• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python densearith.dmp_div函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sympy.polys.densearith.dmp_div函数的典型用法代码示例。如果您正苦于以下问题:Python dmp_div函数的具体用法?Python dmp_div怎么用?Python dmp_div使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了dmp_div函数的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_dmp_div

def test_dmp_div():
    f, g, q, r = [5,4,3,2,1], [1,2,3], [5,-6,0], [20,1]

    assert dmp_div(f, g, 0, ZZ) == (q, r)
    assert dmp_quo(f, g, 0, ZZ) == q
    assert dmp_rem(f, g, 0, ZZ) == r

    raises(ExactQuotientFailed, lambda: dmp_exquo(f, g, 0, ZZ))

    f, g, q, r = [[[1]]], [[[2]],[1]], [[[]]], [[[1]]]

    assert dmp_div(f, g, 2, ZZ) == (q, r)
    assert dmp_quo(f, g, 2, ZZ) == q
    assert dmp_rem(f, g, 2, ZZ) == r

    raises(ExactQuotientFailed, lambda: dmp_exquo(f, g, 2, ZZ))
开发者ID:BDGLunde,项目名称:sympy,代码行数:16,代码来源:test_densearith.py


示例2: dmp_trial_division

def dmp_trial_division(f, factors, u, K):
    """Determine multiplicities of factors using trial division. """
    result = []

    for factor in factors:
        k = 0

        while True:
            q, r = dmp_div(f, factor, u, K)

            if dmp_zero_p(r, u):
                f, k = q, k+1
            else:
                break

        result.append((factor, k))

    return _sort_factors(result)
开发者ID:TeddyBoomer,项目名称:wxgeometrie,代码行数:18,代码来源:factortools.py


示例3: dmp_zz_factor

def dmp_zz_factor(f, u, K):
    """
    Factor (non square-free) polynomials in `Z[X]`.

    Given a multivariate polynomial `f` in `Z[x]` computes its complete
    factorization `f_1, ..., f_n` into irreducibles over integers::

                 f = content(f) f_1**k_1 ... f_n**k_n

    The factorization is computed by reducing the input polynomial
    into a primitive square-free polynomial and factoring it using
    Enhanced Extended Zassenhaus (EEZ) algorithm. Trial division
    is used to recover the multiplicities of factors.

    The result is returned as a tuple consisting of::

             (content(f), [(f_1, k_1), ..., (f_n, k_n))

    Consider polynomial `f = 2*(x**2 - y**2)`::

        >>> from sympy.polys.factortools import dmp_zz_factor
        >>> from sympy.polys.domains import ZZ

        >>> dmp_zz_factor([[2], [], [-2, 0, 0]], 1, ZZ)
        (2, [([[1], [-1, 0]], 1), ([[1], [1, 0]], 1)])

    In result we got the following factorization::

                    f = 2 (x - y) (x + y)

    **References**

    1. [Gathen99]_

    """
    if not u:
        return dup_zz_factor(f, K)

    if dmp_zero_p(f, u):
        return K.zero, []

    cont, g = dmp_ground_primitive(f, u, K)

    if dmp_ground_LC(g, u, K) < 0:
        cont, g = -cont, dmp_neg(g, u, K)

    if all([ d <= 0 for d in dmp_degree_list(g, u) ]):
        return cont, []

    G, g = dmp_primitive(g, u, K)

    factors = []

    if dmp_degree(g, u) > 0:
        g = dmp_sqf_part(g, u, K)
        H = dmp_zz_wang(g, u, K)

        for h in H:
            k = 0

            while True:
                q, r = dmp_div(f, h, u, K)

                if dmp_zero_p(r, u):
                    f, k = q, k+1
                else:
                    break

            factors.append((h, k))

    for g, k in dmp_zz_factor(G, u-1, K)[1]:
        factors.insert(0, ([g], k))

    return cont, _sort_factors(factors)
开发者ID:TeddyBoomer,项目名称:wxgeometrie,代码行数:74,代码来源:factortools.py


示例4: dmp_zz_heu_gcd

def dmp_zz_heu_gcd(f, g, u, K):
    """
    Heuristic polynomial GCD in ``Z[X]``.

    Given univariate polynomials ``f`` and ``g`` in ``Z[X]``, returns
    their GCD and cofactors, i.e. polynomials ``h``, ``cff`` and ``cfg``
    such that::

          h = gcd(f, g), cff = quo(f, h) and cfg = quo(g, h)

    The algorithm is purely heuristic which means it may fail to compute
    the GCD. This will be signaled by raising an exception. In this case
    you will need to switch to another GCD method.

    The algorithm computes the polynomial GCD by evaluating polynomials
    f and g at certain points and computing (fast) integer GCD of those
    evaluations. The polynomial GCD is recovered from the integer image
    by interpolation. The evaluation proces reduces f and g variable by
    variable into a large integer.  The final step  is to verify if the
    interpolated polynomial is the correct GCD. This gives cofactors of
    the input polynomials as a side effect.

    **Examples**

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.euclidtools import dmp_zz_heu_gcd

    >>> f = ZZ.map([[1], [2, 0], [1, 0, 0]])
    >>> g = ZZ.map([[1], [1, 0], []])

    >>> dmp_zz_heu_gcd(f, g, 1, ZZ)
    ([[1], [1, 0]], [[1], [1, 0]], [[1], []])

    **References**

    1. [Liao95]_

    """
    if not u:
        return dup_zz_heu_gcd(f, g, K)

    result = _dmp_rr_trivial_gcd(f, g, u, K)

    if result is not None:
        return result

    df = dmp_degree(f, u)
    dg = dmp_degree(g, u)

    gcd, f, g = dmp_ground_extract(f, g, u, K)

    f_norm = dmp_max_norm(f, u, K)
    g_norm = dmp_max_norm(g, u, K)

    B = 2*min(f_norm, g_norm) + 29

    x = max(min(B, 99*K.sqrt(B)),
            2*min(f_norm // abs(dmp_ground_LC(f, u, K)),
                  g_norm // abs(dmp_ground_LC(g, u, K))) + 2)

    for i in xrange(0, HEU_GCD_MAX):
        ff = dmp_eval(f, x, u, K)
        gg = dmp_eval(g, x, u, K)

        v = u - 1

        if not (dmp_zero_p(ff, v) or dmp_zero_p(gg, v)):
            h, cff, cfg = dmp_zz_heu_gcd(ff, gg, v, K)

            h = _dmp_zz_gcd_interpolate(h, x, v, K)
            h = dmp_ground_primitive(h, u, K)[1]

            cff_, r = dmp_div(f, h, u, K)

            if dmp_zero_p(r, u):
                cfg_, r = dmp_div(g, h, u, K)

                if dmp_zero_p(r, u):
                    h = dmp_mul_ground(h, gcd, u, K)
                    return h, cff_, cfg_

            cff = _dmp_zz_gcd_interpolate(cff, x, v, K)

            h, r = dmp_div(f, cff, u, K)

            if dmp_zero_p(r, u):
                cfg_, r = dmp_div(g, h, u, K)

                if dmp_zero_p(r, u):
                    h = dmp_mul_ground(h, gcd, u, K)
                    return h, cff, cfg_

            cfg = _dmp_zz_gcd_interpolate(cfg, x, v, K)

            h, r = dmp_div(g, cfg, u, K)

            if dmp_zero_p(r, u):
                cff_, r = dmp_div(f, h, u, K)

                if dmp_zero_p(r, u):
#.........这里部分代码省略.........
开发者ID:addisonc,项目名称:sympy,代码行数:101,代码来源:euclidtools.py


示例5: div

 def div(f, g):
     """Polynomial division with remainder of `f` and `g`. """
     lev, dom, per, F, G = f.unify(g)
     q, r = dmp_div(F, G, lev, dom)
     return per(q), per(r)
开发者ID:fxkr,项目名称:sympy,代码行数:5,代码来源:polyclasses.py



注:本文中的sympy.polys.densearith.dmp_div函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python densearith.dmp_expand函数代码示例发布时间:2022-05-27
下一篇:
Python densearith.dmp_add_term函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap