• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python densebasic.dmp_LC函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sympy.polys.densebasic.dmp_LC函数的典型用法代码示例。如果您正苦于以下问题:Python dmp_LC函数的具体用法?Python dmp_LC怎么用?Python dmp_LC使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了dmp_LC函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: _dmp_simplify_gcd

def _dmp_simplify_gcd(f, g, u, K):
    """Try to eliminate ``x_0`` from GCD computation in ``K[X]``. """
    df = dmp_degree(f, u)
    dg = dmp_degree(g, u)

    if df > 0 and dg > 0:
        return None

    if not (df or dg):
        F = dmp_LC(f, K)
        G = dmp_LC(g, K)
    else:
        if not df:
            F = dmp_LC(f, K)
            G = dmp_content(g, u, K)
        else:
            F = dmp_content(f, u, K)
            G = dmp_LC(g, K)

    v = u - 1
    h = dmp_gcd(F, G, v, K)

    cff = [ dmp_exquo(cf, h, v, K) for cf in f ]
    cfg = [ dmp_exquo(cg, h, v, K) for cg in g ]

    return [h], cff, cfg
开发者ID:addisonc,项目名称:sympy,代码行数:26,代码来源:euclidtools.py


示例2: dmp_prem

def dmp_prem(f, g, u, K):
    """Polynomial pseudo-remainder in `K[X]`. """
    if not u:
        return dup_prem(f, g, K)

    df = dmp_degree(f, u)
    dg = dmp_degree(g, u)

    if dg < 0:
        raise ZeroDivisionError("polynomial division")

    r = f

    if df < dg:
        return r

    N = df - dg + 1
    lc_g = dmp_LC(g, K)

    while True:
        dr = dmp_degree(r, u)

        if dr < dg:
            break

        lc_r = dmp_LC(r, K)
        j, N = dr-dg, N-1

        R = dmp_mul_term(r, lc_g, 0, u, K)
        G = dmp_mul_term(g, lc_r, j, u, K)
        r = dmp_sub(R, G, u, K)

    c = dmp_pow(lc_g, N, u-1, K)

    return dmp_mul_term(r, c, 0, u, K)
开发者ID:Aang,项目名称:sympy,代码行数:35,代码来源:densearith.py


示例3: dmp_pdiv

def dmp_pdiv(f, g, u, K):
    """
    Polynomial pseudo-division in ``K[X]``.

    Examples
    ========

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.densearith import dmp_pdiv

    >>> f = ZZ.map([[1], [1, 0], []])
    >>> g = ZZ.map([[2], [2]])

    >>> dmp_pdiv(f, g, 1, ZZ)
    ([[2], [2, -2]], [[-4, 4]])

    """
    if not u:
        return dup_pdiv(f, g, K)

    df = dmp_degree(f, u)
    dg = dmp_degree(g, u)

    if dg < 0:
        raise ZeroDivisionError("polynomial division")

    q, r = dmp_zero(u), f

    if df < dg:
        return q, r

    N = df - dg + 1
    lc_g = dmp_LC(g, K)

    while True:
        dr = dmp_degree(r, u)

        if dr < dg:
            break

        lc_r = dmp_LC(r, K)
        j, N = dr-dg, N-1

        Q = dmp_mul_term(q, lc_g, 0, u, K)
        q = dmp_add_term(Q, lc_r, j, u, K)

        R = dmp_mul_term(r, lc_g, 0, u, K)
        G = dmp_mul_term(g, lc_r, j, u, K)
        r = dmp_sub(R, G, u, K)

    c = dmp_pow(lc_g, N, u-1, K)

    q = dmp_mul_term(q, c, 0, u, K)
    r = dmp_mul_term(r, c, 0, u, K)

    return q, r
开发者ID:SwaathiRamesh,项目名称:sympy,代码行数:56,代码来源:densearith.py


示例4: dmp_pdiv

def dmp_pdiv(f, g, u, K):
    """
    Polynomial pseudo-division in ``K[X]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> R.dmp_pdiv(x**2 + x*y, 2*x + 2)
    (2*x + 2*y - 2, -4*y + 4)

    """
    if not u:
        return dup_pdiv(f, g, K)

    df = dmp_degree(f, u)
    dg = dmp_degree(g, u)

    if dg < 0:
        raise ZeroDivisionError("polynomial division")

    q, r, dr = dmp_zero(u), f, df

    if df < dg:
        return q, r

    N = df - dg + 1
    lc_g = dmp_LC(g, K)

    while True:
        lc_r = dmp_LC(r, K)
        j, N = dr - dg, N - 1

        Q = dmp_mul_term(q, lc_g, 0, u, K)
        q = dmp_add_term(Q, lc_r, j, u, K)

        R = dmp_mul_term(r, lc_g, 0, u, K)
        G = dmp_mul_term(g, lc_r, j, u, K)
        r = dmp_sub(R, G, u, K)

        _dr, dr = dr, dmp_degree(r, u)

        if dr < dg:
            break
        elif not (dr < _dr):
            raise PolynomialDivisionFailed(f, g, K)

    c = dmp_pow(lc_g, N, u - 1, K)

    q = dmp_mul_term(q, c, 0, u, K)
    r = dmp_mul_term(r, c, 0, u, K)

    return q, r
开发者ID:QuaBoo,项目名称:sympy,代码行数:55,代码来源:densearith.py


示例5: dmp_ff_div

def dmp_ff_div(f, g, u, K):
    """
    Polynomial division with remainder over a field.

    Examples
    ========

    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.densearith import dmp_ff_div

    >>> f = QQ.map([[1], [1, 0], []])
    >>> g = QQ.map([[2], [2]])

    >>> dmp_ff_div(f, g, 1, QQ)
    ([[1/2], [1/2, -1/2]], [[-1/1, 1/1]])

    """
    if not u:
        return dup_ff_div(f, g, K)

    df = dmp_degree(f, u)
    dg = dmp_degree(g, u)

    if dg < 0:
        raise ZeroDivisionError("polynomial division")

    q, r = dmp_zero(u), f

    if df < dg:
        return q, r

    lc_g, v = dmp_LC(g, K), u-1

    while True:
        dr = dmp_degree(r, u)

        if dr < dg:
            break

        lc_r = dmp_LC(r, K)

        c, R = dmp_ff_div(lc_r, lc_g, v, K)

        if not dmp_zero_p(R, v):
            break

        j = dr - dg

        q = dmp_add_term(q, c, j, u, K)
        h = dmp_mul_term(g, c, j, u, K)

        r = dmp_sub(r, h, u, K)

    return q, r
开发者ID:SwaathiRamesh,项目名称:sympy,代码行数:54,代码来源:densearith.py


示例6: dmp_rr_div

def dmp_rr_div(f, g, u, K):
    """
    Multivariate division with remainder over a ring.

    **Examples**

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.densearith import dmp_rr_div

    >>> f = ZZ.map([[1], [1, 0], []])
    >>> g = ZZ.map([[2], [2]])

    >>> dmp_rr_div(f, g, 1, ZZ)
    ([[]], [[1], [1, 0], []])

    """
    if not u:
        return dup_rr_div(f, g, K)

    df = dmp_degree(f, u)
    dg = dmp_degree(g, u)

    if dg < 0:
        raise ZeroDivisionError("polynomial division")

    q, r = dmp_zero(u), f

    if df < dg:
        return q, r

    lc_g, v = dmp_LC(g, K), u-1

    while True:
        dr = dmp_degree(r, u)

        if dr < dg:
            break

        lc_r = dmp_LC(r, K)

        c, R = dmp_rr_div(lc_r, lc_g, v, K)

        if not dmp_zero_p(R, v):
            break

        j = dr - dg

        q = dmp_add_term(q, c, j, u, K)
        h = dmp_mul_term(g, c, j, u, K)

        r = dmp_sub(r, h, u, K)

    return q, r
开发者ID:101man,项目名称:sympy,代码行数:53,代码来源:densearith.py


示例7: dmp_rr_div

def dmp_rr_div(f, g, u, K):
    """
    Multivariate division with remainder over a ring.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> R.dmp_rr_div(x**2 + x*y, 2*x + 2)
    (0, x**2 + x*y)

    """
    if not u:
        return dup_rr_div(f, g, K)

    df = dmp_degree(f, u)
    dg = dmp_degree(g, u)

    if dg < 0:
        raise ZeroDivisionError("polynomial division")

    q, r = dmp_zero(u), f

    if df < dg:
        return q, r

    lc_g, v = dmp_LC(g, K), u - 1

    while True:
        dr = dmp_degree(r, u)

        if dr < dg:
            break

        lc_r = dmp_LC(r, K)

        c, R = dmp_rr_div(lc_r, lc_g, v, K)

        if not dmp_zero_p(R, v):
            break

        j = dr - dg

        q = dmp_add_term(q, c, j, u, K)
        h = dmp_mul_term(g, c, j, u, K)

        r = dmp_sub(r, h, u, K)

    return q, r
开发者ID:Acebulf,项目名称:sympy,代码行数:51,代码来源:densearith.py


示例8: dmp_ff_div

def dmp_ff_div(f, g, u, K):
    """
    Polynomial division with remainder over a field.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> R, x,y = ring("x,y", QQ)

    >>> R.dmp_ff_div(x**2 + x*y, 2*x + 2)
    (1/2*x + 1/2*y - 1/2, -y + 1)

    """
    if not u:
        return dup_ff_div(f, g, K)

    df = dmp_degree(f, u)
    dg = dmp_degree(g, u)

    if dg < 0:
        raise ZeroDivisionError("polynomial division")

    q, r, dr = dmp_zero(u), f, df

    if df < dg:
        return q, r

    lc_g, v = dmp_LC(g, K), u - 1

    while True:
        lc_r = dmp_LC(r, K)
        c, R = dmp_ff_div(lc_r, lc_g, v, K)

        if not dmp_zero_p(R, v):
            break

        j = dr - dg

        q = dmp_add_term(q, c, j, u, K)
        h = dmp_mul_term(g, c, j, u, K)
        r = dmp_sub(r, h, u, K)

        _dr, dr = dr, dmp_degree(r, u)

        if dr < dg:
            break
        elif not (dr < _dr):
            raise PolynomialDivisionFailed(f, g, K)

    return q, r
开发者ID:QuaBoo,项目名称:sympy,代码行数:51,代码来源:densearith.py


示例9: dmp_prem

def dmp_prem(f, g, u, K):
    """
    Polynomial pseudo-remainder in ``K[X]``.

    **Examples**

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.densearith import dmp_prem

    >>> f = ZZ.map([[1], [1, 0], []])
    >>> g = ZZ.map([[2], [2]])

    >>> dmp_prem(f, g, 1, ZZ)
    [[-4, 4]]

    """
    if not u:
        return dup_prem(f, g, K)

    df = dmp_degree(f, u)
    dg = dmp_degree(g, u)

    if dg < 0:
        raise ZeroDivisionError("polynomial division")

    r = f

    if df < dg:
        return r

    N = df - dg + 1
    lc_g = dmp_LC(g, K)

    while True:
        dr = dmp_degree(r, u)

        if dr < dg:
            break

        lc_r = dmp_LC(r, K)
        j, N = dr-dg, N-1

        R = dmp_mul_term(r, lc_g, 0, u, K)
        G = dmp_mul_term(g, lc_r, j, u, K)
        r = dmp_sub(R, G, u, K)

    c = dmp_pow(lc_g, N, u-1, K)

    return dmp_mul_term(r, c, 0, u, K)
开发者ID:101man,项目名称:sympy,代码行数:49,代码来源:densearith.py


示例10: dmp_content

def dmp_content(f, u, K):
    """
    Returns GCD of multivariate coefficients.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y, = ring("x,y", ZZ)

    >>> R.dmp_content(2*x*y + 6*x + 4*y + 12)
    2*y + 6

    """
    cont, v = dmp_LC(f, K), u - 1

    if dmp_zero_p(f, u):
        return cont

    for c in f[1:]:
        cont = dmp_gcd(cont, c, v, K)

        if dmp_one_p(cont, v, K):
            break

    if K.is_negative(dmp_ground_LC(cont, v, K)):
        return dmp_neg(cont, v, K)
    else:
        return cont
开发者ID:AdrianPotter,项目名称:sympy,代码行数:29,代码来源:euclidtools.py


示例11: dmp_eval

def dmp_eval(f, a, u, K):
    """
    Evaluate a polynomial at ``x_0 = a`` in ``K[X]`` using the Horner scheme.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> R.dmp_eval(2*x*y + 3*x + y + 2, 2)
    5*y + 8

    """
    if not u:
        return dup_eval(f, a, K)

    if not a:
        return dmp_TC(f, K)

    result, v = dmp_LC(f, K), u - 1

    for coeff in f[1:]:
        result = dmp_mul_ground(result, a, v, K)
        result = dmp_add(result, coeff, v, K)

    return result
开发者ID:asmeurer,项目名称:sympy,代码行数:27,代码来源:densetools.py


示例12: dmp_discriminant

def dmp_discriminant(f, u, K):
    """
    Computes discriminant of a polynomial in ``K[X]``.

    **Examples**

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.euclidtools import dmp_discriminant

    >>> f = ZZ.map([[[[1]], [[]]], [[[1], []]], [[[1, 0]]]])

    >>> dmp_discriminant(f, 3, ZZ)
    [[[-4, 0]], [[1], [], []]]

    """
    if not u:
        return dup_discriminant(f, K)

    d, v = dmp_degree(f, u), u-1

    if d <= 0:
        return dmp_zero(v)
    else:
        s = (-1)**((d*(d-1)) // 2)
        c = dmp_LC(f, K)

        r = dmp_resultant(f, dmp_diff(f, 1, u, K), u, K)
        c = dmp_mul_ground(c, K(s), v, K)

        return dmp_exquo(r, c, v, K)
开发者ID:addisonc,项目名称:sympy,代码行数:30,代码来源:euclidtools.py


示例13: dmp_eval

def dmp_eval(f, a, u, K):
    """
    Evaluate a polynomial at ``x_0 = a`` in ``K[X]`` using the Horner scheme.

    Examples
    ========

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.densetools import dmp_eval

    >>> f = ZZ.map([[2, 3], [1, 2]])

    >>> dmp_eval(f, 2, 1, ZZ)
    [5, 8]

    """
    if not u:
        return dup_eval(f, a, K)

    if not a:
        return dmp_TC(f, K)

    result, v = dmp_LC(f, K), u - 1

    for coeff in f[1:]:
        result = dmp_mul_ground(result, a, v, K)
        result = dmp_add(result, coeff, v, K)

    return result
开发者ID:jenshnielsen,项目名称:sympy,代码行数:29,代码来源:densetools.py


示例14: dmp_content

def dmp_content(f, u, K):
    """
    Returns GCD of multivariate coefficients.

    **Examples**

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.euclidtools import dmp_content

    >>> f = ZZ.map([[2, 6], [4, 12]])

    >>> dmp_content(f, 1, ZZ)
    [2, 6]

    """
    cont, v = dmp_LC(f, K), u-1

    if dmp_zero_p(f, u):
        return cont

    for c in f[1:]:
        cont = dmp_gcd(cont, c, v, K)

        if dmp_one_p(cont, v, K):
            break

    if K.is_negative(dmp_ground_LC(cont, v, K)):
        return dmp_neg(cont, v, K)
    else:
        return cont
开发者ID:addisonc,项目名称:sympy,代码行数:30,代码来源:euclidtools.py


示例15: dmp_discriminant

def dmp_discriminant(f, u, K):
    """
    Computes discriminant of a polynomial in `K[X]`.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y,z,t = ring("x,y,z,t", ZZ)

    >>> R.dmp_discriminant(x**2*y + x*z + t)
    -4*y*t + z**2

    """
    if not u:
        return dup_discriminant(f, K)

    d, v = dmp_degree(f, u), u - 1

    if d <= 0:
        return dmp_zero(v)
    else:
        s = (-1)**((d*(d - 1)) // 2)
        c = dmp_LC(f, K)

        r = dmp_resultant(f, dmp_diff(f, 1, u, K), u, K)
        c = dmp_mul_ground(c, K(s), v, K)

        return dmp_quo(r, c, v, K)
开发者ID:AdrianPotter,项目名称:sympy,代码行数:29,代码来源:euclidtools.py


示例16: dmp_prem

def dmp_prem(f, g, u, K):
    """
    Polynomial pseudo-remainder in ``K[X]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> R.dmp_prem(x**2 + x*y, 2*x + 2)
    -4*y + 4

    """
    if not u:
        return dup_prem(f, g, K)

    df = dmp_degree(f, u)
    dg = dmp_degree(g, u)

    if dg < 0:
        raise ZeroDivisionError("polynomial division")

    r = f

    if df < dg:
        return r

    N = df - dg + 1
    lc_g = dmp_LC(g, K)

    while True:
        dr = dmp_degree(r, u)

        if dr < dg:
            break

        lc_r = dmp_LC(r, K)
        j, N = dr - dg, N - 1

        R = dmp_mul_term(r, lc_g, 0, u, K)
        G = dmp_mul_term(g, lc_r, j, u, K)
        r = dmp_sub(R, G, u, K)

    c = dmp_pow(lc_g, N, u - 1, K)

    return dmp_mul_term(r, c, 0, u, K)
开发者ID:Acebulf,项目名称:sympy,代码行数:47,代码来源:densearith.py


示例17: dmp_pdiv

def dmp_pdiv(f, g, u, K):
    """Polynomial pseudo-division in `K[X]`. """
    if not u:
        return dup_pdiv(f, g, K)

    df = dmp_degree(f, u)
    dg = dmp_degree(g, u)

    if dg < 0:
        raise ZeroDivisionError("polynomial division")

    q, r = dmp_zero(u), f

    if df < dg:
        return q, r

    N = df - dg + 1
    lc_g = dmp_LC(g, K)

    while True:
        dr = dmp_degree(r, u)

        if dr < dg:
            break

        lc_r = dmp_LC(r, K)
        j, N = dr-dg, N-1

        Q = dmp_mul_term(q, lc_g, 0, u, K)
        q = dmp_add_term(Q, lc_r, j, u, K)

        R = dmp_mul_term(r, lc_g, 0, u, K)
        G = dmp_mul_term(g, lc_r, j, u, K)
        r = dmp_sub(R, G, u, K)

    c = dmp_pow(lc_g, N, u-1, K)

    q = dmp_mul_term(q, c, 0, u, K)
    r = dmp_mul_term(r, c, 0, u, K)

    return q, r
开发者ID:Aang,项目名称:sympy,代码行数:41,代码来源:densearith.py


示例18: dmp_ff_div

def dmp_ff_div(f, g, u, K):
    """Polynomial division with remainder over a field. """
    if not u:
        return dup_ff_div(f, g, K)

    df = dmp_degree(f, u)
    dg = dmp_degree(g, u)

    if dg < 0:
        raise ZeroDivisionError("polynomial division")

    q, r = dmp_zero(u), f

    if df < dg:
        return q, r

    lc_g, v = dmp_LC(g, K), u-1

    while True:
        dr = dmp_degree(r, u)

        if dr < dg:
            break

        lc_r = dmp_LC(r, K)

        c, R = dmp_ff_div(lc_r, lc_g, v, K)

        if not dmp_zero_p(R, v):
            break

        j = dr - dg

        q = dmp_add_term(q, c, j, u, K)
        h = dmp_mul_term(g, c, j, u, K)

        r = dmp_sub(r, h, u, K)

    return q, r
开发者ID:Aang,项目名称:sympy,代码行数:39,代码来源:densearith.py


示例19: dmp_zz_wang_test_points

def dmp_zz_wang_test_points(f, T, ct, A, u, K):
    """Wang/EEZ: Test evaluation points for suitability. """
    if not dmp_eval_tail(dmp_LC(f, K), A, u-1, K):
        raise EvaluationFailed('no luck')

    g = dmp_eval_tail(f, A, u, K)

    if not dup_sqf_p(g, K):
        raise EvaluationFailed('no luck')

    c, h = dup_primitive(g, K)

    if K.is_negative(dup_LC(h, K)):
        c, h = -c, dup_neg(h, K)

    v = u-1

    E = [ dmp_eval_tail(t, A, v, K) for t, _ in T ]
    D = dmp_zz_wang_non_divisors(E, c, ct, K)

    if D is not None:
        return c, h, E
    else:
        raise EvaluationFailed('no luck')
开发者ID:TeddyBoomer,项目名称:wxgeometrie,代码行数:24,代码来源:factortools.py


示例20: dmp_zz_wang

def dmp_zz_wang(f, u, K, mod=None):
    """
    Factor primitive square-free polynomials in `Z[X]`.

    Given a multivariate polynomial `f` in `Z[x_1,...,x_n]`, which
    is primitive and square-free in `x_1`, computes factorization
    of `f` into irreducibles over integers.

    The procedure is based on Wang's Enhanced Extended Zassenhaus
    algorithm. The algorithm works by viewing `f` as a univariate
    polynomial in `Z[x_2,...,x_n][x_1]`, for which an evaluation
    mapping is computed::

                      x_2 -> a_2, ..., x_n -> a_n

    where `a_i`, for `i = 2, ..., n`, are carefully chosen integers.
    The mapping is used to transform `f` into a univariate polynomial
    in `Z[x_1]`, which can be factored efficiently using Zassenhaus
    algorithm. The last step is to lift univariate factors to obtain
    true multivariate factors. For this purpose a parallel Hensel
    lifting procedure is used.

    **References**

    1. [Wang78]_
    2. [Geddes92]_

    """
    ct, T = dmp_zz_factor(dmp_LC(f, K), u-1, K)

    b = dmp_zz_mignotte_bound(f, u, K)
    p = K(nextprime(b))

    if mod is None:
        if u == 1:
            mod = 2
        else:
            mod = 1

    history, configs, A, r = set([]), [], [K.zero]*u, None

    try:
        cs, s, E = dmp_zz_wang_test_points(f, T, ct, A, u, K)

        _, H = dup_zz_factor_sqf(s, K)

        r = len(H)

        if r == 1:
            return [f]

        bad_points = set([tuple(A)])
        configs = [(s, cs, E, H, A)]
    except EvaluationFailed:
        pass

    eez_num_configs = query('EEZ_NUMBER_OF_CONFIGS')
    eez_num_tries = query('EEZ_NUMBER_OF_TRIES')
    eez_mod_step = query('EEZ_MODULUS_STEP')

    while len(configs) < eez_num_configs:
        for _ in xrange(eez_num_tries):
            A = [ K(randint(-mod, mod)) for _ in xrange(u) ]

            if tuple(A) not in history:
                history.add(tuple(A))
            else:
                continue

            try:
                cs, s, E = dmp_zz_wang_test_points(f, T, ct, A, u, K)
            except EvaluationFailed:
                continue

            _, H = dup_zz_factor_sqf(s, K)

            rr = len(H)

            if r is not None:
                if rr != r: # pragma: no cover
                    if rr < r:
                        configs, r = [], rr
                    else:
                        continue
            else:
                r = rr

            if r == 1:
                return [f]

            configs.append((s, cs, E, H, A))

            if len(configs) == eez_num_configs:
                break
        else:
            mod += eez_mod_step

    s_norm, s_arg, i = None, 0, 0

    for s, _, _, _, _ in configs:
#.........这里部分代码省略.........
开发者ID:TeddyBoomer,项目名称:wxgeometrie,代码行数:101,代码来源:factortools.py



注:本文中的sympy.polys.densebasic.dmp_LC函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python densebasic.dmp_convert函数代码示例发布时间:2022-05-27
下一篇:
Python densearith.dup_sub_mul函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap