial_sq(ex, S.One, x)

        if res is not None:
            result = res

        if res is None:
            bus = bottom_up_scan(ex)
            F = [x - bus] + mapping.values()
            G = groebner(F, symbols.values() + [x], order='lex')

            _, factors = factor_list(G[-1])
            # by construction G[-1] has root `ex`
            result = _choose_factor(factors, x, ex)
    if inverted:
        result = _invertx(result, x)
        if result.coeff(x**degree(result, x)) < 0:
            result = expand_mul(-result)
    if polys:
        return cls(result, x, field=True)
    else:
        return result
开发者ID:abhishekkumawat23,项目名称:sympy,代码行数:101,代码来源:numberfields.py


示例10: _minpoly_op_algebraic_number

def _minpoly_op_algebraic_number(ex1, ex2, x, mp1=None, mp2=None, op=Add):
    """
    return the minimal polinomial for ``op(ex1, ex2)``

    Parameters
    ==========

    ex1, ex2 : expressions for the algebraic numbers
    x : indeterminate of the polynomials
    mp1, mp2 : minimal polynomials for ``ex1`` and ``ex2`` or None
    op : operation ``Add`` or ``Mul``

    Examples
    ========

    >>> from sympy import sqrt, Mul
    >>> from sympy.polys.numberfields import _minpoly_op_algebraic_number
    >>> from sympy.abc import x
    >>> p1 = sqrt(sqrt(2) + 1)
    >>> p2 = sqrt(sqrt(2) - 1)
    >>> _minpoly_op_algebraic_number(p1, p2, x, op=Mul)
    x - 1

    References
    ==========

    [1] http://en.wikipedia.org/wiki/Resultant
    [2] I.M. Isaacs, Proc. Amer. Math. Soc. 25 (1970), 638
    "Degrees of sums in a separable field extension".
    """
    from sympy import gcd
    y = Dummy(str(x))
    if mp1 is None:
        mp1 = _minpoly1(ex1, x)
    if mp2 is None:
        mp2 = _minpoly1(ex2, y)
    else:
        mp2 = mp2.subs({x:y})

    if op is Add:
        # mp1a = mp1.subs({x:x - y})
        (p1, p2), _ = parallel_poly_from_expr((mp1, x - y), x, y)
        r = p1.compose(p2)
        mp1a = r.as_expr()
    elif op is Mul:
        mp1a = _muly(mp1, x, y)
    else:
        raise NotImplementedError('option not available')
    r = resultant(mp1a, mp2, gens=[y, x])

    deg1 = degree(mp1, x)
    deg2 = degree(mp2, y)
    if op is Add and gcd(deg1, deg2) == 1:
        # `r` is irreducible, see [2]
        return r
    if op is Mul and deg1 == 1 or deg2 == 1:
        # if deg1 = 1, then mp1 = x - a; mp1a = x - y - a;
        # r = mp2(x - a), so that `r` is irreducible
        return r
    _, factors = factor_list(r)
    if op in [Add, Mul]:
        ex = op(ex1, ex2)
    res = _choose_factor(factors, x, ex)
    return res
开发者ID:abhishekkumawat23,项目名称:sympy,代码行数:64,代码来源:numberfields.py


示例11: primitive_element

def primitive_element(extension, x=None, **args):
    """Construct a common number field for all extensions. """
    if not extension:
        raise ValueError("can't compute primitive element for empty extension")

    if x is not None:
        x, cls = sympify(x), Poly
    else:
        x, cls = Dummy('x'), PurePoly

    if not args.get('ex', False):
        gen, coeffs = extension[0], [1]
        # XXX when minimal_polynomial is extended to work
        # with AlgebraicNumbers this test can be removed
        if isinstance(gen, AlgebraicNumber):
            g = gen.minpoly.replace(x)
        else:
            g = minimal_polynomial(gen, x, polys=True)
        for ext in extension[1:]:
            _, factors = factor_list(g, extension=ext)
            g = _choose_factor(factors, x, gen)
            s, _, g = g.sqf_norm()
            gen += s*ext
            coeffs.append(s)

        if not args.get('polys', False):
            return g.as_expr(), coeffs
        else:
            return cls(g), coeffs

    generator = numbered_symbols('y', cls=Dummy)

