• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python densearith.dup_quo函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sympy.polys.densearith.dup_quo函数的典型用法代码示例。如果您正苦于以下问题:Python dup_quo函数的具体用法?Python dup_quo怎么用?Python dup_quo使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了dup_quo函数的17个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: dup_ff_prs_gcd

def dup_ff_prs_gcd(f, g, K):
    """
    Computes polynomial GCD using subresultants over a field.

    Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``, ``cff = quo(f, h)``,
    and ``cfg = quo(g, h)``.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> R, x = ring("x", QQ)

    >>> R.dup_ff_prs_gcd(x**2 - 1, x**2 - 3*x + 2)
    (x - 1, x + 1, x - 2)

    """
    result = _dup_ff_trivial_gcd(f, g, K)

    if result is not None:
        return result

    h = dup_subresultants(f, g, K)[-1]
    h = dup_monic(h, K)

    cff = dup_quo(f, h, K)
    cfg = dup_quo(g, h, K)

    return h, cff, cfg
开发者ID:AdrianPotter,项目名称:sympy,代码行数:29,代码来源:euclidtools.py


示例2: dup_ff_prs_gcd

def dup_ff_prs_gcd(f, g, K):
    """
    Computes polynomial GCD using subresultants over a field.

    Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``, ``cff = quo(f, h)``,
    and ``cfg = quo(g, h)``.

    Examples
    ========

    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.euclidtools import dup_ff_prs_gcd

    >>> f = QQ.map([1, 0, -1])
    >>> g = QQ.map([1, -3, 2])

    >>> dup_ff_prs_gcd(f, g, QQ)
    ([1/1, -1/1], [1/1, 1/1], [1/1, -2/1])

    """
    result = _dup_ff_trivial_gcd(f, g, K)

    if result is not None:
        return result

    h = dup_subresultants(f, g, K)[-1]
    h = dup_monic(h, K)

    cff = dup_quo(f, h, K)
    cfg = dup_quo(g, h, K)

    return h, cff, cfg
开发者ID:dyao-vu,项目名称:meta-core,代码行数:32,代码来源:euclidtools.py


示例3: test_dup_div

def test_dup_div():
    f, g, q, r = [5,4,3,2,1], [1,2,3], [5,-6,0], [20,1]

    assert dup_div(f, g, ZZ) == (q, r)
    assert dup_quo(f, g, ZZ) == q
    assert dup_rem(f, g, ZZ) == r

    raises(ExactQuotientFailed, lambda: dup_exquo(f, g, ZZ))

    f, g, q, r = [5,4,3,2,1,0], [1,2,0,0,9], [5,-6], [15,2,-44,54]

    assert dup_div(f, g, ZZ) == (q, r)
    assert dup_quo(f, g, ZZ) == q
    assert dup_rem(f, g, ZZ) == r

    raises(ExactQuotientFailed, lambda: dup_exquo(f, g, ZZ))
开发者ID:BDGLunde,项目名称:sympy,代码行数:16,代码来源:test_densearith.py


示例4: dup_rr_lcm

def dup_rr_lcm(f, g, K):
    """
    Computes polynomial LCM over a ring in `K[x]`.

    Examples
    ========

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.euclidtools import dup_rr_lcm

    >>> f = ZZ.map([1, 0, -1])
    >>> g = ZZ.map([1, -3, 2])

    >>> dup_rr_lcm(f, g, ZZ)
    [1, -2, -1, 2]

    """
    fc, f = dup_primitive(f, K)
    gc, g = dup_primitive(g, K)

    c = K.lcm(fc, gc)

    h = dup_quo(dup_mul(f, g, K),
                dup_gcd(f, g, K), K)

    return dup_mul_ground(h, c, K)
开发者ID:dyao-vu,项目名称:meta-core,代码行数:26,代码来源:euclidtools.py


示例5: dup_gcdex

def dup_gcdex(f, g, K):
    """
    Extended Euclidean algorithm in `F[x]`.

    Returns ``(s, t, h)`` such that ``h = gcd(f, g)`` and ``s*f + t*g = h``.

    Examples
    ========

    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.euclidtools import dup_gcdex

    >>> f = QQ.map([1, -2, -6, 12, 15])
    >>> g = QQ.map([1, 1, -4, -4])

    >>> dup_gcdex(f, g, QQ)
    ([-1/5, 3/5], [1/5, -6/5, 2/1], [1/1, 1/1])

    """
    s, h = dup_half_gcdex(f, g, K)

    F = dup_sub_mul(h, s, f, K)
    t = dup_quo(F, g, K)

    return s, t, h
开发者ID:dyao-vu,项目名称:meta-core,代码行数:25,代码来源:euclidtools.py


示例6: dup_sqf_part

def dup_sqf_part(f, K):
    """
    Returns square-free part of a polynomial in ``K[x]``.

    Examples
    ========

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.sqfreetools import dup_sqf_part

    >>> dup_sqf_part([ZZ(1), ZZ(0), -ZZ(3), -ZZ(2)], ZZ)
    [1, -1, -2]

    """
    if not K.has_CharacteristicZero:
        return dup_gf_sqf_part(f, K)

    if not f:
        return f

    if K.is_negative(dup_LC(f, K)):
        f = dup_neg(f, K)

    gcd = dup_gcd(f, dup_diff(f, 1, K), K)
    sqf = dup_quo(f, gcd, K)

    if K.has_Field or not K.is_Exact:
        return dup_monic(sqf, K)
    else:
        return dup_primitive(sqf, K)[1]
开发者ID:FireJade,项目名称:sympy,代码行数:30,代码来源:sqfreetools.py


示例7: dup_sqf_part

def dup_sqf_part(f, K):
    """
    Returns square-free part of a polynomial in ``K[x]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x = ring("x", ZZ)

    >>> R.dup_sqf_part(x**3 - 3*x - 2)
    x**2 - x - 2

    """
    if K.is_FiniteField:
        return dup_gf_sqf_part(f, K)

    if not f:
        return f

    if K.is_negative(dup_LC(f, K)):
        f = dup_neg(f, K)

    gcd = dup_gcd(f, dup_diff(f, 1, K), K)
    sqf = dup_quo(f, gcd, K)

    if K.has_Field:
        return dup_monic(sqf, K)
    else:
        return dup_primitive(sqf, K)[1]
开发者ID:alhirzel,项目名称:sympy,代码行数:30,代码来源:sqfreetools.py


示例8: dup_gcdex

def dup_gcdex(f, g, K):
    """
    Extended Euclidean algorithm in `F[x]`.

    Returns ``(s, t, h)`` such that ``h = gcd(f, g)`` and ``s*f + t*g = h``.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> R, x = ring("x", QQ)

    >>> f = x**4 - 2*x**3 - 6*x**2 + 12*x + 15
    >>> g = x**3 + x**2 - 4*x - 4

    >>> R.dup_gcdex(f, g)
    (-1/5*x + 3/5, 1/5*x**2 - 6/5*x + 2, x + 1)

    """
    s, h = dup_half_gcdex(f, g, K)

    F = dup_sub_mul(h, s, f, K)
    t = dup_quo(F, g, K)

    return s, t, h
开发者ID:AdrianPotter,项目名称:sympy,代码行数:25,代码来源:euclidtools.py


示例9: dup_gff_list

def dup_gff_list(f, K):
    """
    Compute greatest factorial factorization of ``f`` in ``K[x]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x = ring("x", ZZ)

    >>> R.dup_gff_list(x**5 + 2*x**4 - x**3 - 2*x**2)
    [(x, 1), (x + 2, 4)]

    """
    if not f:
        raise ValueError("greatest factorial factorization doesn't exist for a zero polynomial")

    f = dup_monic(f, K)

    if not dup_degree(f):
        return []
    else:
        g = dup_gcd(f, dup_shift(f, K.one, K), K)
        H = dup_gff_list(g, K)

        for i, (h, k) in enumerate(H):
            g = dup_mul(g, dup_shift(h, -K(k), K), K)
            H[i] = (h, k + 1)

        f = dup_quo(f, g, K)

        if not dup_degree(f):
            return H
        else:
            return [(f, 1)] + H
开发者ID:alhirzel,项目名称:sympy,代码行数:35,代码来源:sqfreetools.py


示例10: dup_zz_cyclotomic_poly

def dup_zz_cyclotomic_poly(n, K):
    """Efficiently generate n-th cyclotomic polnomial. """
    h = [K.one,-K.one]

    for p, k in factorint(n).iteritems():
        h = dup_quo(dup_inflate(h, p, K), h, K)
        h = dup_inflate(h, p**(k-1), K)

    return h
开发者ID:TeddyBoomer,项目名称:wxgeometrie,代码行数:9,代码来源:factortools.py


示例11: dup_rr_prs_gcd

def dup_rr_prs_gcd(f, g, K):
    """
    Computes polynomial GCD using subresultants over a ring.

    Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``, ``cff = quo(f, h)``,
    and ``cfg = quo(g, h)``.

    Examples
    ========

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.euclidtools import dup_rr_prs_gcd

    >>> f = ZZ.map([1, 0, -1])
    >>> g = ZZ.map([1, -3, 2])

    >>> dup_rr_prs_gcd(f, g, ZZ)
    ([1, -1], [1, 1], [1, -2])

    """
    result = _dup_rr_trivial_gcd(f, g, K)

    if result is not None:
        return result

    fc, F = dup_primitive(f, K)
    gc, G = dup_primitive(g, K)

    c = K.gcd(fc, gc)

    h = dup_subresultants(F, G, K)[-1]
    _, h = dup_primitive(h, K)

    if K.is_negative(dup_LC(h, K)):
        c = -c

    h = dup_mul_ground(h, c, K)

    cff = dup_quo(f, h, K)
    cfg = dup_quo(g, h, K)

    return h, cff, cfg
开发者ID:dyao-vu,项目名称:meta-core,代码行数:42,代码来源:euclidtools.py


示例12: _dup_cyclotomic_decompose

def _dup_cyclotomic_decompose(n, K):
    H = [[K.one,-K.one]]

    for p, k in factorint(n).iteritems():
        Q = [ dup_quo(dup_inflate(h, p, K), h, K) for h in H ]
        H.extend(Q)

        for i in xrange(1, k):
            Q = [ dup_inflate(q, p, K) for q in Q ]
            H.extend(Q)

    return H
开发者ID:TeddyBoomer,项目名称:wxgeometrie,代码行数:12,代码来源:factortools.py


示例13: dup_rr_prs_gcd

def dup_rr_prs_gcd(f, g, K):
    """
    Computes polynomial GCD using subresultants over a ring.

    Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``, ``cff = quo(f, h)``,
    and ``cfg = quo(g, h)``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x = ring("x", ZZ)

    >>> R.dup_rr_prs_gcd(x**2 - 1, x**2 - 3*x + 2)
    (x - 1, x + 1, x - 2)

    """
    result = _dup_rr_trivial_gcd(f, g, K)

    if result is not None:
        return result

    fc, F = dup_primitive(f, K)
    gc, G = dup_primitive(g, K)

    c = K.gcd(fc, gc)

    h = dup_subresultants(F, G, K)[-1]
    _, h = dup_primitive(h, K)

    if K.is_negative(dup_LC(h, K)):
        c = -c

    h = dup_mul_ground(h, c, K)

    cff = dup_quo(f, h, K)
    cfg = dup_quo(g, h, K)

    return h, cff, cfg
开发者ID:AdrianPotter,项目名称:sympy,代码行数:39,代码来源:euclidtools.py


示例14: dup_ff_lcm

def dup_ff_lcm(f, g, K):
    """
    Computes polynomial LCM over a field in ``K[x]``.

    **Examples**

    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.euclidtools import dup_ff_lcm

    >>> f = [QQ(1,2), QQ(7,4), QQ(3,2)]
    >>> g = [QQ(1,2), QQ(1), QQ(0)]

    >>> dup_ff_lcm(f, g, QQ)
    [1/1, 7/2, 3/1, 0/1]

    """
    h = dup_quo(dup_mul(f, g, K),
                dup_gcd(f, g, K), K)

    return dup_monic(h, K)
开发者ID:fxkr,项目名称:sympy,代码行数:20,代码来源:euclidtools.py


示例15: dup_ff_lcm

def dup_ff_lcm(f, g, K):
    """
    Computes polynomial LCM over a field in `K[x]`.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> R, x = ring("x", QQ)

    >>> f = QQ(1,2)*x**2 + QQ(7,4)*x + QQ(3,2)
    >>> g = QQ(1,2)*x**2 + x

    >>> R.dup_ff_lcm(f, g)
    x**3 + 7/2*x**2 + 3*x

    """
    h = dup_quo(dup_mul(f, g, K), dup_gcd(f, g, K), K)

    return dup_monic(h, K)
开发者ID:mattpap,项目名称:sympy,代码行数:20,代码来源:euclidtools.py


示例16: dup_rr_lcm

def dup_rr_lcm(f, g, K):
    """
    Computes polynomial LCM over a ring in `K[x]`.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x = ring("x", ZZ)

    >>> R.dup_rr_lcm(x**2 - 1, x**2 - 3*x + 2)
    x**3 - 2*x**2 - x + 2

    """
    fc, f = dup_primitive(f, K)
    gc, g = dup_primitive(g, K)

    c = K.lcm(fc, gc)

    h = dup_quo(dup_mul(f, g, K), dup_gcd(f, g, K), K)

    return dup_mul_ground(h, c, K)
开发者ID:mattpap,项目名称:sympy,代码行数:22,代码来源:euclidtools.py


示例17: dup_gff_list

def dup_gff_list(f, K):
    """
    Compute greatest factorial factorization of ``f`` in ``K[x]``.

    Examples
    ========

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.sqfreetools import dup_gff_list

    >>> f = ZZ.map([1, 2, -1, -2, 0, 0])

    >>> dup_gff_list(f, ZZ)
    [([1, 0], 1), ([1, 2], 4)]

    """
    if not f:
        raise ValueError("greatest factorial factorization doesn't exist for a zero polynomial")

    f = dup_monic(f, K)

    if not dup_degree(f):
        return []
    else:
        g = dup_gcd(f, dup_shift(f, K.one, K), K)
        H = dup_gff_list(g, K)

        for i, (h, k) in enumerate(H):
            g = dup_mul(g, dup_shift(h, -K(k), K), K)
            H[i] = (h, k + 1)

        f = dup_quo(f, g, K)

        if not dup_degree(f):
            return H
        else:
            return [(f, 1)] + H
开发者ID:FireJade,项目名称:sympy,代码行数:37,代码来源:sqfreetools.py



注:本文中的sympy.polys.densearith.dup_quo函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python densearith.dup_quo_ground函数代码示例发布时间:2022-05-27
下一篇:
Python densearith.dup_neg函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap