• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python galoistools.gf_factor_sqf函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sympy.polys.galoistools.gf_factor_sqf函数的典型用法代码示例。如果您正苦于以下问题:Python gf_factor_sqf函数的具体用法?Python gf_factor_sqf怎么用?Python gf_factor_sqf使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了gf_factor_sqf函数的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_gf_factor

def test_gf_factor():
    assert gf_factor([], 11, ZZ) == (0, [])
    assert gf_factor([1], 11, ZZ) == (1, [])
    assert gf_factor([1,1], 11, ZZ) == (1, [([1, 1], 1)])

    assert gf_factor_sqf([], 11, ZZ) == (0, [])
    assert gf_factor_sqf([1], 11, ZZ) == (1, [])
    assert gf_factor_sqf([1,1], 11, ZZ) == (1, [[1, 1]])

    config.setup('GF_FACTOR_METHOD', 'berlekamp')

    assert gf_factor_sqf([], 11, ZZ) == (0, [])
    assert gf_factor_sqf([1], 11, ZZ) == (1, [])
    assert gf_factor_sqf([1,1], 11, ZZ) == (1, [[1, 1]])

    config.setup('GF_FACTOR_METHOD', 'zassenhaus')

    assert gf_factor_sqf([], 11, ZZ) == (0, [])
    assert gf_factor_sqf([1], 11, ZZ) == (1, [])
    assert gf_factor_sqf([1,1], 11, ZZ) == (1, [[1, 1]])

    config.setup('GF_FACTOR_METHOD', 'shoup')

    assert gf_factor_sqf([], 11, ZZ) == (0, [])
    assert gf_factor_sqf([1], 11, ZZ) == (1, [])
    assert gf_factor_sqf([1,1], 11, ZZ) == (1, [[1, 1]])

    f, p = [1,0,0,1,0], 2

    g = (1, [([1, 0], 1),
             ([1, 1], 1),
             ([1, 1, 1], 1)])

    config.setup('GF_FACTOR_METHOD', 'berlekamp')
    assert gf_factor(f, p, ZZ) == g

    config.setup('GF_FACTOR_METHOD', 'zassenhaus')
    assert gf_factor(f, p, ZZ) == g

    config.setup('GF_FACTOR_METHOD', 'shoup')
    assert gf_factor(f, p, ZZ) == g

    g = (1, [[1, 0],
             [1, 1],
             [1, 1, 1]])

    config.setup('GF_FACTOR_METHOD', 'berlekamp')
    assert gf_factor_sqf(f, p, ZZ) == g

    config.setup('GF_FACTOR_METHOD', 'zassenhaus')
    assert gf_factor_sqf(f, p, ZZ) == g

    config.setup('GF_FACTOR_METHOD', 'shoup')
    assert gf_factor_sqf(f, p, ZZ) == g

    f, p = gf_from_int_poly([1,-3,1,-3,-1,-3,1], 11), 11

    g = (1, [([1, 1], 1),
             ([1, 5, 3], 1),
             ([1, 2, 3, 4], 1)])

    config.setup('GF_FACTOR_METHOD', 'berlekamp')
    assert gf_factor(f, p, ZZ) == g

    config.setup('GF_FACTOR_METHOD', 'zassenhaus')
    assert gf_factor(f, p, ZZ) == g

    config.setup('GF_FACTOR_METHOD', 'shoup')
    assert gf_factor(f, p, ZZ) == g

    f, p = [1, 5, 8, 4], 11

    g = (1, [([1, 1], 1), ([1, 2], 2)])

    config.setup('GF_FACTOR_METHOD', 'berlekamp')
    assert gf_factor(f, p, ZZ) == g

    config.setup('GF_FACTOR_METHOD', 'zassenhaus')
    assert gf_factor(f, p, ZZ) == g

    config.setup('GF_FACTOR_METHOD', 'shoup')
    assert gf_factor(f, p, ZZ) == g

    f, p = [1, 1, 10, 1, 0, 10, 10, 10, 0, 0], 11

    g = (1, [([1, 0], 2), ([1, 9, 5], 1), ([1, 3, 0, 8, 5, 2], 1)])

    config.setup('GF_FACTOR_METHOD', 'berlekamp')
    assert gf_factor(f, p, ZZ) == g

    config.setup('GF_FACTOR_METHOD', 'zassenhaus')
    assert gf_factor(f, p, ZZ) == g

    config.setup('GF_FACTOR_METHOD', 'shoup')
    assert gf_factor(f, p, ZZ) == g

    f, p = gf_from_dict({32: 1, 0: 1}, 11, ZZ), 11

    g = (1, [([1, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 10], 1),
             ([1, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 10], 1)])
#.........这里部分代码省略.........
开发者ID:BDGLunde,项目名称:sympy,代码行数:101,代码来源:test_galoistools.py


示例2: dup_zz_zassenhaus

def dup_zz_zassenhaus(f, K):
    """Factor primitive square-free polynomials in `Z[x]`. """
    n = dup_degree(f)

    if n == 1:
        return [f]

    A = dup_max_norm(f, K)
    b = dup_LC(f, K)
    B = int(abs(K.sqrt(K(n+1))*2**n*A*b))
    C = int((n+1)**(2*n)*A**(2*n-1))
    gamma = int(ceil(2*log(C, 2)))
    bound = int(2*gamma*log(gamma))

    for p in xrange(3, bound+1):
        if not isprime(p) or b % p == 0:
            continue

        p = K.convert(p)

        F = gf_from_int_poly(f, p)

        if gf_sqf_p(F, p, K):
            break

    l = int(ceil(log(2*B + 1, p)))

    modular = []

    for ff in gf_factor_sqf(F, p, K)[1]:
        modular.append(gf_to_int_poly(ff, p))

    g = dup_zz_hensel_lift(p, f, modular, l, K)

    T = set(range(len(g)))
    factors, s = [], 1

    while 2*s <= len(T):
        for S in subsets(T, s):
            G, H = [b], [b]

            S = set(S)

            for i in S:
                G = dup_mul(G, g[i], K)
            for i in T-S:
                H = dup_mul(H, g[i], K)

            G = dup_trunc(G, p**l, K)
            H = dup_trunc(H, p**l, K)

            G_norm = dup_l1_norm(G, K)
            H_norm = dup_l1_norm(H, K)

            if G_norm*H_norm <= B:
                T = T - S

                G = dup_primitive(G, K)[1]
                f = dup_primitive(H, K)[1]

                factors.append(G)
                b = dup_LC(f, K)

                break
        else:
            s += 1

    return factors + [f]
开发者ID:TeddyBoomer,项目名称:wxgeometrie,代码行数:68,代码来源:factortools.py


示例3: timeit_shoup_poly_F20_shoup

def timeit_shoup_poly_F20_shoup():
    gf_factor_sqf(F_20, P_18, ZZ, method='shoup')
开发者ID:Acebulf,项目名称:sympy,代码行数:2,代码来源:bench_galoispolys.py


示例4: dup_zz_zassenhaus

def dup_zz_zassenhaus(f, K):
    """Factor primitive square-free polynomials in `Z[x]`. """
    n = dup_degree(f)

    if n == 1:
        return [f]

    fc = f[-1]
    A = dup_max_norm(f, K)
    b = dup_LC(f, K)
    B = int(abs(K.sqrt(K(n + 1))*2**n*A*b))
    C = int((n + 1)**(2*n)*A**(2*n - 1))
    gamma = int(_ceil(2*_log(C, 2)))
    bound = int(2*gamma*_log(gamma))
    a = []
    # choose a prime number `p` such that `f` be square free in Z_p
    # if there are many factors in Z_p, choose among a few different `p`
    # the one with fewer factors
    for px in range(3, bound + 1):
        if not isprime(px) or b % px == 0:
            continue

        px = K.convert(px)

        F = gf_from_int_poly(f, px)

        if not gf_sqf_p(F, px, K):
            continue
        fsqfx = gf_factor_sqf(F, px, K)[1]
        a.append((px, fsqfx))
        if len(fsqfx) < 15 or len(a) > 4:
            break
    p, fsqf = min(a, key=lambda x: len(x[1]))

    l = int(_ceil(_log(2*B + 1, p)))

    modular = [gf_to_int_poly(ff, p) for ff in fsqf]

    g = dup_zz_hensel_lift(p, f, modular, l, K)

    sorted_T = range(len(g))
    T = set(sorted_T)
    factors, s = [], 1
    pl = p**l

    while 2*s <= len(T):
        for S in subsets(sorted_T, s):
            # lift the constant coefficient of the product `G` of the factors
            # in the subset `S`; if it is does not divide `fc`, `G` does
            # not divide the input polynomial

            if b == 1:
                q = 1
                for i in S:
                    q = q*g[i][-1]
                q = q % pl
                if not _test_pl(fc, q, pl):
                    continue
            else:
                G = [b]
                for i in S:
                    G = dup_mul(G, g[i], K)
                G = dup_trunc(G, pl, K)
                G = dup_primitive(G, K)[1]
                q = G[-1]
                if q and fc % q != 0:
                    continue

            H = [b]
            S = set(S)
            T_S = T - S

            if b == 1:
                G = [b]
                for i in S:
                    G = dup_mul(G, g[i], K)
                G = dup_trunc(G, pl, K)

            for i in T_S:
                H = dup_mul(H, g[i], K)

            H = dup_trunc(H, pl, K)

            G_norm = dup_l1_norm(G, K)
            H_norm = dup_l1_norm(H, K)

            if G_norm*H_norm <= B:
                T = T_S
                sorted_T = [i for i in sorted_T if i not in S]

                G = dup_primitive(G, K)[1]
                f = dup_primitive(H, K)[1]

                factors.append(G)
                b = dup_LC(f, K)

                break
        else:
            s += 1

#.........这里部分代码省略.........
开发者ID:abhi98khandelwal,项目名称:sympy,代码行数:101,代码来源:factortools.py


示例5: timeit_shoup_poly_F10_shoup

def timeit_shoup_poly_F10_shoup():
    gf_factor_sqf(F_10, P_08, ZZ, method='shoup')
开发者ID:Acebulf,项目名称:sympy,代码行数:2,代码来源:bench_galoispolys.py


示例6: timeit_shoup_poly_F20_zassenhaus

def timeit_shoup_poly_F20_zassenhaus():
    gf_factor_sqf(F_20, P_18, ZZ, method='zassenhaus')
开发者ID:Acebulf,项目名称:sympy,代码行数:2,代码来源:bench_galoispolys.py


示例7: timeit_shoup_poly_F10_zassenhaus

def timeit_shoup_poly_F10_zassenhaus():
    gf_factor_sqf(F_10, P_08, ZZ, method='zassenhaus')
开发者ID:Acebulf,项目名称:sympy,代码行数:2,代码来源:bench_galoispolys.py


示例8: timeit_gathen_poly_f20_shoup

def timeit_gathen_poly_f20_shoup():
    gf_factor_sqf(f_20, p_20, ZZ, method='shoup')
开发者ID:Acebulf,项目名称:sympy,代码行数:2,代码来源:bench_galoispolys.py


示例9: timeit_gathen_poly_f20_zassenhaus

def timeit_gathen_poly_f20_zassenhaus():
    gf_factor_sqf(f_20, p_20, ZZ, method='zassenhaus')
开发者ID:Acebulf,项目名称:sympy,代码行数:2,代码来源:bench_galoispolys.py


示例10: timeit_gathen_poly_f10_shoup

def timeit_gathen_poly_f10_shoup():
    gf_factor_sqf(f_10, p_10, ZZ, method="shoup")
开发者ID:guanlongtianzi,项目名称:sympy,代码行数:2,代码来源:bench_galoispolys.py


示例11: timeit_gathen_poly_f10_zassenhaus

def timeit_gathen_poly_f10_zassenhaus():
    gf_factor_sqf(f_10, p_10, ZZ, method="zassenhaus")
开发者ID:guanlongtianzi,项目名称:sympy,代码行数:2,代码来源:bench_galoispolys.py



注:本文中的sympy.polys.galoistools.gf_factor_sqf函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python galoistools.gf_from_int_poly函数代码示例发布时间:2022-05-27
下一篇:
Python fields.field函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap