• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python polys.Poly类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sympy.polys.Poly的典型用法代码示例。如果您正苦于以下问题:Python Poly类的具体用法?Python Poly怎么用?Python Poly使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了Poly类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_roots_quartic

def test_roots_quartic():
    assert roots_quartic(Poly(x ** 4, x)) == [0, 0, 0, 0]
    assert roots_quartic(Poly(x ** 4 + x ** 3, x)) in [[-1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, -1]]
    assert roots_quartic(Poly(x ** 4 - x ** 3, x)) in [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]

    lhs = roots_quartic(Poly(x ** 4 + x, x))
    rhs = [S.Half + I * sqrt(3) / 2, S.Half - I * sqrt(3) / 2, S.Zero, -S.One]

    assert sorted(lhs, key=hash) == sorted(rhs, key=hash)

    # test of all branches of roots quartic
    for i, (a, b, c, d) in enumerate(
        [(1, 2, 3, 0), (3, -7, -9, 9), (1, 2, 3, 4), (1, 2, 3, 4), (-7, -3, 3, -6), (-3, 5, -6, -4), (6, -5, -10, -3)]
    ):
        if i == 2:
            c = -a * (a ** 2 / S(8) - b / S(2))
        elif i == 3:
            d = a * (a * (3 * a ** 2 / S(256) - b / S(16)) + c / S(4))
        eq = x ** 4 + a * x ** 3 + b * x ** 2 + c * x + d
        ans = roots_quartic(Poly(eq, x))
        assert all(eq.subs(x, ai).n(chop=True) == 0 for ai in ans)

    # not all symbolic quartics are unresolvable
    eq = Poly(q * x + q / 4 + x ** 4 + x ** 3 + 2 * x ** 2 - Rational(1, 3), x)
    sol = roots_quartic(eq)
    assert all(test_numerically(eq.subs(x, i), 0) for i in sol)
    # but some are (see also iss 1890)
    raises(PolynomialError, lambda: roots_quartic(Poly(y * x ** 4 + x + z, x)))
开发者ID:alxspopov,项目名称:sympy,代码行数:28,代码来源:test_polyroots.py


示例2: _sqrt_symbolic_denest

def _sqrt_symbolic_denest(a, b, r):
    """Given an expression, sqrt(a + b*sqrt(b)), return the denested
    expression or None.

    Algorithm:
    If r = ra + rb*sqrt(rr), try replacing sqrt(rr) in ``a`` with
    (y**2 - ra)/rb, and if the result is a quadratic, ca*y**2 + cb*y + cc, and
    (cb + b)**2 - 4*ca*cc is 0, then sqrt(a + b*sqrt(r)) can be rewritten as
    sqrt(ca*(sqrt(r) + (cb + b)/(2*ca))**2).

    Examples
    ========

    >>> from sympy.simplify.sqrtdenest import _sqrt_symbolic_denest, sqrtdenest
    >>> from sympy import sqrt, Symbol
    >>> from sympy.abc import x

    >>> a, b, r = 16 - 2*sqrt(29), 2, -10*sqrt(29) + 55
    >>> _sqrt_symbolic_denest(a, b, r)
    sqrt(-2*sqrt(29) + 11) + sqrt(5)

    If the expression is numeric, it will be simplified:

    >>> w = sqrt(sqrt(sqrt(3) + 1) + 1) + 1 + sqrt(2)
    >>> sqrtdenest(sqrt((w**2).expand()))
    1 + sqrt(2) + sqrt(1 + sqrt(1 + sqrt(3)))

    Otherwise, it will only be simplified if assumptions allow:

    >>> w = w.subs(sqrt(3), sqrt(x + 3))
    >>> sqrtdenest(sqrt((w**2).expand()))
    sqrt((sqrt(sqrt(sqrt(x + 3) + 1) + 1) + 1 + sqrt(2))**2)

    Notice that the argument of the sqrt is a square. If x is made positive
    then the sqrt of the square is resolved:

    >>> _.subs(x, Symbol('x', positive=True))
    sqrt(sqrt(sqrt(x + 3) + 1) + 1) + 1 + sqrt(2)
    """

    a, b, r = map(sympify, (a, b, r))
    rval = _sqrt_match(r)
    if not rval:
        return None
    ra, rb, rr = rval
    if rb:
        y = Dummy('y', positive=True)
        try:
            newa = Poly(a.subs(sqrt(rr), (y**2 - ra)/rb), y)
        except PolynomialError:
            return None
        if newa.degree() == 2:
            ca, cb, cc = newa.all_coeffs()
            cb += b
            if _mexpand(cb**2 - 4*ca*cc).equals(0):
                z = sqrt(ca*(sqrt(r) + cb/(2*ca))**2)
                if z.is_number:
                    z = _mexpand(Mul._from_args(z.as_content_primitive()))
                return z
开发者ID:B-Rich,项目名称:sympy,代码行数:59,代码来源:sqrtdenest.py


示例3: test_issue_8438

def test_issue_8438():
    p = Poly([1, y, -2, -3], x).as_expr()
    roots = roots_cubic(Poly(p, x), x)
    z = -S(3)/2 - 7*I/2  # this will fail in code given in commit msg
    post = [r.subs(y, z) for r in roots]
    assert set(post) == \
    set(roots_cubic(Poly(p.subs(y, z), x)))
    # /!\ if p is not made an expression, this is *very* slow
    assert all(p.subs({y: z, x: i}).n(2, chop=True) == 0 for i in post)
开发者ID:Davidjohnwilson,项目名称:sympy,代码行数:9,代码来源:test_polyroots.py


示例4: reduce_poly_inequalities

def reduce_poly_inequalities(exprs, gen, assume=True, relational=True):
    """Reduce a system of polynomial inequalities with rational coefficients. """
    exact = True
    polys = []

    for _exprs in exprs:
        _polys = []

        for expr in _exprs:
            if isinstance(expr, tuple):
                expr, rel = expr
            else:
                if expr.is_Relational:
                    expr, rel = expr.lhs - expr.rhs, expr.rel_op
                else:
                    expr, rel = expr, '=='

            poly = Poly(expr, gen)

            if not poly.get_domain().is_Exact:
                poly, exact = poly.to_exact(), False

            domain = poly.get_domain()

            if not (domain.is_ZZ or domain.is_QQ):
                raise NotImplementedError("inequality solving is not supported over %s" % domain)

            _polys.append((poly, rel))

        polys.append(_polys)

    solution = solve_poly_inequalities(polys)

    if isinstance(solution, Union):
        intervals = list(solution.args)
    elif isinstance(solution, Interval):
        intervals = [solution]
    else:
        intervals = []

    if not exact:
        intervals = map(interval_evalf, intervals)

    if not relational:
        return intervals

    real = ask(gen, 'real', assume)

    def relationalize(gen):
        return Or(*[ i.as_relational(gen) for i in intervals ])

    if not real:
        result = And(relationalize(re(gen)), Eq(im(gen), 0))
    else:
        result = relationalize(gen)

    return result
开发者ID:addisonc,项目名称:sympy,代码行数:57,代码来源:inequalities.py


示例5: test_roots_quartic

def test_roots_quartic():
    assert roots_quartic(Poly(x**4, x)) == [0, 0, 0, 0]
    assert roots_quartic(Poly(x**4 + x**3, x)) in [
        [-1, 0, 0, 0],
        [0, -1, 0, 0],
        [0, 0, -1, 0],
        [0, 0, 0, -1]
    ]
    assert roots_quartic(Poly(x**4 - x**3, x)) in [
        [1, 0, 0, 0],
        [0, 1, 0, 0],
        [0, 0, 1, 0],
        [0, 0, 0, 1]
    ]

    lhs = roots_quartic(Poly(x**4 + x, x))
    rhs = [S.Half + I*sqrt(3)/2, S.Half - I*sqrt(3)/2, S.Zero, -S.One]

    assert sorted(lhs, key=hash) == sorted(rhs, key=hash)

    # test of all branches of roots quartic
    for i, (a, b, c, d) in enumerate([(1, 2, 3, 0),
                                      (3, -7, -9, 9),
                                      (1, 2, 3, 4),
                                      (1, 2, 3, 4),
                                      (-7, -3, 3, -6),
                                      (-3, 5, -6, -4),
                                      (6, -5, -10, -3)]):
        if i == 2:
            c = -a*(a**2/S(8) - b/S(2))
        elif i == 3:
            d = a*(a*(3*a**2/S(256) - b/S(16)) + c/S(4))
        eq = x**4 + a*x**3 + b*x**2 + c*x + d
        ans = roots_quartic(Poly(eq, x))
        assert all(eq.subs(x, ai).n(chop=True) == 0 for ai in ans)

    # not all symbolic quartics are unresolvable
    eq = Poly(q*x + q/4 + x**4 + x**3 + 2*x**2 - Rational(1, 3), x)
    sol = roots_quartic(eq)
    assert all(verify_numerically(eq.subs(x, i), 0) for i in sol)
    z = symbols('z', negative=True)
    eq = x**4 + 2*x**3 + 3*x**2 + x*(z + 11) + 5
    zans = roots_quartic(Poly(eq, x))
    assert all([verify_numerically(eq.subs(((x, i), (z, -1))), 0) for i in zans])
    # but some are (see also issue 4989)
    # it's ok if the solution is not Piecewise, but the tests below should pass
    eq = Poly(y*x**4 + x**3 - x + z, x)
    ans = roots_quartic(eq)
    assert all(type(i) == Piecewise for i in ans)
    reps = (
        dict(y=-Rational(1, 3), z=-Rational(1, 4)),  # 4 real
        dict(y=-Rational(1, 3), z=-Rational(1, 2)),  # 2 real
        dict(y=-Rational(1, 3), z=-2))  # 0 real
    for rep in reps:
        sol = roots_quartic(Poly(eq.subs(rep), x))
        assert all([verify_numerically(w.subs(rep) - s, 0) for w, s in zip(ans, sol)])
开发者ID:NalinG,项目名称:sympy,代码行数:56,代码来源:test_polyroots.py


示例6: _is_negative_or_zero

def _is_negative_or_zero(term):
    if getattr(term, 'is_number', False):
        return term <= 0
    elif isinstance(term, Pow):
        if term.args[1]%2==1:
            return _is_negative_or_zero(term.args[0])

    t = Poly(term).as_dict()
    if (all(c < 0 for c in t.values()) and
        all(i % 2 == 0 for d in t.keys() for i in d)):
        return True
    return ask_is_negative(term)
开发者ID:worldmaker18349276,项目名称:magicpy,代码行数:12,代码来源:simplus.py


示例7: _solve_as_poly

def _solve_as_poly(f, symbol, solveset_solver, invert_func):
    """
    Solve the equation using polynomial techniques if it already is a
    polynomial equation or, with a change of variables, can be made so.
    """
    result = None
    if f.is_polynomial(symbol):

        solns = roots(f, symbol, cubics=True, quartics=True,
                      quintics=True, domain='EX')
        num_roots = sum(solns.values())
        if degree(f, symbol) <= num_roots:
            result = FiniteSet(*solns.keys())
        else:
            poly = Poly(f, symbol)
            solns = poly.all_roots()
            if poly.degree() <= len(solns):
                result = FiniteSet(*solns)
            else:
                result = ConditionSet(symbol, Eq(f, 0), S.Complexes)
    else:
        poly = Poly(f)
        if poly is None:
            result = ConditionSet(symbol, Eq(f, 0), S.Complexes)
        gens = [g for g in poly.gens if g.has(symbol)]

        if len(gens) == 1:
            poly = Poly(poly, gens[0])
            gen = poly.gen
            deg = poly.degree()
            poly = Poly(poly.as_expr(), poly.gen, composite=True)
            poly_solns = FiniteSet(*roots(poly, cubics=True, quartics=True,
                                          quintics=True).keys())

            if len(poly_solns) < deg:
                result = ConditionSet(symbol, Eq(f, 0), S.Complexes)

            if gen != symbol:
                y = Dummy('y')
                lhs, rhs_s = invert_func(gen, y, symbol)
                if lhs is symbol:
                    result = Union(*[rhs_s.subs(y, s) for s in poly_solns])
                else:
                    result = ConditionSet(symbol, Eq(f, 0), S.Complexes)
        else:
            result = ConditionSet(symbol, Eq(f, 0), S.Complexes)

    if result is not None:
        if isinstance(result, FiniteSet):
            # this is to simplify solutions like -sqrt(-I) to sqrt(2)/2
            # - sqrt(2)*I/2. We are not expanding for solution with free
            # variables because that makes the solution more complicated. For
            # example expand_complex(a) returns re(a) + I*im(a)
            if all([s.free_symbols == set() and not isinstance(s, RootOf)
                    for s in result]):
                s = Dummy('s')
                result = imageset(Lambda(s, expand_complex(s)), result)
        return result
    else:
        return ConditionSet(symbol, Eq(f, 0), S.Complexes)
开发者ID:Davidjohnwilson,项目名称:sympy,代码行数:60,代码来源:solveset.py


示例8: ratint_ratpart

def ratint_ratpart(f, g, x):
    """Horowitz-Ostrogradsky algorithm.

       Given a field K and polynomials f and g in K[x], such that f and g
       are coprime and deg(f) < deg(g), returns fractions A and B in K(x),
       such that f/g = A' + B and B has square-free denominator.

    """
    f = Poly(f, x)
    g = Poly(g, x)

    u, v, _ = g.cofactors(g.diff())

    n = u.degree()
    m = v.degree()

    A_coeffs = [ Dummy('a' + str(n-i)) for i in xrange(0, n) ]
    B_coeffs = [ Dummy('b' + str(m-i)) for i in xrange(0, m) ]

    C_coeffs = A_coeffs + B_coeffs

    A = Poly(A_coeffs, x, domain=ZZ[C_coeffs])
    B = Poly(B_coeffs, x, domain=ZZ[C_coeffs])

    H = f - A.diff()*v + A*(u.diff()*v).quo(u) - B*u

    result = solve(H.coeffs(), C_coeffs)

    A = A.as_expr().subs(result)
    B = B.as_expr().subs(result)

    rat_part = cancel(A/u.as_expr(), x)
    log_part = cancel(B/v.as_expr(), x)

    return rat_part, log_part
开发者ID:101man,项目名称:sympy,代码行数:35,代码来源:rationaltools.py


示例9: test_nroots2

def test_nroots2():
    p = Poly(x**5+3*x+1, x)

    roots = p.nroots(n=3)
    # The order of roots matters. The roots are ordered by their real
    # components (if they agree, then by their imaginary components).
    assert [str(r) for r in roots] == \
            ['-0.839 - 0.944*I', '-0.839 + 0.944*I', '-0.332',
                '1.01 - 0.937*I', '1.01 + 0.937*I']

    roots = p.nroots(n=5)
    assert [str(r) for r in roots] == \
            ['-0.83907 - 0.94385*I', '-0.83907 + 0.94385*I',
                '-0.33199', '1.0051 - 0.93726*I', '1.0051 + 0.93726*I']
开发者ID:MCGallaspy,项目名称:sympy,代码行数:14,代码来源:test_polyroots.py


示例10: max_onepiece

def max_onepiece(x, f: Poly, g: Poly, l, u):
    roots = sorted(set((f - g).real_roots()))
    new_polynomial_pieces = []
    new_bounds = [l]
    for r in roots:
        if l < r < u:
            m = (r + new_bounds[-1]) / 2
            if f.subs(x, m) >= g.subs(x, m):
                new_polynomial_pieces.append(f)
            else:
                new_polynomial_pieces.append(g)
            new_bounds.append(r)
    new_bounds.append(u)
    return PiecewisePolynomial(new_polynomial_pieces, new_bounds)
开发者ID:vshallc,项目名称:MDPLA,代码行数:14,代码来源:piecewise_sym.py


示例11: ratint_ratpart

def ratint_ratpart(f, g, x):
    """
    Horowitz-Ostrogradsky algorithm.

    Given a field K and polynomials f and g in K[x], such that f and g
    are coprime and deg(f) < deg(g), returns fractions A and B in K(x),
    such that f/g = A' + B and B has square-free denominator.

    Examples
    ========

        >>> from sympy.integrals.rationaltools import ratint_ratpart
        >>> from sympy.abc import x, y
        >>> from sympy import Poly
        >>> ratint_ratpart(Poly(1, x, domain='ZZ'),
        ... Poly(x + 1, x, domain='ZZ'), x)
        (0, 1/(x + 1))
        >>> ratint_ratpart(Poly(1, x, domain='EX'),
        ... Poly(x**2 + y**2, x, domain='EX'), x)
        (0, 1/(x**2 + y**2))
        >>> ratint_ratpart(Poly(36, x, domain='ZZ'),
        ... Poly(x**5 - 2*x**4 - 2*x**3 + 4*x**2 + x - 2, x, domain='ZZ'), x)
        ((12*x + 6)/(x**2 - 1), 12/(x**2 - x - 2))

    See Also
    ========

    ratint, ratint_logpart
    """
    from sympy import solve

    f = Poly(f, x)
    g = Poly(g, x)

    u, v, _ = g.cofactors(g.diff())

    n = u.degree()
    m = v.degree()

    A_coeffs = [ Dummy('a' + str(n - i)) for i in range(0, n) ]
    B_coeffs = [ Dummy('b' + str(m - i)) for i in range(0, m) ]

    C_coeffs = A_coeffs + B_coeffs

    A = Poly(A_coeffs, x, domain=ZZ[C_coeffs])
    B = Poly(B_coeffs, x, domain=ZZ[C_coeffs])

    H = f - A.diff()*v + A*(u.diff()*v).quo(u) - B*u

    result = solve(H.coeffs(), C_coeffs)

    A = A.as_expr().subs(result)
    B = B.as_expr().subs(result)

    rat_part = cancel(A/u.as_expr(), x)
    log_part = cancel(B/v.as_expr(), x)

    return rat_part, log_part
开发者ID:ChaliZhg,项目名称:sympy,代码行数:58,代码来源:rationaltools.py


示例12: _is_function_class_equation

def _is_function_class_equation(func_class, f, symbol):
    """ Tests whether the equation is an equation of the given function class.

    The given equation belongs to the given function class if it is
    comprised of functions of the function class which are multiplied by
    or added to expressions independent of the symbol. In addition, the
    arguments of all such functions must be linear in the symbol as well.

    Examples
    ========

    >>> from sympy.solvers.solveset import _is_function_class_equation
    >>> from sympy import tan, sin, tanh, sinh, exp
    >>> from sympy.abc import x
    >>> from sympy.functions.elementary.trigonometric import (TrigonometricFunction,
    ... HyperbolicFunction)
    >>> _is_function_class_equation(TrigonometricFunction, exp(x) + tan(x), x)
    False
    >>> _is_function_class_equation(TrigonometricFunction, tan(x) + sin(x), x)
    True
    >>> _is_function_class_equation(TrigonometricFunction, tan(x**2), x)
    False
    >>> _is_function_class_equation(TrigonometricFunction, tan(x + 2), x)
    True
    >>> _is_function_class_equation(HyperbolicFunction, tanh(x) + sinh(x), x)
    True
    """
    if f.is_Mul or f.is_Add:
        return all(_is_function_class_equation(func_class, arg, symbol)
                   for arg in f.args)

    if f.is_Pow:
        if not f.exp.has(symbol):
            return _is_function_class_equation(func_class, f.base, symbol)
        else:
            return False

    if not f.has(symbol):
        return True

    if isinstance(f, func_class):
        try:
            g = Poly(f.args[0], symbol)
            return g.degree() <= 1
        except PolynomialError:
            return False
    else:
        return False
开发者ID:A-turing-machine,项目名称:sympy,代码行数:48,代码来源:solveset.py


示例13: cancel

def cancel(f, *symbols):
    """Cancel common factors in a given rational function.

       Given a quotient of polynomials, performing only gcd and quo
       operations in polynomial algebra,  return rational function
       with numerator and denominator of minimal total degree in
       an expanded form.

       For all other kinds of expressions the input is returned in
       an unchanged form. Note however, that 'cancel' function can
       thread over sums and relational operators.

       Additionally you can specify a list of variables to perform
       cancelation more efficiently using only those symbols.

       >>> from sympy import *
       >>> x,y = symbols('xy')

       >>> cancel((x**2-1)/(x-1))
       1 + x

       >>> cancel((x**2-y**2)/(x-y), x)
       x + y

       >>> cancel((x**2-2)/(x+sqrt(2)))
       x - 2**(1/2)

    """
    return Poly.cancel(f, *symbols)
开发者ID:jcockayne,项目名称:sympy-rkern,代码行数:29,代码来源:rewrite.py


示例14: _is_negative

def _is_negative(term):
    if getattr(term, 'is_number', False):
        return term < 0
    elif isinstance(term, Pow):
        if term.args[1]%2==1:
            return _is_negative(term.args[0])
        else:
            return False

    l = len(term.free_symbols)
    t = Poly(term).as_dict()
    if (all(c < 0 for c in t.values()) and
        all(i % 2 == 0 for d in t.keys() for i in d) and
        (0,)*l in t.keys()):
        return True
    return ask_is_negative(term)
开发者ID:worldmaker18349276,项目名称:magicpy,代码行数:16,代码来源:simplus.py


示例15: reduce_poly_inequalities

def reduce_poly_inequalities(exprs, gen, assume=True, relational=True):
    """Reduce a system of polynomial inequalities with rational coefficients. """
    exact = True
    polys = []

    for _exprs in exprs:
        _polys = []

        for expr in _exprs:
            if isinstance(expr, tuple):
                expr, rel = expr
            else:
                if expr.is_Relational:
                    expr, rel = expr.lhs - expr.rhs, expr.rel_op
                else:
                    expr, rel = expr, "=="

            poly = Poly(expr, gen)

            if not poly.get_domain().is_Exact:
                poly, exact = poly.to_exact(), False

            domain = poly.get_domain()

            if not (domain.is_ZZ or domain.is_QQ):
                raise NotImplementedError("inequality solving is not supported over %s" % domain)

            _polys.append((poly, rel))

        polys.append(_polys)

    solution = solve_poly_inequalities(polys)

    if not exact:
        solution = solution.evalf()

    if not relational:
        return solution

    real = ask(Q.real(gen), assumptions=assume)

    if not real:
        result = And(solution.as_relational(re(gen)), Eq(im(gen), 0))
    else:
        result = solution.as_relational(gen)

    return result
开发者ID:hitej,项目名称:meta-core,代码行数:47,代码来源:inequalities.py


示例16: _solve_inequality

def _solve_inequality(ie, s):
    """ A hacky replacement for solve, since the latter only works for
        univariate inequalities. """
    from sympy import Poly
    if not ie.rel_op in ('>', '>=', '<', '<='):
        raise NotImplementedError
    expr = ie.lhs - ie.rhs
    p = Poly(expr, s)
    if p.degree() != 1:
        raise NotImplementedError('%s' % ie)
    a, b = p.all_coeffs()
    if a.is_positive:
        return ie.func(s, -b/a)
    elif a.is_negative:
        return ie.func(-b/a, s)
    else:
        raise NotImplementedError
开发者ID:arunenigma,项目名称:sympy,代码行数:17,代码来源:inequalities.py


示例17: weak_normalizer

def weak_normalizer(a, d, DE, z=None):
    """
    Weak normalization.

    Given a derivation D on k[t] and f == a/d in k(t), return q in k[t]
    such that f - Dq/q is weakly normalized with respect to t.

    f in k(t) is said to be "weakly normalized" with respect to t if
    residue_p(f) is not a positive integer for any normal irreducible p
    in k[t] such that f is in R_p (Definition 6.1.1).  If f has an
    elementary integral, this is equivalent to no logarithm of
    integral(f) whose argument depends on t has a positive integer
    coefficient, where the arguments of the logarithms not in k(t) are
    in k[t].

    Returns (q, f - Dq/q)
    """
    z = z or Dummy('z')
    dn, ds = splitfactor(d, DE)

    # Compute d1, where dn == d1*d2**2*...*dn**n is a square-free
    # factorization of d.
    g = gcd(dn, dn.diff(DE.t))
    d_sqf_part = dn.quo(g)
    d1 = d_sqf_part.quo(gcd(d_sqf_part, g))

    a1, b = gcdex_diophantine(d.quo(d1).as_poly(DE.t), d1.as_poly(DE.t),
        a.as_poly(DE.t))
    r = (a - Poly(z, DE.t)*derivation(d1, DE)).as_poly(DE.t).resultant(
        d1.as_poly(DE.t))
    r = Poly(r, z)

    if not r.has(z):
        return (Poly(1, DE.t), (a, d))

    N = [i for i in r.real_roots() if i in ZZ and i > 0]

    q = reduce(mul, [gcd(a - Poly(n, DE.t)*derivation(d1, DE), d1) for n in N],
        Poly(1, DE.t))

    dq = derivation(q, DE)
    sn = q*a - d*dq
    sd = q*d
    sn, sd = sn.cancel(sd, include=True)

    return (q, (sn, sd))
开发者ID:Abhityagi16,项目名称:sympy,代码行数:46,代码来源:rde.py


示例18: test_roots_quadratic

def test_roots_quadratic():
    assert roots_quadratic(Poly(2*x**2, x)) == [0, 0]
    assert roots_quadratic(Poly(2*x**2 + 3*x, x)) == [-Rational(3, 2), 0]
    assert roots_quadratic(Poly(2*x**2 + 3, x)) == [-I*sqrt(6)/2, I*sqrt(6)/2]
    assert roots_quadratic(Poly(2*x**2 + 4*x + 3, x)) == [-1 - I*sqrt(2)/2, -1 + I*sqrt(2)/2]

    f = x**2 + (2*a*e + 2*c*e)/(a - c)*x + (d - b + a*e**2 - c*e**2)/(a - c)

    assert roots_quadratic(Poly(f, x)) == \
        [-e*(a + c)/(a - c) - sqrt((a*b + c*d - a*d - b*c + 4*a*c*e**2)/(a - c)**2),
         -e*(a + c)/(a - c) + sqrt((a*b + c*d - a*d - b*c + 4*a*c*e**2)/(a - c)**2)]

    # check for simplification
    f = Poly(y*x**2 - 2*x - 2*y, x)
    assert roots_quadratic(f) == \
        [-sqrt(2*y**2 + 1)/y + 1/y, sqrt(2*y**2 + 1)/y + 1/y]
    f = Poly(x**2 + (-y**2 - 2)*x + y**2 + 1, x)
    assert roots_quadratic(f) == \
        [y**2/2 - sqrt(y**4)/2 + 1, y**2/2 + sqrt(y**4)/2 + 1]

    f = Poly(sqrt(2)*x**2 - 1, x)
    r = roots_quadratic(f)
    assert r == _nsort(r)

    # issue 8255
    f = Poly(-24*x**2 - 180*x + 264)
    assert [w.n(2) for w in f.all_roots(radicals=True)] == \
           [w.n(2) for w in f.all_roots(radicals=False)]
    for _a, _b, _c in cartes((-2, 2), (-2, 2), (0, -1)):
        f = Poly(_a*x**2 + _b*x + _c)
        roots = roots_quadratic(f)
        assert roots == _nsort(roots)
开发者ID:NalinG,项目名称:sympy,代码行数:32,代码来源:test_polyroots.py


示例19: root_factors

def root_factors(f, *gens, **args):
    """Returns all factors of a univariate polynomial.

       Examples
       ========

           >>> from sympy.abc import x, y
           >>> from sympy.polys.polyroots import root_factors

           >>> root_factors(x**2-y, x)
           [x - y**(1/2), x + y**(1/2)]

    """
    F = Poly(f, *gens, **args)

    if not F.is_Poly:
        return [f]

    if F.is_multivariate:
        raise ValueError('multivariate polynomials not supported')

    x = F.gens[0]

    if 'multiple' in args:
        del args['multiple']

    zeros = roots(F, **args)

    if not zeros:
        factors = [F]
    else:
        factors, N = [], 0

        for r, n in zeros.iteritems():
            factors, N = factors + [Poly(x-r, x)]*n, N + n

        if N < F.degree():
            g = reduce(lambda p,q: p*q, factors)
            factors.append(f.exquo(g))

    if not isinstance(f, Poly):
        return [ f.as_basic() for f in factors ]
    else:
        return factors
开发者ID:Aang,项目名称:sympy,代码行数:44,代码来源:polyroots.py


示例20: _solve_inequality

def _solve_inequality(ie, s):
    """ A hacky replacement for solve, since the latter only works for
        univariate inequalities. """
    if not ie.rel_op in (">", ">=", "<", "<="):
        raise NotImplementedError
    expr = ie.lhs - ie.rhs
    try:
        p = Poly(expr, s)
    except PolynomialError:
        raise NotImplementedError
    if p.degree() != 1:
        raise NotImplementedError("%s" % ie)
    a, b = p.all_coeffs()
    if a.is_positive:
        return ie.func(s, -b / a)
    elif a.is_negative:
        return ie.func(-b / a, s)
    else:
        raise NotImplementedError
开发者ID:smichr,项目名称:sympy,代码行数:19,代码来源:inequalities.py



注:本文中的sympy.polys.Poly类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python polys.QQ类代码示例发布时间:2022-05-27
下一篇:
Python polys.together函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap