本文整理汇总了Python中sympy.polys.densebasic.dmp_raise函数的典型用法代码示例。如果您正苦于以下问题:Python dmp_raise函数的具体用法?Python dmp_raise怎么用?Python dmp_raise使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了dmp_raise函数的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: dmp_zz_wang_hensel_lifting
def dmp_zz_wang_hensel_lifting(f, H, LC, A, p, u, K):
"""Wang/EEZ: Parallel Hensel lifting algorithm. """
S, n, v = [f], len(A), u-1
H = list(H)
for i, a in enumerate(reversed(A[1:])):
s = dmp_eval_in(S[0], a, n-i, u-i, K)
S.insert(0, dmp_ground_trunc(s, p, v-i, K))
d = max(dmp_degree_list(f, u)[1:])
for j, s, a in zip(xrange(2, n+2), S, A):
G, w = list(H), j-1
I, J = A[:j-2], A[j-1:]
for i, (h, lc) in enumerate(zip(H, LC)):
lc = dmp_ground_trunc(dmp_eval_tail(lc, J, v, K), p, w-1, K)
H[i] = [lc] + dmp_raise(h[1:], 1, w-1, K)
m = dmp_nest([K.one, -a], w, K)
M = dmp_one(w, K)
c = dmp_sub(s, dmp_expand(H, w, K), w, K)
dj = dmp_degree_in(s, w, w)
for k in xrange(0, dj):
if dmp_zero_p(c, w):
break
M = dmp_mul(M, m, w, K)
C = dmp_diff_eval_in(c, k+1, a, w, w, K)
if not dmp_zero_p(C, w-1):
C = dmp_quo_ground(C, K.factorial(k+1), w-1, K)
T = dmp_zz_diophantine(G, C, I, d, p, w-1, K)
for i, (h, t) in enumerate(zip(H, T)):
h = dmp_add_mul(h, dmp_raise(t, 1, w-1, K), M, w, K)
H[i] = dmp_ground_trunc(h, p, w, K)
h = dmp_sub(s, dmp_expand(H, w, K), w, K)
c = dmp_ground_trunc(h, p, w, K)
if dmp_expand(H, u, K) != f:
raise ExtraneousFactors # pragma: no cover
else:
return H
开发者ID:TeddyBoomer,项目名称:wxgeometrie,代码行数:50,代码来源:factortools.py
示例2: dmp_sqf_norm
def dmp_sqf_norm(f, u, K):
"""
Square-free norm of ``f`` in ``K[X]``, useful over algebraic domains.
Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and ``r(x) = Norm(g(x))``
is a square-free polynomial over K, where ``a`` is the algebraic extension of ``K``.
Examples
========
>>> from sympy.polys import ring, QQ
>>> from sympy import I
>>> K = QQ.algebraic_field(I)
>>> R, x, y = ring("x,y", K)
>>> _, X, Y = ring("x,y", QQ)
>>> s, f, r = R.dmp_sqf_norm(x*y + y**2)
>>> s == 1
True
>>> f == x*y + y**2 + K([QQ(-1), QQ(0)])*y
True
>>> r == X**2*Y**2 + 2*X*Y**3 + Y**4 + Y**2
True
"""
if not u:
return dup_sqf_norm(f, K)
if not K.is_Algebraic:
raise DomainError("ground domain must be algebraic")
g = dmp_raise(K.mod.rep, u + 1, 0, K.dom)
F = dmp_raise([K.one, -K.unit], u, 0, K)
s = 0
while True:
h, _ = dmp_inject(f, u, K, front=True)
r = dmp_resultant(g, h, u + 1, K.dom)
if dmp_sqf_p(r, u, K.dom):
break
else:
f, s = dmp_compose(f, F, u, K), s + 1
return s, f, r
开发者ID:alhirzel,项目名称:sympy,代码行数:48,代码来源:sqfreetools.py
示例3: dmp_fateman_poly_F_1
def dmp_fateman_poly_F_1(n, K):
"""Fateman's GCD benchmark: trivial GCD """
u = [K(1), K(0)]
for i in xrange(0, n):
u = [dmp_one(i, K), u]
v = [K(1), K(0), K(0)]
for i in xrange(0, n):
v = [dmp_one(i, K), dmp_zero(i), v]
m = n - 1
U = dmp_add_term(u, dmp_ground(K(1), m), 0, n, K)
V = dmp_add_term(u, dmp_ground(K(2), m), 0, n, K)
f = [[-K(3), K(0)], [], [K(1), K(0), -K(1)]]
W = dmp_add_term(v, dmp_ground(K(1), m), 0, n, K)
Y = dmp_raise(f, m, 1, K)
F = dmp_mul(U, V, n, K)
G = dmp_mul(W, Y, n, K)
H = dmp_one(n, K)
return F, G, H
开发者ID:Acebulf,项目名称:sympy,代码行数:28,代码来源:specialpolys.py
示例4: dmp_ext_factor
def dmp_ext_factor(f, u, K):
"""Factor multivariate polynomials over algebraic number fields. """
if not u:
return dup_ext_factor(f, K)
lc = dmp_ground_LC(f, u, K)
f = dmp_ground_monic(f, u, K)
if all([ d <= 0 for d in dmp_degree_list(f, u) ]):
return lc, []
f, F = dmp_sqf_part(f, u, K), f
s, g, r = dmp_sqf_norm(f, u, K)
factors = dmp_factor_list_include(r, u, K.dom)
if len(factors) == 1:
coeff, factors = lc, [f]
else:
H = dmp_raise([K.one, s*K.unit], u, 0, K)
for i, (factor, _) in enumerate(factors):
h = dmp_convert(factor, u, K.dom, K)
h, _, g = dmp_inner_gcd(h, g, u, K)
h = dmp_compose(h, H, u, K)
factors[i] = h
return lc, dmp_trial_division(F, factors, u, K)
开发者ID:TeddyBoomer,项目名称:wxgeometrie,代码行数:28,代码来源:factortools.py
示例5: dmp_sqf_norm
def dmp_sqf_norm(f, u, K):
"""
Square-free norm of ``f`` in ``K[X]``, useful over algebraic domains.
Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and ``r(x) = Norm(g(x))``
is a square-free polynomial over K, where ``a`` is the algebraic extension of ``K``.
Examples
========
>>> from sympy import I
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.sqfreetools import dmp_sqf_norm
>>> K = QQ.algebraic_field(I)
>>> s, f, r = dmp_sqf_norm([[K(1), K(0)], [K(1), K(0), K(0)]], 1, K)
>>> s == 1
True
>>> f == [[K(1), K(0)], [K(1), K([QQ(-1), QQ(0)]), K(0)]]
True
>>> r == [[1, 0, 0], [2, 0, 0, 0], [1, 0, 1, 0, 0]]
True
"""
if not u:
return dup_sqf_norm(f, K)
if not K.is_Algebraic:
raise DomainError("ground domain must be algebraic")
g = dmp_raise(K.mod.rep, u + 1, 0, K.dom)
F = dmp_raise([K.one, -K.unit], u, 0, K)
s = 0
while True:
h, _ = dmp_inject(f, u, K, front=True)
r = dmp_resultant(g, h, u + 1, K.dom)
if dmp_sqf_p(r, u, K.dom):
break
else:
f, s = dmp_compose(f, F, u, K), s + 1
return s, f, r
开发者ID:FireJade,项目名称:sympy,代码行数:47,代码来源:sqfreetools.py
示例6: dmp_norm
def dmp_norm(f, u, K):
"""
Norm of ``f`` in ``K[X1, ..., Xn]``, often not square-free.
"""
if not K.is_Algebraic:
raise DomainError("ground domain must be algebraic")
g = dmp_raise(K.mod.rep, u + 1, 0, K.dom)
h, _ = dmp_inject(f, u, K, front=True)
return dmp_resultant(g, h, u + 1, K.dom)
开发者ID:cklb,项目名称:sympy,代码行数:11,代码来源:sqfreetools.py
示例7: dup_sqf_norm
def dup_sqf_norm(f, K):
"""
Square-free norm of ``f`` in ``K[x]``, useful over algebraic domains.
Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and ``r(x) = Norm(g(x))``
is a square-free polynomial over K, where ``a`` is the algebraic extension of ``K``.
Examples
========
>>> from sympy.polys import ring, QQ
>>> from sympy import sqrt
>>> K = QQ.algebraic_field(sqrt(3))
>>> R, x = ring("x", K)
>>> _, X = ring("x", QQ)
>>> s, f, r = R.dup_sqf_norm(x**2 - 2)
>>> s == 1
True
>>> f == x**2 + K([QQ(-2), QQ(0)])*x + 1
True
>>> r == X**4 - 10*X**2 + 1
True
"""
if not K.is_Algebraic:
raise DomainError("ground domain must be algebraic")
s, g = 0, dmp_raise(K.mod.rep, 1, 0, K.dom)
while True:
h, _ = dmp_inject(f, 0, K, front=True)
r = dmp_resultant(g, h, 1, K.dom)
if dup_sqf_p(r, K.dom):
break
else:
f, s = dup_shift(f, -K.unit, K), s + 1
return s, f, r
开发者ID:alhirzel,项目名称:sympy,代码行数:42,代码来源:sqfreetools.py
示例8: dup_sqf_norm
def dup_sqf_norm(f, K):
"""
Square-free norm of ``f`` in ``K[x]``, useful over algebraic domains.
Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and ``r(x) = Norm(g(x))``
is a square-free polynomial over K, where ``a`` is the algebraic extension of ``K``.
**Examples**
>>> from sympy import sqrt
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.sqfreetools import dup_sqf_norm
>>> K = QQ.algebraic_field(sqrt(3))
>>> s, f, r = dup_sqf_norm([K(1), K(0), K(-2)], K)
>>> s == 1
True
>>> f == [K(1), K([QQ(-2), QQ(0)]), K(1)]
True
>>> r == [1, 0, -10, 0, 1]
True
"""
if not K.is_Algebraic:
raise DomainError("ground domain must be algebraic")
s, g = 0, dmp_raise(K.mod.rep, 1, 0, K.dom)
while True:
h, _ = dmp_inject(f, 0, K, front=True)
r = dmp_resultant(g, h, 1, K.dom)
if dup_sqf_p(r, K.dom):
break
else:
f, s = dup_shift(f, -K.unit, K), s+1
return s, f, r
开发者ID:101man,项目名称:sympy,代码行数:40,代码来源:sqfreetools.py
示例9: dmp_zz_diophantine
def dmp_zz_diophantine(F, c, A, d, p, u, K):
"""Wang/EEZ: Solve multivariate Diophantine equations. """
if not A:
S = [ [] for _ in F ]
n = dup_degree(c)
for i, coeff in enumerate(c):
if not coeff:
continue
T = dup_zz_diophantine(F, n-i, p, K)
for j, (s, t) in enumerate(zip(S, T)):
t = dup_mul_ground(t, coeff, K)
S[j] = dup_trunc(dup_add(s, t, K), p, K)
else:
n = len(A)
e = dmp_expand(F, u, K)
a, A = A[-1], A[:-1]
B, G = [], []
for f in F:
B.append(dmp_quo(e, f, u, K))
G.append(dmp_eval_in(f, a, n, u, K))
C = dmp_eval_in(c, a, n, u, K)
v = u - 1
S = dmp_zz_diophantine(G, C, A, d, p, v, K)
S = [ dmp_raise(s, 1, v, K) for s in S ]
for s, b in zip(S, B):
c = dmp_sub_mul(c, s, b, u, K)
c = dmp_ground_trunc(c, p, u, K)
m = dmp_nest([K.one, -a], n, K)
M = dmp_one(n, K)
for k in xrange(0, d):
if dmp_zero_p(c, u):
break
M = dmp_mul(M, m, u, K)
C = dmp_diff_eval_in(c, k+1, a, n, u, K)
if not dmp_zero_p(C, v):
C = dmp_quo_ground(C, K.factorial(k+1), v, K)
T = dmp_zz_diophantine(G, C, A, d, p, v, K)
for i, t in enumerate(T):
T[i] = dmp_mul(dmp_raise(t, 1, v, K), M, u, K)
for i, (s, t) in enumerate(zip(S, T)):
S[i] = dmp_add(s, t, u, K)
for t, b in zip(T, B):
c = dmp_sub_mul(c, t, b, u, K)
c = dmp_ground_trunc(c, p, u, K)
S = [ dmp_ground_trunc(s, p, u, K) for s in S ]
return S
开发者ID:TeddyBoomer,项目名称:wxgeometrie,代码行数:66,代码来源:factortools.py
示例10: dmp_zz_modular_resultant
def dmp_zz_modular_resultant(f, g, p, u, K):
"""
Compute resultant of ``f`` and ``g`` modulo a prime ``p``.
**Examples**
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.euclidtools import dmp_zz_modular_resultant
>>> f = ZZ.map([[1], [1, 2]])
>>> g = ZZ.map([[2, 1], [3]])
>>> dmp_zz_modular_resultant(f, g, ZZ(5), 1, ZZ)
[-2, 0, 1]
"""
if not u:
return gf_int(dup_prs_resultant(f, g, K)[0] % p, p)
v = u - 1
n = dmp_degree(f, u)
m = dmp_degree(g, u)
N = dmp_degree_in(f, 1, u)
M = dmp_degree_in(g, 1, u)
B = n*M + m*N
D, a = [K.one], -K.one
r = dmp_zero(v)
while dup_degree(D) <= B:
while True:
a += K.one
if a == p:
raise HomomorphismFailed('no luck')
F = dmp_eval_in(f, gf_int(a, p), 1, u, K)
if dmp_degree(F, v) == n:
G = dmp_eval_in(g, gf_int(a, p), 1, u, K)
if dmp_degree(G, v) == m:
break
R = dmp_zz_modular_resultant(F, G, p, v, K)
e = dmp_eval(r, a, v, K)
if not v:
R = dup_strip([R])
e = dup_strip([e])
else:
R = [R]
e = [e]
d = K.invert(dup_eval(D, a, K), p)
d = dup_mul_ground(D, d, K)
d = dmp_raise(d, v, 0, K)
c = dmp_mul(d, dmp_sub(R, e, v, K), v, K)
r = dmp_add(r, c, v, K)
r = dmp_ground_trunc(r, p, v, K)
D = dup_mul(D, [K.one, -a], K)
D = dup_trunc(D, p, K)
return r
开发者ID:addisonc,项目名称:sympy,代码行数:70,代码来源:euclidtools.py
示例11: dmp_zz_modular_resultant
def dmp_zz_modular_resultant(f, g, p, u, K):
"""
Compute resultant of `f` and `g` modulo a prime `p`.
Examples
========
>>> from sympy.polys import ring, ZZ
>>> R, x,y = ring("x,y", ZZ)
>>> f = x + y + 2
>>> g = 2*x*y + x + 3
>>> R.dmp_zz_modular_resultant(f, g, 5)
-2*y**2 + 1
"""
if not u:
return gf_int(dup_prs_resultant(f, g, K)[0] % p, p)
v = u - 1
n = dmp_degree(f, u)
m = dmp_degree(g, u)
N = dmp_degree_in(f, 1, u)
M = dmp_degree_in(g, 1, u)
B = n*M + m*N
D, a = [K.one], -K.one
r = dmp_zero(v)
while dup_degree(D) <= B:
while True:
a += K.one
if a == p:
raise HomomorphismFailed('no luck')
F = dmp_eval_in(f, gf_int(a, p), 1, u, K)
if dmp_degree(F, v) == n:
G = dmp_eval_in(g, gf_int(a, p), 1, u, K)
if dmp_degree(G, v) == m:
break
R = dmp_zz_modular_resultant(F, G, p, v, K)
e = dmp_eval(r, a, v, K)
if not v:
R = dup_strip([R])
e = dup_strip([e])
else:
R = [R]
e = [e]
d = K.invert(dup_eval(D, a, K), p)
d = dup_mul_ground(D, d, K)
d = dmp_raise(d, v, 0, K)
c = dmp_mul(d, dmp_sub(R, e, v, K), v, K)
r = dmp_add(r, c, v, K)
r = dmp_ground_trunc(r, p, v, K)
D = dup_mul(D, [K.one, -a], K)
D = dup_trunc(D, p, K)
return r
开发者ID:AdrianPotter,项目名称:sympy,代码行数:71,代码来源:euclidtools.py
示例12: test_dmp_raise
def test_dmp_raise():
assert dmp_raise([], 2, 0, ZZ) == [[[]]]
assert dmp_raise([[1]], 0, 1, ZZ) == [[1]]
assert dmp_raise([[1,2,3], [], [2,3]], 2, 1, ZZ) == \
[[[[1]],[[2]],[[3]]], [[[]]], [[[2]],[[3]]]]
开发者ID:TeddyBoomer,项目名称:wxgeometrie,代码行数:6,代码来源:test_densebasic.py
示例13: test_dmp_factor_list
def test_dmp_factor_list():
assert dmp_factor_list([[]], 1, ZZ) == (ZZ(0), [])
assert dmp_factor_list([[]], 1, QQ) == (QQ(0), [])
assert dmp_factor_list([[]], 1, ZZ['y']) == (DMP([],ZZ), [])
assert dmp_factor_list([[]], 1, QQ['y']) == (DMP([],QQ), [])
assert dmp_factor_list_include([[]], 1, ZZ) == [([[]], 1)]
assert dmp_factor_list([[ZZ(7)]], 1, ZZ) == (ZZ(7), [])
assert dmp_factor_list([[QQ(1,7)]], 1, QQ) == (QQ(1,7), [])
assert dmp_factor_list([[DMP([ZZ(7)],ZZ)]], 1, ZZ['y']) == (DMP([ZZ(7)],ZZ), [])
assert dmp_factor_list([[DMP([QQ(1,7)],QQ)]], 1, QQ['y']) == (DMP([QQ(1,7)],QQ), [])
assert dmp_factor_list_include([[ZZ(7)]], 1, ZZ) == [([[ZZ(7)]], 1)]
f, g = [ZZ(1),ZZ(2),ZZ(1)], [ZZ(1),ZZ(1)]
assert dmp_factor_list(dmp_nest(f, 200, ZZ), 200, ZZ) == \
(ZZ(1), [(dmp_nest(g, 200, ZZ), 2)])
assert dmp_factor_list(dmp_raise(f, 200, 0, ZZ), 200, ZZ) == \
(ZZ(1), [(dmp_raise(g, 200, 0, ZZ), 2)])
assert dmp_factor_list([ZZ(1),ZZ(2),ZZ(1)], 0, ZZ) == \
(ZZ(1), [([ZZ(1), ZZ(1)], 2)])
assert dmp_factor_list([QQ(1,2),QQ(1),QQ(1,2)], 0, QQ) == \
(QQ(1,2), [([QQ(1),QQ(1)], 2)])
assert dmp_factor_list([[ZZ(1)],[ZZ(2)],[ZZ(1)]], 1, ZZ) == \
(ZZ(1), [([[ZZ(1)], [ZZ(1)]], 2)])
assert dmp_factor_list([[QQ(1,2)],[QQ(1)],[QQ(1,2)]], 1, QQ) == \
(QQ(1,2), [([[QQ(1)],[QQ(1)]], 2)])
f = [[ZZ(4),ZZ(0)],[ZZ(4),ZZ(0),ZZ(0)],[]]
assert dmp_factor_list(f, 1, ZZ) == \
(ZZ(4), [([[ZZ(1),ZZ(0)]], 1),
([[ZZ(1)],[]], 1),
([[ZZ(1)],[ZZ(1),ZZ(0)]], 1)])
assert dmp_factor_list_include(f, 1, ZZ) == \
[([[ZZ(4),ZZ(0)]], 1),
([[ZZ(1)],[]], 1),
([[ZZ(1)],[ZZ(1),ZZ(0)]], 1)]
f = [[QQ(1,2),QQ(0)],[QQ(1,2),QQ(0),QQ(0)],[]]
assert dmp_factor_list(f, 1, QQ) == \
(QQ(1,2), [([[QQ(1),QQ(0)]], 1),
([[QQ(1)],[]], 1),
([[QQ(1)],[QQ(1),QQ(0)]], 1)])
f = [[RR(2.0)],[],[-RR(8.0),RR(0.0),RR(0.0)]]
assert dmp_factor_list(f, 1, RR) == \
(RR(2.0), [([[RR(1.0)],[-RR(2.0),RR(0.0)]], 1),
([[RR(1.0)],[ RR(2.0),RR(0.0)]], 1)])
f = [[DMP([ZZ(4),ZZ(0)],ZZ)],[DMP([ZZ(4),ZZ(0),ZZ(0)],ZZ)],[DMP([],ZZ)]]
assert dmp_factor_list(f, 1, ZZ['y']) == \
(DMP([ZZ(4)],ZZ), [([[DMP([ZZ(1),ZZ(0)],ZZ)]], 1),
([[DMP([ZZ(1)],ZZ)],[]], 1),
([[DMP([ZZ(1)],ZZ)],[DMP([ZZ(1),ZZ(0)],ZZ)]], 1)])
f = [[DMP([QQ(1,2),QQ(0)],ZZ)],[DMP([QQ(1,2),QQ(0),QQ(0)],ZZ)],[DMP([],ZZ)]]
assert dmp_factor_list(f, 1, QQ['y']) == \
(DMP([QQ(1,2)],QQ), [([[DMP([QQ(1),QQ(0)],QQ)]], 1),
([[DMP([QQ(1)],QQ)],[]], 1),
([[DMP([QQ(1)],QQ)],[DMP([QQ(1),QQ(0)],QQ)]], 1)])
K = FF(2)
raises(DomainError, "dmp_factor_list([[K(1)],[],[K(1),K(0),K(0)]], 1, K)")
raises(DomainError, "dmp_factor_list([[EX(sin(1))]], 1, EX)")
开发者ID:ENuge,项目名称:sympy,代码行数:76,代码来源:test_factortools.py
注:本文中的sympy.polys.densebasic.dmp_raise函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论