本文整理汇总了Python中sympy.polys.densetools.dmp_eval函数的典型用法代码示例。如果您正苦于以下问题:Python dmp_eval函数的具体用法?Python dmp_eval怎么用?Python dmp_eval使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了dmp_eval函数的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_dmp_eval_in
def test_dmp_eval_in():
assert dmp_eval_in(f_6, -2, 1, 3, ZZ) == dmp_eval(dmp_swap(f_6, 0, 1, 3, ZZ), -2, 3, ZZ)
assert dmp_eval_in(f_6, 7, 1, 3, ZZ) == dmp_eval(dmp_swap(f_6, 0, 1, 3, ZZ), 7, 3, ZZ)
assert dmp_eval_in(f_6, -2, 2, 3, ZZ) == dmp_swap(dmp_eval(dmp_swap(f_6, 0, 2, 3, ZZ), -2, 3, ZZ), 0, 1, 2, ZZ)
assert dmp_eval_in(f_6, 7, 2, 3, ZZ) == dmp_swap(dmp_eval(dmp_swap(f_6, 0, 2, 3, ZZ), 7, 3, ZZ), 0, 1, 2, ZZ)
f = [[[45L]], [[]], [[]], [[-9L], [-1L], [], [3L, 0L, 10L, 0L]]]
assert dmp_eval_in(f, -2, 2, 2, ZZ) == [[45], [], [], [-9, -1, 0, -44]]
开发者ID:hitej,项目名称:meta-core,代码行数:9,代码来源:test_densetools.py
示例2: test_dmp_eval_in
def test_dmp_eval_in():
assert dmp_eval_in(
f_6, -2, 1, 3, ZZ) == dmp_eval(dmp_swap(f_6, 0, 1, 3, ZZ), -2, 3, ZZ)
assert dmp_eval_in(
f_6, 7, 1, 3, ZZ) == dmp_eval(dmp_swap(f_6, 0, 1, 3, ZZ), 7, 3, ZZ)
assert dmp_eval_in(f_6, -2, 2, 3, ZZ) == dmp_swap(
dmp_eval(dmp_swap(f_6, 0, 2, 3, ZZ), -2, 3, ZZ), 0, 1, 2, ZZ)
assert dmp_eval_in(f_6, 7, 2, 3, ZZ) == dmp_swap(
dmp_eval(dmp_swap(f_6, 0, 2, 3, ZZ), 7, 3, ZZ), 0, 1, 2, ZZ)
f = [[[long(45)]], [[]], [[]], [[long(-9)], [-1], [], [long(3), long(0), long(10), long(0)]]]
assert dmp_eval_in(f, -2, 2, 2, ZZ) == \
[[45], [], [], [-9, -1, 0, -44]]
开发者ID:A-turing-machine,项目名称:sympy,代码行数:14,代码来源:test_densetools.py
示例3: test_dmp_eval
def test_dmp_eval():
assert dmp_eval([], 3, 0, ZZ) == 0
assert dmp_eval([[]], 3, 1, ZZ) == []
assert dmp_eval([[[]]], 3, 2, ZZ) == [[]]
assert dmp_eval([[1, 2]], 0, 1, ZZ) == [1, 2]
assert dmp_eval([[[1]]], 3, 2, ZZ) == [[1]]
assert dmp_eval([[[1, 2]]], 3, 2, ZZ) == [[1, 2]]
assert dmp_eval([[3, 2], [1, 2]], 3, 1, ZZ) == [10, 8]
assert dmp_eval([[[3, 2]], [[1, 2]]], 3, 2, ZZ) == [[10, 8]]
开发者ID:FireJade,项目名称:sympy,代码行数:13,代码来源:test_densetools.py
示例4: test_dmp_diff_eval_in
def test_dmp_diff_eval_in():
assert dmp_diff_eval_in(f_6, 2, 7, 1, 3, ZZ) == \
dmp_eval(dmp_diff(dmp_swap(f_6, 0, 1, 3, ZZ), 2, 3, ZZ), 7, 3, ZZ)
开发者ID:FireJade,项目名称:sympy,代码行数:3,代码来源:test_densetools.py
示例5: dmp_zz_modular_resultant
def dmp_zz_modular_resultant(f, g, p, u, K):
"""
Compute resultant of ``f`` and ``g`` modulo a prime ``p``.
**Examples**
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.euclidtools import dmp_zz_modular_resultant
>>> f = ZZ.map([[1], [1, 2]])
>>> g = ZZ.map([[2, 1], [3]])
>>> dmp_zz_modular_resultant(f, g, ZZ(5), 1, ZZ)
[-2, 0, 1]
"""
if not u:
return gf_int(dup_prs_resultant(f, g, K)[0] % p, p)
v = u - 1
n = dmp_degree(f, u)
m = dmp_degree(g, u)
N = dmp_degree_in(f, 1, u)
M = dmp_degree_in(g, 1, u)
B = n*M + m*N
D, a = [K.one], -K.one
r = dmp_zero(v)
while dup_degree(D) <= B:
while True:
a += K.one
if a == p:
raise HomomorphismFailed('no luck')
F = dmp_eval_in(f, gf_int(a, p), 1, u, K)
if dmp_degree(F, v) == n:
G = dmp_eval_in(g, gf_int(a, p), 1, u, K)
if dmp_degree(G, v) == m:
break
R = dmp_zz_modular_resultant(F, G, p, v, K)
e = dmp_eval(r, a, v, K)
if not v:
R = dup_strip([R])
e = dup_strip([e])
else:
R = [R]
e = [e]
d = K.invert(dup_eval(D, a, K), p)
d = dup_mul_ground(D, d, K)
d = dmp_raise(d, v, 0, K)
c = dmp_mul(d, dmp_sub(R, e, v, K), v, K)
r = dmp_add(r, c, v, K)
r = dmp_ground_trunc(r, p, v, K)
D = dup_mul(D, [K.one, -a], K)
D = dup_trunc(D, p, K)
return r
开发者ID:addisonc,项目名称:sympy,代码行数:70,代码来源:euclidtools.py
示例6: dmp_zz_heu_gcd
def dmp_zz_heu_gcd(f, g, u, K):
"""
Heuristic polynomial GCD in ``Z[X]``.
Given univariate polynomials ``f`` and ``g`` in ``Z[X]``, returns
their GCD and cofactors, i.e. polynomials ``h``, ``cff`` and ``cfg``
such that::
h = gcd(f, g), cff = quo(f, h) and cfg = quo(g, h)
The algorithm is purely heuristic which means it may fail to compute
the GCD. This will be signaled by raising an exception. In this case
you will need to switch to another GCD method.
The algorithm computes the polynomial GCD by evaluating polynomials
f and g at certain points and computing (fast) integer GCD of those
evaluations. The polynomial GCD is recovered from the integer image
by interpolation. The evaluation proces reduces f and g variable by
variable into a large integer. The final step is to verify if the
interpolated polynomial is the correct GCD. This gives cofactors of
the input polynomials as a side effect.
**Examples**
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.euclidtools import dmp_zz_heu_gcd
>>> f = ZZ.map([[1], [2, 0], [1, 0, 0]])
>>> g = ZZ.map([[1], [1, 0], []])
>>> dmp_zz_heu_gcd(f, g, 1, ZZ)
([[1], [1, 0]], [[1], [1, 0]], [[1], []])
**References**
1. [Liao95]_
"""
if not u:
return dup_zz_heu_gcd(f, g, K)
result = _dmp_rr_trivial_gcd(f, g, u, K)
if result is not None:
return result
df = dmp_degree(f, u)
dg = dmp_degree(g, u)
gcd, f, g = dmp_ground_extract(f, g, u, K)
f_norm = dmp_max_norm(f, u, K)
g_norm = dmp_max_norm(g, u, K)
B = 2*min(f_norm, g_norm) + 29
x = max(min(B, 99*K.sqrt(B)),
2*min(f_norm // abs(dmp_ground_LC(f, u, K)),
g_norm // abs(dmp_ground_LC(g, u, K))) + 2)
for i in xrange(0, HEU_GCD_MAX):
ff = dmp_eval(f, x, u, K)
gg = dmp_eval(g, x, u, K)
v = u - 1
if not (dmp_zero_p(ff, v) or dmp_zero_p(gg, v)):
h, cff, cfg = dmp_zz_heu_gcd(ff, gg, v, K)
h = _dmp_zz_gcd_interpolate(h, x, v, K)
h = dmp_ground_primitive(h, u, K)[1]
cff_, r = dmp_div(f, h, u, K)
if dmp_zero_p(r, u):
cfg_, r = dmp_div(g, h, u, K)
if dmp_zero_p(r, u):
h = dmp_mul_ground(h, gcd, u, K)
return h, cff_, cfg_
cff = _dmp_zz_gcd_interpolate(cff, x, v, K)
h, r = dmp_div(f, cff, u, K)
if dmp_zero_p(r, u):
cfg_, r = dmp_div(g, h, u, K)
if dmp_zero_p(r, u):
h = dmp_mul_ground(h, gcd, u, K)
return h, cff, cfg_
cfg = _dmp_zz_gcd_interpolate(cfg, x, v, K)
h, r = dmp_div(g, cfg, u, K)
if dmp_zero_p(r, u):
cff_, r = dmp_div(f, h, u, K)
if dmp_zero_p(r, u):
#.........这里部分代码省略.........
开发者ID:addisonc,项目名称:sympy,代码行数:101,代码来源:euclidtools.py
示例7: dmp_zz_modular_resultant
def dmp_zz_modular_resultant(f, g, p, u, K):
"""
Compute resultant of `f` and `g` modulo a prime `p`.
Examples
========
>>> from sympy.polys import ring, ZZ
>>> R, x,y = ring("x,y", ZZ)
>>> f = x + y + 2
>>> g = 2*x*y + x + 3
>>> R.dmp_zz_modular_resultant(f, g, 5)
-2*y**2 + 1
"""
if not u:
return gf_int(dup_prs_resultant(f, g, K)[0] % p, p)
v = u - 1
n = dmp_degree(f, u)
m = dmp_degree(g, u)
N = dmp_degree_in(f, 1, u)
M = dmp_degree_in(g, 1, u)
B = n*M + m*N
D, a = [K.one], -K.one
r = dmp_zero(v)
while dup_degree(D) <= B:
while True:
a += K.one
if a == p:
raise HomomorphismFailed('no luck')
F = dmp_eval_in(f, gf_int(a, p), 1, u, K)
if dmp_degree(F, v) == n:
G = dmp_eval_in(g, gf_int(a, p), 1, u, K)
if dmp_degree(G, v) == m:
break
R = dmp_zz_modular_resultant(F, G, p, v, K)
e = dmp_eval(r, a, v, K)
if not v:
R = dup_strip([R])
e = dup_strip([e])
else:
R = [R]
e = [e]
d = K.invert(dup_eval(D, a, K), p)
d = dup_mul_ground(D, d, K)
d = dmp_raise(d, v, 0, K)
c = dmp_mul(d, dmp_sub(R, e, v, K), v, K)
r = dmp_add(r, c, v, K)
r = dmp_ground_trunc(r, p, v, K)
D = dup_mul(D, [K.one, -a], K)
D = dup_trunc(D, p, K)
return r
开发者ID:AdrianPotter,项目名称:sympy,代码行数:71,代码来源:euclidtools.py
注:本文中的sympy.polys.densetools.dmp_eval函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论