    F, Y = [], []

    for ext in extension:
        y = next(generator)

        if ext.is_Poly:
            if ext.is_univariate:
                f = ext.as_expr(y)
            else:
                raise ValueError("expected minimal polynomial, got %s" % ext)
        else:
            f = minpoly(ext, y)

        F.append(f)
        Y.append(y)

    coeffs_generator = args.get('coeffs', _coeffs_generator)

    for coeffs in coeffs_generator(len(Y)):
        f = x - sum([ c*y for c, y in zip(coeffs, Y)])
        G = groebner(F + [f], Y + [x], order='lex', field=True)

        H, g = G[:-1], cls(G[-1], x, domain='QQ')

        for i, (h, y) in enumerate(zip(H, Y)):
            try:
                H[i] = Poly(y - h, x,
                            domain='QQ').all_coeffs()  # XXX: composite=False
            except CoercionFailed:  # pragma: no cover
                break  # G is not a triangular set
        else:
            break
    else:  # pragma: no cover
        raise RuntimeError("run out of coefficient configurations")

    _, g = g.clear_denoms()

    if not args.get('polys', False):
        return g.as_expr(), coeffs, H
    else:
        return g, coeffs, H
开发者ID:cmarqu,项目名称:sympy,代码行数:73,代码来源:numberfields.py


示例12: _minpoly_compose

def _minpoly_compose(ex, x, dom):
    """
    Computes the minimal polynomial of an algebraic element
    using operations on minimal polynomials

    Examples
    ========

    >>> from sympy import minimal_polynomial, sqrt, Rational
    >>> from sympy.abc import x, y
    >>> minimal_polynomial(sqrt(2) + 3*Rational(1, 3), x, compose=True)
    x**2 - 2*x - 1
    >>> minimal_polynomial(sqrt(y) + 1/y, x, compose=True)
    x**2*y**2 - 2*x*y - y**3 + 1

    """
    if ex.is_Rational:
        return ex.q*x - ex.p
    if ex is I:
        _, factors = factor_list(x**2 + 1, x, domain=dom)
        return x**2 + 1 if len(factors) == 1 else x - I
    if hasattr(dom, 'symbols') and ex in dom.symbols:
        return x - ex

    if dom.is_QQ and _is_sum_surds(ex):
        # eliminate the square roots
        ex -= x
        while 1:
            ex1 = _separate_sq(ex)
            if ex1 is ex:
                return ex
            else:
                ex = ex1

    if ex.is_Add:
        res = _minpoly_add(x, dom, *ex.args)
    elif ex.is_Mul:
        f = Factors(ex).factors
        r = sift(f.items(), lambda itx: itx[0].is_Rational and itx[1].is_Rational)
        if r[True] and dom == QQ:
            ex1 = Mul(*[bx**ex for bx, ex in r[False] + r[None]])
            r1 = r[True]
            dens = [y.q for _, y in r1]
            lcmdens = reduce(lcm, dens, 1)
            nums = [base**(y.p*lcmdens // y.q) for base, y in r1]
            ex2 = Mul(*nums)
            mp1 = minimal_polynomial(ex1, x)
            # use the fact that in SymPy canonicalization products of integers
            # raised to rational powers are organized in relatively prime
            # bases, and that in ``base**(n/d)`` a perfect power is
            # simplified with the root
            mp2 = ex2.q*x**lcmdens - ex2.p
            ex2 = ex2**Rational(1, lcmdens)
            res = _minpoly_op_algebraic_element(Mul, ex1, ex2, x, dom, mp1=mp1, mp2=mp2)
        else:
            res = _minpoly_mul(x, dom, *ex.args)
    elif ex.is_Pow:
        res = _minpoly_pow(ex.base, ex.exp, x, dom)
    elif ex.__class__ is sin:
        res = _minpoly_sin(ex, x)
    elif ex.__class__ is cos:
        res = _minpoly_cos(ex, x)
    elif ex.__class__ is exp:
        res = _minpoly_exp(ex, x)
    elif ex.__class__ is CRootOf:
        res = _minpoly_rootof(ex, x)
    else:
        raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex)
    return res
开发者ID:cmarqu,项目名称:sympy,代码行数:69,代码来源:numberfields.py


示例13: minimal_polynomial


#.........这里部分代码省略.........
                    coeff, terms = ex.base.as_coeff_add()
                    elt, _ = primitive_element(terms, polys=True)

                    alg = ex.base - coeff

                    # XXX: turn this into eval()
                    inverse = invert(elt.gen + coeff, elt).as_expr()
                    base = inverse.subs(elt.gen, alg).expand()

                    if ex.exp == -1:
                        return bottom_up_scan(base)
                    else:
                        ex = base ** (-ex.exp)
                if not ex.exp.is_Integer:
                    base, exp = (ex.base ** ex.exp.p).expand(), Rational(1, ex.exp.q)
                else:
                    base, exp = ex.base, ex.exp
                base = bottom_up_scan(base)
                expr = base ** exp

                if expr not in mapping:
                    return update_mapping(expr, 1 / exp, -base)
                else:
                    return symbols[expr]
        elif ex.is_AlgebraicNumber:
            if ex.root not in mapping:
                return update_mapping(ex.root, ex.minpoly)
            else:
                return symbols[ex.root]

        raise NotAlgebraic("%s doesn't seem to be an algebraic number" % ex)

    def simpler_inverse(ex):
        """
        Returns True if it is more likely that the minimal polynomial
        algorithm works better with the inverse
        """
        if ex.is_Pow:
            if (1 / ex.exp).is_integer and ex.exp < 0:
                if ex.base.is_Add:
                    return True
        if ex.is_Mul:
            hit = True
            a = []
            for p in ex.args:
                if p.is_Add:
                    return False
                if p.is_Pow:
                    if p.base.is_Add and p.exp > 0:
                        return False

            if hit:
                return True
        return False

    polys = args.get("polys", False)
    prec = args.pop("prec", 10)

    inverted = False
    ex = expand_multinomial(ex)
    if ex.is_AlgebraicNumber:
        if not polys:
            return ex.minpoly.as_expr(x)
        else:
            return ex.minpoly.replace(x)
    elif ex.is_Rational:
        result = ex.q * x - ex.p
    else:
        inverted = simpler_inverse(ex)
        if inverted:
            ex = ex ** -1
        res = None
        if ex.is_Pow and (1 / ex.exp).is_Integer:
            n = 1 / ex.exp
            res = _minimal_polynomial_sq(ex.base, n, x, prec)

        elif _is_sum_surds(ex):
            res = _minimal_polynomial_sq(ex, S.One, x, prec)

        if res is not None:
            result = res

        if res is None:
            bus = bottom_up_scan(ex)
            F = [x - bus] + mapping.values()
            G = groebner(F, symbols.values() + [x], order="lex")

            _, factors = factor_list(G[-1])
            # by construction G[-1] has root `ex`
            result = _choose_factor(factors, x, ex, prec)
            if result is None:
                raise NotImplementedError("multiple candidates for the minimal polynomial of %s" % ex)
    if inverted:
        result = expand_mul(x ** degree(result) * result.subs(x, 1 / x))
        if result.coeff(x ** degree(result)) < 0:
            result = expand_mul(-result)
    if polys:
        return cls(result, x, field=True)
    else:
        return result
开发者ID:smichr,项目名称:sympy,代码行数:101,代码来源:numberfields.py



注:本文中的sympy.polys.polytools.factor_list函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python polytools.groebner函数代码示例发布时间:2022-05-27
下一篇:
Python polytools.factor函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap