本文整理汇总了Python中sympy.polys.polyoptions.allowed_flags函数的典型用法代码示例。如果您正苦于以下问题:Python allowed_flags函数的具体用法?Python allowed_flags怎么用?Python allowed_flags使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了allowed_flags函数的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: horner
def horner(f, *gens, **args):
"""
Rewrite a polynomial in Horner form.
Examples
========
>>> from sympy.polys.polyfuncs import horner
>>> from sympy.abc import x, y, a, b, c, d, e
>>> horner(9*x**4 + 8*x**3 + 7*x**2 + 6*x + 5)
x*(x*(x*(9*x + 8) + 7) + 6) + 5
>>> horner(a*x**4 + b*x**3 + c*x**2 + d*x + e)
e + x*(d + x*(c + x*(a*x + b)))
>>> f = 4*x**2*y**2 + 2*x**2*y + 2*x*y**2 + x*y
>>> horner(f, wrt=x)
x*(x*y*(4*y + 2) + y*(2*y + 1))
>>> horner(f, wrt=y)
y*(x*y*(4*x + 2) + x*(2*x + 1))
"""
allowed_flags(args, [])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed, exc:
return exc.expr
开发者ID:jenshnielsen,项目名称:sympy,代码行数:31,代码来源:polyfuncs.py
示例2: horner
def horner(f, *gens, **args):
"""
Rewrite a polynomial in Horner form.
**Examples**
>>> from sympy.polys.polyfuncs import horner
>>> from sympy.abc import x, y, a, b, c, d, e
>>> horner(9*x**4 + 8*x**3 + 7*x**2 + 6*x + 5)
5 + x*(6 + x*(7 + x*(8 + 9*x)))
>>> horner(a*x**4 + b*x**3 + c*x**2 + d*x + e)
e + x*(d + x*(c + x*(b + a*x)))
>>> f = 4*x**2*y**2 + 2*x**2*y + 2*x*y**2 + x*y
>>> horner(f, wrt=x)
x*(y*(1 + 2*y) + x*y*(2 + 4*y))
>>> horner(f, wrt=y)
y*(x*(1 + 2*x) + x*y*(2 + 4*x))
"""
allowed_flags(args, [])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed, exc:
return exc.expr
开发者ID:addisonc,项目名称:sympy,代码行数:30,代码来源:polyfuncs.py
示例3: apart
def apart(f, x=None, full=False, **options):
"""
Compute partial fraction decomposition of a rational function.
Given a rational function ``f`` compute partial fraction decomposition
of ``f``. Two algorithms are available: one is based on undetermined
coefficients method and the other is Bronstein's full partial fraction
decomposition algorithm.
Examples
========
>>> from sympy.polys.partfrac import apart
>>> from sympy.abc import x, y
>>> apart(y/(x + 2)/(x + 1), x)
-y/(x + 2) + y/(x + 1)
"""
allowed_flags(options, [])
f = sympify(f)
if f.is_Atom:
return f
else:
P, Q = f.as_numer_denom()
options = set_defaults(options, extension=True)
(P, Q), opt = parallel_poly_from_expr((P, Q), x, **options)
if P.is_multivariate:
raise NotImplementedError(
"multivariate partial fraction decomposition")
common, P, Q = P.cancel(Q)
poly, P = P.div(Q, auto=True)
P, Q = P.rat_clear_denoms(Q)
if Q.degree() <= 1:
partial = P/Q
else:
if not full:
partial = apart_undetermined_coeffs(P, Q)
else:
partial = apart_full_decomposition(P, Q)
terms = S.Zero
for term in Add.make_args(partial):
if term.has(RootSum):
terms += term
else:
terms += factor(term)
return common*(poly.as_expr() + terms)
开发者ID:FireJade,项目名称:sympy,代码行数:57,代码来源:partfrac.py
示例4: viete
def viete(f, roots=None, *gens, **args):
"""
Generate Viete's formulas for ``f``.
Examples
========
>>> from sympy.polys.polyfuncs import viete
>>> from sympy import symbols
>>> x, a, b, c, r1, r2 = symbols('x,a:c,r1:3')
>>> viete(a*x**2 + b*x + c, [r1, r2], x)
[(r1 + r2, -b/a), (r1*r2, c/a)]
"""
allowed_flags(args, [])
if isinstance(roots, Basic):
gens, roots = (roots,) + gens, None
try:
f, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('viete', 1, exc)
if f.is_multivariate:
raise MultivariatePolynomialError(
"multivariate polynomials are not allowed")
n = f.degree()
if n < 1:
raise ValueError(
"can't derive Viete's formulas for a constant polynomial")
if roots is None:
roots = numbered_symbols('r', start=1)
roots = take(roots, n)
if n != len(roots):
raise ValueError("required %s roots, got %s" % (n, len(roots)))
lc, coeffs = f.LC(), f.all_coeffs()
result, sign = [], -1
for i, coeff in enumerate(coeffs[1:]):
poly = symmetric_poly(i + 1, roots)
coeff = sign*(coeff/lc)
result.append((poly, coeff))
sign = -sign
return result
开发者ID:AALEKH,项目名称:sympy,代码行数:54,代码来源:polyfuncs.py
示例5: symmetrize
def symmetrize(F, *gens, **args):
"""
Rewrite a polynomial in terms of elementary symmetric polynomials.
Examples
========
>>> from sympy.polys.polyfuncs import symmetrize
>>> from sympy.abc import x, y
>>> symmetrize(x**2 + y**2)
(-2*x*y + (x + y)**2, 0)
>>> symmetrize(x**2 + y**2, formal=True)
(s1**2 - 2*s2, 0, [(s1, x + y), (s2, x*y)])
>>> symmetrize(x**2 - y**2)
(-2*x*y + (x + y)**2, -2*y**2)
>>> symmetrize(x**2 - y**2, formal=True)
(s1**2 - 2*s2, -2*y**2, [(s1, x + y), (s2, x*y)])
"""
allowed_flags(args, ["formal", "symbols"])
iterable = True
if not hasattr(F, "__iter__"):
iterable = False
F = [F]
try:
F, opt = parallel_poly_from_expr(F, *gens, **args)
except PolificationFailed, exc:
result = []
for expr in exc.exprs:
if expr.is_Number:
result.append((expr, S.Zero))
else:
raise ComputationFailed("symmetrize", len(F), exc)
else:
if not iterable:
result, = result
if not exc.opt.formal:
return result
else:
if iterable:
return result, []
else:
return result + ([],)
开发者ID:jenshnielsen,项目名称:sympy,代码行数:52,代码来源:polyfuncs.py
示例6: horner
def horner(f, *gens, **args):
"""
Rewrite a polynomial in Horner form.
Among other applications, evaluation of a polynomial at a point is optimal
when it is applied using the Horner scheme ([1]).
Examples
========
>>> from sympy.polys.polyfuncs import horner
>>> from sympy.abc import x, y, a, b, c, d, e
>>> horner(9*x**4 + 8*x**3 + 7*x**2 + 6*x + 5)
x*(x*(x*(9*x + 8) + 7) + 6) + 5
>>> horner(a*x**4 + b*x**3 + c*x**2 + d*x + e)
e + x*(d + x*(c + x*(a*x + b)))
>>> f = 4*x**2*y**2 + 2*x**2*y + 2*x*y**2 + x*y
>>> horner(f, wrt=x)
x*(x*y*(4*y + 2) + y*(2*y + 1))
>>> horner(f, wrt=y)
y*(x*y*(4*x + 2) + x*(2*x + 1))
References
==========
[1] - http://en.wikipedia.org/wiki/Horner_scheme
"""
allowed_flags(args, [])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
return exc.expr
form, gen = S.Zero, F.gen
if F.is_univariate:
for coeff in F.all_coeffs():
form = form*gen + coeff
else:
F, gens = Poly(F, gen), gens[1:]
for coeff in F.all_coeffs():
form = form*gen + horner(coeff, *gens, **args)
return form
开发者ID:AALEKH,项目名称:sympy,代码行数:51,代码来源:polyfuncs.py
示例7: apart_list
#.........这里部分代码省略.........
A first example:
>>> from sympy.polys.partfrac import apart_list, assemble_partfrac_list
>>> from sympy.abc import x, t
>>> f = (2*x**3 - 2*x) / (x**2 - 2*x + 1)
>>> pfd = apart_list(f)
>>> pfd
(1,
Poly(2*x + 4, x, domain='ZZ'),
[(Poly(_w - 1, _w, domain='ZZ'), Lambda(_a, 4), Lambda(_a, -_a + x), 1)])
>>> assemble_partfrac_list(pfd)
2*x + 4 + 4/(x - 1)
Second example:
>>> f = (-2*x - 2*x**2) / (3*x**2 - 6*x)
>>> pfd = apart_list(f)
>>> pfd
(-1,
Poly(2/3, x, domain='QQ'),
[(Poly(_w - 2, _w, domain='ZZ'), Lambda(_a, 2), Lambda(_a, -_a + x), 1)])
>>> assemble_partfrac_list(pfd)
-2/3 - 2/(x - 2)
Another example, showing symbolic parameters:
>>> pfd = apart_list(t/(x**2 + x + t), x)
>>> pfd
(1,
Poly(0, x, domain='ZZ[t]'),
[(Poly(_w**2 + _w + t, _w, domain='ZZ[t]'),
Lambda(_a, -2*_a*t/(4*t - 1) - t/(4*t - 1)),
Lambda(_a, -_a + x),
1)])
>>> assemble_partfrac_list(pfd)
RootSum(_w**2 + _w + t, Lambda(_a, (-2*_a*t/(4*t - 1) - t/(4*t - 1))/(-_a + x)))
This example is taken from Bronstein's original paper:
>>> f = 36 / (x**5 - 2*x**4 - 2*x**3 + 4*x**2 + x - 2)
>>> pfd = apart_list(f)
>>> pfd
(1,
Poly(0, x, domain='ZZ'),
[(Poly(_w - 2, _w, domain='ZZ'), Lambda(_a, 4), Lambda(_a, -_a + x), 1),
(Poly(_w**2 - 1, _w, domain='ZZ'), Lambda(_a, -3*_a - 6), Lambda(_a, -_a + x), 2),
(Poly(_w + 1, _w, domain='ZZ'), Lambda(_a, -4), Lambda(_a, -_a + x), 1)])
>>> assemble_partfrac_list(pfd)
-4/(x + 1) - 3/(x + 1)**2 - 9/(x - 1)**2 + 4/(x - 2)
See also
========
apart, assemble_partfrac_list
References
==========
1. [Bronstein93]_
"""
allowed_flags(options, [])
f = sympify(f)
if f.is_Atom:
return f
else:
P, Q = f.as_numer_denom()
options = set_defaults(options, extension=True)
(P, Q), opt = parallel_poly_from_expr((P, Q), x, **options)
if P.is_multivariate:
raise NotImplementedError(
"multivariate partial fraction decomposition")
common, P, Q = P.cancel(Q)
poly, P = P.div(Q, auto=True)
P, Q = P.rat_clear_denoms(Q)
polypart = poly
if dummies is None:
def dummies(name):
d = Dummy(name)
while True:
yield d
dummies = dummies("w")
rationalpart = apart_list_full_decomposition(P, Q, dummies)
return (common, polypart, rationalpart)
开发者ID:vidyar,项目名称:sympy,代码行数:101,代码来源:partfrac.py
示例8: apart
def apart(f, x=None, full=False, **options):
"""
Compute partial fraction decomposition of a rational function.
Given a rational function ``f`` compute partial fraction decomposition
of ``f``. Two algorithms are available: one is based on undetermined
coefficients method and the other is Bronstein's full partial fraction
decomposition algorithm.
Examples
========
>>> from sympy.polys.partfrac import apart
>>> from sympy.abc import x, y
By default, using the undetermined coefficients method:
>>> apart(y/(x + 2)/(x + 1), x)
-y/(x + 2) + y/(x + 1)
You can choose Bronstein's algorithm by setting ``full=True``:
>>> apart(y/(x**2 + x + 1), x)
y/(x**2 + x + 1)
>>> apart(y/(x**2 + x + 1), x, full=True)
RootSum(_w**2 + _w + 1, Lambda(_a, (-2*_a*y/3 - y/3)/(-_a + x)))
See Also
========
apart_list, assemble_partfrac_list
"""
allowed_flags(options, [])
f = sympify(f)
if f.is_Atom:
return f
else:
P, Q = f.as_numer_denom()
_options = options.copy()
options = set_defaults(options, extension=True)
try:
(P, Q), opt = parallel_poly_from_expr((P, Q), x, **options)
except PolynomialError as msg:
if f.is_commutative:
raise PolynomialError(msg)
# non-commutative
if f.is_Mul:
c, nc = f.args_cnc(split_1=False)
nc = Mul(*[apart(i, x=x, full=full, **_options) for i in nc])
if c:
c = apart(Mul._from_args(c), x=x, full=full, **_options)
return c*nc
else:
return nc
elif f.is_Add:
c = []
nc = []
for i in f.args:
if i.is_commutative:
c.append(i)
else:
try:
nc.append(apart(i, x=x, full=full, **_options))
except NotImplementedError:
nc.append(i)
return apart(Add(*c), x=x, full=full, **_options) + Add(*nc)
else:
reps = []
pot = preorder_traversal(f)
pot.next()
for e in pot:
try:
reps.append((e, apart(e, x=x, full=full, **_options)))
pot.skip() # this was handled successfully
except NotImplementedError:
pass
return f.xreplace(dict(reps))
if P.is_multivariate:
fc = f.cancel()
if fc != f:
return apart(fc, x=x, full=full, **_options)
raise NotImplementedError(
"multivariate partial fraction decomposition")
common, P, Q = P.cancel(Q)
poly, P = P.div(Q, auto=True)
P, Q = P.rat_clear_denoms(Q)
if Q.degree() <= 1:
partial = P/Q
else:
if not full:
partial = apart_undetermined_coeffs(P, Q)
else:
#.........这里部分代码省略.........
开发者ID:vidyar,项目名称:sympy,代码行数:101,代码来源:partfrac.py
示例9: apart
def apart(f, x=None, full=False, **options):
"""
Compute partial fraction decomposition of a rational function.
Given a rational function ``f``, computes the partial fraction
decomposition of ``f``. Two algorithms are available: One is based on the
undertermined coefficients method, the other is Bronstein's full partial
fraction decomposition algorithm.
The undetermined coefficients method (selected by ``full=False``) uses
polynomial factorization (and therefore accepts the same options as
factor) for the denominator. Per default it works over the rational
numbers, therefore decomposition of denominators with non-rational roots
(e.g. irrational, complex roots) is not supported by default (see options
of factor).
Bronstein's algorithm can be selected by using ``full=True`` and allows a
decomposition of denominators with non-rational roots. A human-readable
result can be obtained via ``doit()`` (see examples below).
Examples
========
>>> from sympy.polys.partfrac import apart
>>> from sympy.abc import x, y
By default, using the undetermined coefficients method:
>>> apart(y/(x + 2)/(x + 1), x)
-y/(x + 2) + y/(x + 1)
The undetermined coefficients method does not provide a result when the
denominators roots are not rational:
>>> apart(y/(x**2 + x + 1), x)
y/(x**2 + x + 1)
You can choose Bronstein's algorithm by setting ``full=True``:
>>> apart(y/(x**2 + x + 1), x, full=True)
RootSum(_w**2 + _w + 1, Lambda(_a, (-2*_a*y/3 - y/3)/(-_a + x)))
Calling ``doit()`` yields a human-readable result:
>>> apart(y/(x**2 + x + 1), x, full=True).doit()
(-y/3 - 2*y*(-1/2 - sqrt(3)*I/2)/3)/(x + 1/2 + sqrt(3)*I/2) + (-y/3 -
2*y*(-1/2 + sqrt(3)*I/2)/3)/(x + 1/2 - sqrt(3)*I/2)
See Also
========
apart_list, assemble_partfrac_list
"""
allowed_flags(options, [])
f = sympify(f)
if f.is_Atom:
return f
else:
P, Q = f.as_numer_denom()
_options = options.copy()
options = set_defaults(options, extension=True)
try:
(P, Q), opt = parallel_poly_from_expr((P, Q), x, **options)
except PolynomialError as msg:
if f.is_commutative:
raise PolynomialError(msg)
# non-commutative
if f.is_Mul:
c, nc = f.args_cnc(split_1=False)
nc = f.func(*nc)
if c:
c = apart(f.func._from_args(c), x=x, full=full, **_options)
return c*nc
else:
return nc
elif f.is_Add:
c = []
nc = []
for i in f.args:
if i.is_commutative:
c.append(i)
else:
try:
nc.append(apart(i, x=x, full=full, **_options))
except NotImplementedError:
nc.append(i)
return apart(f.func(*c), x=x, full=full, **_options) + f.func(*nc)
else:
reps = []
pot = preorder_traversal(f)
next(pot)
for e in pot:
try:
reps.append((e, apart(e, x=x, full=full, **_options)))
pot.skip() # this was handled successfully
except NotImplementedError:
#.........这里部分代码省略.........
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:101,代码来源:partfrac.py
示例10: symmetrize
def symmetrize(F, *gens, **args):
"""
Rewrite a polynomial in terms of elementary symmetric polynomials.
A symmetric polynomial is a multivariate polynomial that remains invariant
under any variable permutation, i.e., if ``f = f(x_1, x_2, ..., x_n)``,
then ``f = f(x_{i_1}, x_{i_2}, ..., x_{i_n})``, where
``(i_1, i_2, ..., i_n)`` is a permutation of ``(1, 2, ..., n)`` (an
element of the group ``S_n``).
Returns a tuple of symmetric polynomials ``(f1, f2, ..., fn)`` such that
``f = f1 + f2 + ... + fn``.
Examples
========
>>> from sympy.polys.polyfuncs import symmetrize
>>> from sympy.abc import x, y
>>> symmetrize(x**2 + y**2)
(-2*x*y + (x + y)**2, 0)
>>> symmetrize(x**2 + y**2, formal=True)
(s1**2 - 2*s2, 0, [(s1, x + y), (s2, x*y)])
>>> symmetrize(x**2 - y**2)
(-2*x*y + (x + y)**2, -2*y**2)
>>> symmetrize(x**2 - y**2, formal=True)
(s1**2 - 2*s2, -2*y**2, [(s1, x + y), (s2, x*y)])
"""
allowed_flags(args, ['formal', 'symbols'])
iterable = True
if not hasattr(F, '__iter__'):
iterable = False
F = [F]
try:
F, opt = parallel_poly_from_expr(F, *gens, **args)
except PolificationFailed as exc:
result = []
for expr in exc.exprs:
if expr.is_Number:
result.append((expr, S.Zero))
else:
raise ComputationFailed('symmetrize', len(F), exc)
else:
if not iterable:
result, = result
if not exc.opt.formal:
return result
else:
if iterable:
return result, []
else:
return result + ([],)
polys, symbols = [], opt.symbols
gens, dom = opt.gens, opt.domain
for i in xrange(0, len(gens)):
poly = symmetric_poly(i + 1, gens, polys=True)
polys.append((next(symbols), poly.set_domain(dom)))
indices = list(range(0, len(gens) - 1))
weights = list(range(len(gens), 0, -1))
result = []
for f in F:
symmetric = []
if not f.is_homogeneous:
symmetric.append(f.TC())
f -= f.TC()
while f:
_height, _monom, _coeff = -1, None, None
for i, (monom, coeff) in enumerate(f.terms()):
if all(monom[i] >= monom[i + 1] for i in indices):
height = max([ n*m for n, m in zip(weights, monom) ])
if height > _height:
_height, _monom, _coeff = height, monom, coeff
if _height != -1:
monom, coeff = _monom, _coeff
else:
break
exponents = []
for m1, m2 in zip(monom, monom[1:] + (0,)):
exponents.append(m1 - m2)
#.........这里部分代码省略.........
开发者ID:AALEKH,项目名称:sympy,代码行数:101,代码来源:polyfuncs.py
注:本文中的sympy.polys.polyoptions.allowed_flags函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论