• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python polyroots.root_factors函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sympy.polys.polyroots.root_factors函数的典型用法代码示例。如果您正苦于以下问题:Python root_factors函数的具体用法?Python root_factors怎么用?Python root_factors使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了root_factors函数的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_root_factors

def test_root_factors():
    assert root_factors(Poly(1, x)) == [Poly(1, x)]
    assert root_factors(Poly(x, x)) == [Poly(x, x)]

    assert root_factors(x**2 - 1, x) == [x + 1, x - 1]
    assert root_factors(x**2 - y, x) == [x - sqrt(y), x + sqrt(y)]

    assert root_factors((x**4 - 1)**2) == \
        [x + 1, x + 1, x - 1, x - 1, x - I, x - I, x + I, x + I]

    assert root_factors(Poly(x**4 - 1, x), filter='Z') == \
        [Poly(x + 1, x), Poly(x - 1, x), Poly(x**2 + 1, x)]
    assert root_factors(8*x**2 + 12*x**4 + 6*x**6 + x**8, x, filter='Q') == \
        [x, x, x**6 + 6*x**4 + 12*x**2 + 8]
开发者ID:NalinG,项目名称:sympy,代码行数:14,代码来源:test_polyroots.py


示例2: integrate

    def integrate(field=None):
        irreducibles = set()

        for poly in reducibles:
            for z in poly.atoms(Symbol):
                if z in V:
                    break
            else:
                continue

            irreducibles |= set(root_factors(poly, z, filter=field))

        log_coeffs, log_part = [], []
        B = _symbols('B', len(irreducibles))

        for i, poly in enumerate(irreducibles):
            if poly.has(*V):
                log_coeffs.append(B[i])
                log_part.append(log_coeffs[-1] * log(poly))

        coeffs = poly_coeffs + log_coeffs

        candidate = poly_part/poly_denom + Add(*log_part)

        h = F - derivation(candidate) / denom

        numer = h.as_numer_denom()[0].expand()

        equations = {}

        for term in Add.make_args(numer):
            coeff, dependent = term.as_independent(*V)

            if dependent in equations:
                equations[dependent] += coeff
            else:
                equations[dependent] = coeff

        solution = solve(equations.values(), *coeffs)

        if solution is not None:
            return (solution, candidate, coeffs)
        else:
            return None
开发者ID:haz,项目名称:sympy,代码行数:44,代码来源:risch.py


示例3: _integrate

    def _integrate(field=None):
        irreducibles = set()

        for poly in reducibles:
            for z in poly.atoms(Symbol):
                if z in V:
                    break
            else:
                continue

            irreducibles |= set(root_factors(poly, z, filter=field))

        log_coeffs, log_part = [], []
        B = _symbols('B', len(irreducibles))

        for i, poly in enumerate(irreducibles):
            if poly.has(*V):
                log_coeffs.append(B[i])
                log_part.append(log_coeffs[-1] * log(poly))

        coeffs = poly_coeffs + log_coeffs

        # TODO: Currently it's better to use symbolic expressions here instead
        # of rational functions, because it's simpler and FracElement doesn't
        # give big speed improvement yet. This is because cancelation is slow
        # due to slow polynomial GCD algorithms. If this gets improved then
        # revise this code.
        candidate = poly_part/poly_denom + Add(*log_part)
        h = F - _derivation(candidate) / denom
        raw_numer = h.as_numer_denom()[0]

        # Rewrite raw_numer as a polynomial in K[coeffs][V] where K is a field
        # that we have to determine. We can't use simply atoms() because log(3),
        # sqrt(y) and similar expressions can appear, leading to non-trivial
        # domains.
        syms = set(coeffs) | set(V)
        non_syms = set([])

        def find_non_syms(expr):
            if expr.is_Integer or expr.is_Rational:
                pass # ignore trivial numbers
            elif expr in syms:
                pass # ignore variables
            elif not expr.has(*syms):
                non_syms.add(expr)
            elif expr.is_Add or expr.is_Mul or expr.is_Pow:
                list(map(find_non_syms, expr.args))
            else:
                # TODO: Non-polynomial expression. This should have been
                # filtered out at an earlier stage.
                raise PolynomialError

        try:
            find_non_syms(raw_numer)
        except PolynomialError:
            return None
        else:
            ground, _ = construct_domain(non_syms, field=True)

        coeff_ring = PolyRing(coeffs, ground)
        ring = PolyRing(V, coeff_ring)

        numer = ring.from_expr(raw_numer)

        solution = solve_lin_sys(numer.coeffs(), coeff_ring)

        if solution is None:
            return None
        else:
            solution = [ (k.as_expr(), v.as_expr()) for k, v in solution.items() ]
            return candidate.subs(solution).subs(list(zip(coeffs, [S.Zero]*len(coeffs))))
开发者ID:AALEKH,项目名称:sympy,代码行数:71,代码来源:heurisch.py


示例4: _integrate

    def _integrate(field=None):
        irreducibles = set()
        atans = set()
        pairs = set()

        for poly in reducibles:
            for z in poly.free_symbols:
                if z in V:
                    break  # should this be: `irreducibles |= \
            else:          # set(root_factors(poly, z, filter=field))`
                continue   # and the line below deleted?
                           #               |
                           #               V
            irreducibles |= set(root_factors(poly, z, filter=field))

        log_part, atan_part = [], []

        for poly in list(irreducibles):
            m = collect(poly, I, evaluate=False)
            y = m.get(I, S.Zero)
            if y:
                x = m.get(S.One, S.Zero)
                if x.has(I) or y.has(I):
                    continue  # nontrivial x + I*y
                pairs.add((x, y))
                irreducibles.remove(poly)

        while pairs:
            x, y = pairs.pop()
            if (x, -y) in pairs:
                pairs.remove((x, -y))
                # Choosing b with no minus sign
                if y.could_extract_minus_sign():
                    y = -y
                irreducibles.add(x*x + y*y)
                atans.add(atan(x/y))
            else:
                irreducibles.add(x + I*y)


        B = _symbols('B', len(irreducibles))
        C = _symbols('C', len(atans))

        # Note: the ordering matters here
        for poly, b in reversed(list(ordered(zip(irreducibles, B)))):
            if poly.has(*V):
                poly_coeffs.append(b)
                log_part.append(b * log(poly))

        for poly, c in reversed(list(ordered(zip(atans, C)))):
            if poly.has(*V):
                poly_coeffs.append(c)
                atan_part.append(c * poly)

        # TODO: Currently it's better to use symbolic expressions here instead
        # of rational functions, because it's simpler and FracElement doesn't
        # give big speed improvement yet. This is because cancellation is slow
        # due to slow polynomial GCD algorithms. If this gets improved then
        # revise this code.
        candidate = poly_part/poly_denom + Add(*log_part) + Add(*atan_part)
        h = F - _derivation(candidate) / denom
        raw_numer = h.as_numer_denom()[0]

        # Rewrite raw_numer as a polynomial in K[coeffs][V] where K is a field
        # that we have to determine. We can't use simply atoms() because log(3),
        # sqrt(y) and similar expressions can appear, leading to non-trivial
        # domains.
        syms = set(poly_coeffs) | set(V)
        non_syms = set([])

        def find_non_syms(expr):
            if expr.is_Integer or expr.is_Rational:
                pass # ignore trivial numbers
            elif expr in syms:
                pass # ignore variables
            elif not expr.has(*syms):
                non_syms.add(expr)
            elif expr.is_Add or expr.is_Mul or expr.is_Pow:
                list(map(find_non_syms, expr.args))
            else:
                # TODO: Non-polynomial expression. This should have been
                # filtered out at an earlier stage.
                raise PolynomialError

        try:
            find_non_syms(raw_numer)
        except PolynomialError:
            return None
        else:
            ground, _ = construct_domain(non_syms, field=True)

        coeff_ring = PolyRing(poly_coeffs, ground)
        ring = PolyRing(V, coeff_ring)
        try:
            numer = ring.from_expr(raw_numer)
        except ValueError:
            raise PolynomialError
        solution = solve_lin_sys(numer.coeffs(), coeff_ring, _raw=False)

        if solution is None:
#.........这里部分代码省略.........
开发者ID:sympy,项目名称:sympy,代码行数:101,代码来源:heurisch.py



注:本文中的sympy.polys.polyroots.root_factors函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python polyroots.roots函数代码示例发布时间:2022-05-27
下一篇:
Python polyroots.preprocess_roots函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap