• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python mechanics.ReferenceFrame类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sympy.physics.mechanics.ReferenceFrame的典型用法代码示例。如果您正苦于以下问题:Python ReferenceFrame类的具体用法?Python ReferenceFrame怎么用?Python ReferenceFrame使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了ReferenceFrame类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_dcm

def test_dcm():
    q1, q2, q3, q4 = dynamicsymbols('q1 q2 q3 q4')
    N = ReferenceFrame('N')
    A = N.orientnew('A', 'Axis', [q1, N.z])
    B = A.orientnew('B', 'Axis', [q2, A.x])
    C = B.orientnew('C', 'Axis', [q3, B.y])
    D = N.orientnew('D', 'Axis', [q4, N.y])
    E = N.orientnew('E', 'Space', [q1, q2, q3], '123')
    assert N.dcm(C) == Matrix([
        [- sin(q1) * sin(q2) * sin(q3) + cos(q1) * cos(q3), - sin(q1) *
        cos(q2), sin(q1) * sin(q2) * cos(q3) + sin(q3) * cos(q1)], [sin(q1) *
        cos(q3) + sin(q2) * sin(q3) * cos(q1), cos(q1) * cos(q2), sin(q1) *
            sin(q3) - sin(q2) * cos(q1) * cos(q3)], [- sin(q3) * cos(q2), sin(q2),
        cos(q2) * cos(q3)]])
    # This is a little touchy.  Is it ok to use simplify in assert?
    assert D.dcm(C) == Matrix(
        [[cos(q1) * cos(q3) * cos(q4) - sin(q3) * (- sin(q4) * cos(q2) +
        sin(q1) * sin(q2) * cos(q4)), - sin(q2) * sin(q4) - sin(q1) *
            cos(q2) * cos(q4), sin(q3) * cos(q1) * cos(q4) + cos(q3) * (- sin(q4) *
        cos(q2) + sin(q1) * sin(q2) * cos(q4))], [sin(q1) * cos(q3) +
        sin(q2) * sin(q3) * cos(q1), cos(q1) * cos(q2), sin(q1) * sin(q3) -
            sin(q2) * cos(q1) * cos(q3)], [sin(q4) * cos(q1) * cos(q3) -
        sin(q3) * (cos(q2) * cos(q4) + sin(q1) * sin(q2) * sin(q4)), sin(q2) *
                cos(q4) - sin(q1) * sin(q4) * cos(q2), sin(q3) * sin(q4) * cos(q1) +
                cos(q3) * (cos(q2) * cos(q4) + sin(q1) * sin(q2) * sin(q4))]])
    assert E.dcm(N) == Matrix(
        [[cos(q2)*cos(q3), sin(q3)*cos(q2), -sin(q2)],
        [sin(q1)*sin(q2)*cos(q3) - sin(q3)*cos(q1), sin(q1)*sin(q2)*sin(q3) +
        cos(q1)*cos(q3), sin(q1)*cos(q2)], [sin(q1)*sin(q3) +
        sin(q2)*cos(q1)*cos(q3), - sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1),
         cos(q1)*cos(q2)]])
开发者ID:akritas,项目名称:sympy,代码行数:31,代码来源:test_essential.py


示例2: test_partial_velocity

def test_partial_velocity():
    q1, q2, q3, u1, u2, u3 = dynamicsymbols("q1 q2 q3 u1 u2 u3")
    u4, u5 = dynamicsymbols("u4, u5")
    r = symbols("r")

    N = ReferenceFrame("N")
    Y = N.orientnew("Y", "Axis", [q1, N.z])
    L = Y.orientnew("L", "Axis", [q2, Y.x])
    R = L.orientnew("R", "Axis", [q3, L.y])
    R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)

    C = Point("C")
    C.set_vel(N, u4 * L.x + u5 * (Y.z ^ L.x))
    Dmc = C.locatenew("Dmc", r * L.z)
    Dmc.v2pt_theory(C, N, R)

    vel_list = [Dmc.vel(N), C.vel(N), R.ang_vel_in(N)]
    u_list = [u1, u2, u3, u4, u5]
    assert partial_velocity(vel_list, u_list) == [
        [-r * L.y, 0, L.x],
        [r * L.x, 0, L.y],
        [0, 0, L.z],
        [L.x, L.x, 0],
        [cos(q2) * L.y - sin(q2) * L.z, cos(q2) * L.y - sin(q2) * L.z, 0],
    ]
开发者ID:rishabh11,项目名称:sympy,代码行数:25,代码来源:test_functions.py


示例3: test_linearize_pendulum_lagrange_minimal

def test_linearize_pendulum_lagrange_minimal():
    q1 = dynamicsymbols('q1')                     # angle of pendulum
    q1d = dynamicsymbols('q1', 1)                 # Angular velocity
    L, m, t = symbols('L, m, t')
    g = 9.8

    # Compose world frame
    N = ReferenceFrame('N')
    pN = Point('N*')
    pN.set_vel(N, 0)

    # A.x is along the pendulum
    A = N.orientnew('A', 'axis', [q1, N.z])
    A.set_ang_vel(N, q1d*N.z)

    # Locate point P relative to the origin N*
    P = pN.locatenew('P', L*A.x)
    P.v2pt_theory(pN, N, A)
    pP = Particle('pP', P, m)

    # Solve for eom with Lagranges method
    Lag = Lagrangian(N, pP)
    LM = LagrangesMethod(Lag, [q1], forcelist=[(P, m*g*N.x)], frame=N)
    LM.form_lagranges_equations()

    # Linearize
    A, B, inp_vec = LM.linearize([q1], [q1d], A_and_B=True)

    assert A == Matrix([[0, 1], [-9.8*cos(q1)/L, 0]])
    assert B == Matrix([])
开发者ID:Festy,项目名称:sympy,代码行数:30,代码来源:test_linearize.py


示例4: test_pendulum_angular_momentum

def test_pendulum_angular_momentum():
    """Consider a pendulum of length OA = 2a, of mass m as a rigid body of
    center of mass G (OG = a) which turn around (O,z). The angle between the
    reference frame R and the rod is q.  The inertia of the body is I =
    (G,0,ma^2/3,ma^2/3). """

    m, a = symbols('m, a')
    q = dynamicsymbols('q')

    R = ReferenceFrame('R')
    R1 = R.orientnew('R1', 'Axis', [q, R.z])
    R1.set_ang_vel(R, q.diff() * R.z)

    I = inertia(R1, 0, m * a**2 / 3, m * a**2 / 3)

    O = Point('O')

    A = O.locatenew('A', 2*a * R1.x)
    G = O.locatenew('G', a * R1.x)

    S = RigidBody('S', G, R1, m, (I, G))

    O.set_vel(R, 0)
    A.v2pt_theory(O, R, R1)
    G.v2pt_theory(O, R, R1)

    assert (4 * m * a**2 / 3 * q.diff() * R.z -
            S.angular_momentum(O, R).express(R)) == 0
开发者ID:A-turing-machine,项目名称:sympy,代码行数:28,代码来源:test_rigidbody.py


示例5: test_linearize_pendulum_lagrange_nonminimal

def test_linearize_pendulum_lagrange_nonminimal():
    q1, q2 = dynamicsymbols('q1:3')
    q1d, q2d = dynamicsymbols('q1:3', level=1)
    L, m, t = symbols('L, m, t')
    g = 9.8
    # Compose World Frame
    N = ReferenceFrame('N')
    pN = Point('N*')
    pN.set_vel(N, 0)
    # A.x is along the pendulum
    theta1 = atan(q2/q1)
    A = N.orientnew('A', 'axis', [theta1, N.z])
    # Create point P, the pendulum mass
    P = pN.locatenew('P1', q1*N.x + q2*N.y)
    P.set_vel(N, P.pos_from(pN).dt(N))
    pP = Particle('pP', P, m)
    # Constraint Equations
    f_c = Matrix([q1**2 + q2**2 - L**2])
    # Calculate the lagrangian, and form the equations of motion
    Lag = Lagrangian(N, pP)
    LM = LagrangesMethod(Lag, [q1, q2], hol_coneqs=f_c, forcelist=[(P, m*g*N.x)], frame=N)
    LM.form_lagranges_equations()
    # Compose operating point
    op_point = {q1: L, q2: 0, q1d: 0, q2d: 0, q1d.diff(t): 0, q2d.diff(t): 0}
    # Solve for multiplier operating point
    lam_op = LM.solve_multipliers(op_point=op_point)
    op_point.update(lam_op)
    # Perform the Linearization
    A, B, inp_vec = LM.linearize([q2], [q2d], [q1], [q1d],
            op_point=op_point, A_and_B=True)
    assert A == Matrix([[0, 1], [-9.8/L, 0]])
    assert B == Matrix([])
开发者ID:Festy,项目名称:sympy,代码行数:32,代码来源:test_linearize.py


示例6: test_dcm

def test_dcm():
    q1, q2, q3, q4 = dynamicsymbols("q1 q2 q3 q4")
    N = ReferenceFrame("N")
    A = N.orientnew("A", "Axis", [q1, N.z])
    B = A.orientnew("B", "Axis", [q2, A.x])
    C = B.orientnew("C", "Axis", [q3, B.y])
    D = N.orientnew("D", "Axis", [q4, N.y])
    E = N.orientnew("E", "Space", [q1, q2, q3], "123")
    assert N.dcm(C) == Matrix(
        [
            [
                -sin(q1) * sin(q2) * sin(q3) + cos(q1) * cos(q3),
                -sin(q1) * cos(q2),
                sin(q1) * sin(q2) * cos(q3) + sin(q3) * cos(q1),
            ],
            [
                sin(q1) * cos(q3) + sin(q2) * sin(q3) * cos(q1),
                cos(q1) * cos(q2),
                sin(q1) * sin(q3) - sin(q2) * cos(q1) * cos(q3),
            ],
            [-sin(q3) * cos(q2), sin(q2), cos(q2) * cos(q3)],
        ]
    )
    # This is a little touchy.  Is it ok to use simplify in assert?
    test_mat = D.dcm(C) - Matrix(
        [
            [
                cos(q1) * cos(q3) * cos(q4) - sin(q3) * (-sin(q4) * cos(q2) + sin(q1) * sin(q2) * cos(q4)),
                -sin(q2) * sin(q4) - sin(q1) * cos(q2) * cos(q4),
                sin(q3) * cos(q1) * cos(q4) + cos(q3) * (-sin(q4) * cos(q2) + sin(q1) * sin(q2) * cos(q4)),
            ],
            [
                sin(q1) * cos(q3) + sin(q2) * sin(q3) * cos(q1),
                cos(q1) * cos(q2),
                sin(q1) * sin(q3) - sin(q2) * cos(q1) * cos(q3),
            ],
            [
                sin(q4) * cos(q1) * cos(q3) - sin(q3) * (cos(q2) * cos(q4) + sin(q1) * sin(q2) * sin(q4)),
                sin(q2) * cos(q4) - sin(q1) * sin(q4) * cos(q2),
                sin(q3) * sin(q4) * cos(q1) + cos(q3) * (cos(q2) * cos(q4) + sin(q1) * sin(q2) * sin(q4)),
            ],
        ]
    )
    assert test_mat.expand() == zeros(3, 3)
    assert E.dcm(N) == Matrix(
        [
            [cos(q2) * cos(q3), sin(q3) * cos(q2), -sin(q2)],
            [
                sin(q1) * sin(q2) * cos(q3) - sin(q3) * cos(q1),
                sin(q1) * sin(q2) * sin(q3) + cos(q1) * cos(q3),
                sin(q1) * cos(q2),
            ],
            [
                sin(q1) * sin(q3) + sin(q2) * cos(q1) * cos(q3),
                -sin(q1) * cos(q3) + sin(q2) * sin(q3) * cos(q1),
                cos(q1) * cos(q2),
            ],
        ]
    )
开发者ID:rae1,项目名称:sympy,代码行数:59,代码来源:test_essential.py


示例7: test_parallel_axis

def test_parallel_axis():
    # This is for a 2 dof inverted pendulum on a cart.
    # This tests the parallel axis code in Kane. The inertia of the pendulum is
    # defined about the hinge, not about the center of mass.

    # Defining the constants and knowns of the system
    gravity        = symbols('g')
    k, ls          = symbols('k ls')
    a, mA, mC      = symbols('a mA mC')
    F              = dynamicsymbols('F')
    Ix, Iy, Iz     = symbols('Ix Iy Iz')

    # Declaring the Generalized coordinates and speeds
    q1, q2   = dynamicsymbols('q1 q2')
    q1d, q2d = dynamicsymbols('q1 q2', 1)
    u1, u2   = dynamicsymbols('u1 u2')
    u1d, u2d = dynamicsymbols('u1 u2', 1)

    # Creating reference frames
    N = ReferenceFrame('N')
    A = ReferenceFrame('A')

    A.orient(N, 'Axis', [-q2, N.z])
    A.set_ang_vel(N, -u2 * N.z)

    # Origin of Newtonian reference frame
    O = Point('O')

    # Creating and Locating the positions of the cart, C, and the
    # center of mass of the pendulum, A
    C  = O.locatenew('C',  q1 * N.x)
    Ao = C.locatenew('Ao', a * A.y)

    # Defining velocities of the points
    O.set_vel(N, 0)
    C.set_vel(N, u1 * N.x)
    Ao.v2pt_theory(C, N, A)
    Cart     = Particle('Cart', C, mC)
    Pendulum = RigidBody('Pendulum', Ao, A, mA, (inertia(A, Ix, Iy, Iz), C))

    # kinematical differential equations

    kindiffs  = [q1d - u1, q2d - u2]

    bodyList  = [Cart, Pendulum]

    forceList = [(Ao, -N.y * gravity * mA),
                 (C,  -N.y * gravity * mC),
                 (C,  -N.x * k * (q1 - ls)),
                 (C,   N.x * F)]

    km=Kane(N)
    km.coords([q1, q2])
    km.speeds([u1, u2])
    km.kindiffeq(kindiffs)
    (fr,frstar) = km.kanes_equations(forceList, bodyList)
    mm = km.mass_matrix_full
    assert mm[3, 3] == -Iz
开发者ID:johanhake,项目名称:sympy,代码行数:58,代码来源:test_kane.py


示例8: test_aux

def test_aux():
    # Same as above, except we have 2 auxiliary speeds for the ground contact
    # point, which is known to be zero. In one case, we go through then
    # substitute the aux. speeds in at the end (they are zero, as well as their
    # derivative), in the other case, we use the built-in auxiliary speed part
    # of Kane. The equations from each should be the same.
    q1, q2, q3, u1, u2, u3  = dynamicsymbols('q1 q2 q3 u1 u2 u3')
    q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1)
    u4, u5, f1, f2 = dynamicsymbols('u4, u5, f1, f2')
    u4d, u5d = dynamicsymbols('u4, u5', 1)
    r, m, g = symbols('r m g')

    N = ReferenceFrame('N')
    Y = N.orientnew('Y', 'Axis', [q1, N.z])
    L = Y.orientnew('L', 'Axis', [q2, Y.x])
    R = L.orientnew('R', 'Axis', [q3, L.y])
    R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)
    R.set_ang_acc(N, R.ang_vel_in(N).dt(R) + (R.ang_vel_in(N) ^
        R.ang_vel_in(N)))

    C = Point('C')
    C.set_vel(N, u4 * L.x + u5 * (Y.z ^ L.x))
    Dmc = C.locatenew('Dmc', r * L.z)
    Dmc.v2pt_theory(C, N, R)
    Dmc.a2pt_theory(C, N, R)

    I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2)

    kd = [q1d - u3/cos(q3), q2d - u1, q3d - u2 + u3 * tan(q2)]

    ForceList = [(Dmc, - m * g * Y.z), (C, f1 * L.x + f2 * (Y.z ^ L.x))]
    BodyD = RigidBody()
    BodyD.mc = Dmc
    BodyD.inertia = (I, Dmc)
    BodyD.frame = R
    BodyD.mass = m
    BodyList = [BodyD]

    KM = Kane(N)
    KM.coords([q1, q2, q3])
    KM.speeds([u1, u2, u3, u4, u5])
    KM.kindiffeq(kd)
    kdd = KM.kindiffdict()
    (fr, frstar) = KM.kanes_equations(ForceList, BodyList)
    fr = fr.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5:0})
    frstar = frstar.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5:0})

    KM2 = Kane(N)
    KM2.coords([q1, q2, q3])
    KM2.speeds([u1, u2, u3], u_auxiliary=[u4, u5])
    KM2.kindiffeq(kd)
    (fr2, frstar2) = KM2.kanes_equations(ForceList, BodyList)
    fr2 = fr2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5:0})
    frstar2 = frstar2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5:0})

    assert fr.expand() == fr2.expand()
    assert frstar.expand() == frstar2.expand()
开发者ID:101man,项目名称:sympy,代码行数:57,代码来源:test_kane.py


示例9: test_point_pos

def test_point_pos():
    q = dynamicsymbols('q')
    N = ReferenceFrame('N')
    B = N.orientnew('B', 'Axis', [q, N.z])
    O = Point('O')
    P = O.locatenew('P', 10 * N.x + 5 * B.x)
    assert P.pos_from(O) == 10 * N.x + 5 * B.x
    Q = P.locatenew('Q', 10 * N.y + 5 * B.y)
    assert Q.pos_from(P) == 10 * N.y + 5 * B.y
    assert Q.pos_from(O) == 10 * N.x + 10 * N.y + 5 * B.x + 5 * B.y
    assert O.pos_from(Q) == -10 * N.x - 10 * N.y - 5 * B.x - 5 * B.y
开发者ID:BDGLunde,项目名称:sympy,代码行数:11,代码来源:test_point.py


示例10: test_rolling_disc

def test_rolling_disc():
    # Rolling Disc Example
    # Here the rolling disc is formed from the contact point up, removing the
    # need to introduce generalized speeds. Only 3 configuration and 3
    # speed variables are need to describe this system, along with the
    # disc's mass and radius, and the local gravity.
    q1, q2, q3 = dynamicsymbols('q1 q2 q3')
    q1d, q2d, q3d = dynamicsymbols('q1 q2 q3', 1)
    r, m, g = symbols('r m g')

    # The kinematics are formed by a series of simple rotations. Each simple
    # rotation creates a new frame, and the next rotation is defined by the new
    # frame's basis vectors. This example uses a 3-1-2 series of rotations, or
    # Z, X, Y series of rotations. Angular velocity for this is defined using
    # the second frame's basis (the lean frame).
    N = ReferenceFrame('N')
    Y = N.orientnew('Y', 'Axis', [q1, N.z])
    L = Y.orientnew('L', 'Axis', [q2, Y.x])
    R = L.orientnew('R', 'Axis', [q3, L.y])

    # This is the translational kinematics. We create a point with no velocity
    # in N; this is the contact point between the disc and ground. Next we form
    # the position vector from the contact point to the disc's center of mass.
    # Finally we form the velocity and acceleration of the disc.
    C = Point('C')
    C.set_vel(N, 0)
    Dmc = C.locatenew('Dmc', r * L.z)
    Dmc.v2pt_theory(C, N, R)

    # Forming the inertia dyadic.
    I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2)
    BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc))

    # Finally we form the equations of motion, using the same steps we did
    # before. Supply the Lagrangian, the generalized speeds.
    BodyD.set_potential_energy(- m * g * r * cos(q2))
    Lag = Lagrangian(N, BodyD)
    q = [q1, q2, q3]
    q1 = Function('q1')
    q2 = Function('q2')
    q3 = Function('q3')
    l = LagrangesMethod(Lag, q)
    l.form_lagranges_equations()
    RHS = l.rhs()
    RHS.simplify()
    t = symbols('t')

    assert (l.mass_matrix[3:6] == [0, 5*m*r**2/4, 0])
    assert RHS[4].simplify() == (-8*g*sin(q2(t)) + 5*r*sin(2*q2(t)
        )*Derivative(q1(t), t)**2 + 12*r*cos(q2(t))*Derivative(q1(t), t
        )*Derivative(q3(t), t))/(10*r)
    assert RHS[5] == (-5*cos(q2(t))*Derivative(q1(t), t) + 6*tan(q2(t)
        )*Derivative(q3(t), t) + 4*Derivative(q1(t), t)/cos(q2(t))
        )*Derivative(q2(t), t)
开发者ID:Acebulf,项目名称:sympy,代码行数:54,代码来源:test_lagrange.py


示例11: test_aux

def test_aux():
    # Same as above, except we have 2 auxiliary speeds for the ground contact
    # point, which is known to be zero. In one case, we go through then
    # substitute the aux. speeds in at the end (they are zero, as well as their
    # derivative), in the other case, we use the built-in auxiliary speed part
    # of KanesMethod. The equations from each should be the same.
    q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3')
    q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1)
    u4, u5, f1, f2 = dynamicsymbols('u4, u5, f1, f2')
    u4d, u5d = dynamicsymbols('u4, u5', 1)
    r, m, g = symbols('r m g')

    N = ReferenceFrame('N')
    Y = N.orientnew('Y', 'Axis', [q1, N.z])
    L = Y.orientnew('L', 'Axis', [q2, Y.x])
    R = L.orientnew('R', 'Axis', [q3, L.y])
    w_R_N_qd = R.ang_vel_in(N)
    R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)

    C = Point('C')
    C.set_vel(N, u4 * L.x + u5 * (Y.z ^ L.x))
    Dmc = C.locatenew('Dmc', r * L.z)
    Dmc.v2pt_theory(C, N, R)
    Dmc.a2pt_theory(C, N, R)

    I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2)

    kd = [dot(R.ang_vel_in(N) - w_R_N_qd, uv) for uv in L]

    ForceList = [(Dmc, - m * g * Y.z), (C, f1 * L.x + f2 * (Y.z ^ L.x))]
    BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc))
    BodyList = [BodyD]

    KM = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3, u4, u5],
                     kd_eqs=kd)
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
        (fr, frstar) = KM.kanes_equations(ForceList, BodyList)
    fr = fr.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})
    frstar = frstar.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})

    KM2 = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3], kd_eqs=kd,
                      u_auxiliary=[u4, u5])
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
        (fr2, frstar2) = KM2.kanes_equations(ForceList, BodyList)
    fr2 = fr2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})
    frstar2 = frstar2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})

    frstar.simplify()
    frstar2.simplify()

    assert (fr - fr2).expand() == Matrix([0, 0, 0, 0, 0])
    assert (frstar - frstar2).expand() == Matrix([0, 0, 0, 0, 0])
开发者ID:AStorus,项目名称:sympy,代码行数:54,代码来源:test_kane.py


示例12: test_parallel_axis

def test_parallel_axis():
    # This is for a 2 dof inverted pendulum on a cart.
    # This tests the parallel axis code in KanesMethod. The inertia of the
    # pendulum is defined about the hinge, not about the center of mass.

    # Defining the constants and knowns of the system
    gravity = symbols("g")
    k, ls = symbols("k ls")
    a, mA, mC = symbols("a mA mC")
    F = dynamicsymbols("F")
    Ix, Iy, Iz = symbols("Ix Iy Iz")

    # Declaring the Generalized coordinates and speeds
    q1, q2 = dynamicsymbols("q1 q2")
    q1d, q2d = dynamicsymbols("q1 q2", 1)
    u1, u2 = dynamicsymbols("u1 u2")
    u1d, u2d = dynamicsymbols("u1 u2", 1)

    # Creating reference frames
    N = ReferenceFrame("N")
    A = ReferenceFrame("A")

    A.orient(N, "Axis", [-q2, N.z])
    A.set_ang_vel(N, -u2 * N.z)

    # Origin of Newtonian reference frame
    O = Point("O")

    # Creating and Locating the positions of the cart, C, and the
    # center of mass of the pendulum, A
    C = O.locatenew("C", q1 * N.x)
    Ao = C.locatenew("Ao", a * A.y)

    # Defining velocities of the points
    O.set_vel(N, 0)
    C.set_vel(N, u1 * N.x)
    Ao.v2pt_theory(C, N, A)
    Cart = Particle("Cart", C, mC)
    Pendulum = RigidBody("Pendulum", Ao, A, mA, (inertia(A, Ix, Iy, Iz), C))

    # kinematical differential equations

    kindiffs = [q1d - u1, q2d - u2]

    bodyList = [Cart, Pendulum]

    forceList = [(Ao, -N.y * gravity * mA), (C, -N.y * gravity * mC), (C, -N.x * k * (q1 - ls)), (C, N.x * F)]

    km = KanesMethod(N, [q1, q2], [u1, u2], kindiffs)
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
        (fr, frstar) = km.kanes_equations(forceList, bodyList)
    mm = km.mass_matrix_full
    assert mm[3, 3] == Iz
开发者ID:ashutoshsaboo,项目名称:sympy,代码行数:54,代码来源:test_kane.py


示例13: test_point_a2pt_theorys

def test_point_a2pt_theorys():
    q = dynamicsymbols('q')
    qd = dynamicsymbols('q', 1)
    qdd = dynamicsymbols('q', 2)
    N = ReferenceFrame('N')
    B = N.orientnew('B', 'Axis', [q, N.z])
    O = Point('O')
    P = O.locatenew('P', 0)
    O.set_vel(N, 0)
    assert P.a2pt_theory(O, N, B) == 0
    P.set_pos(O, B.x)
    assert P.a2pt_theory(O, N, B) == (-qd**2) * B.x + (qdd) * B.y
开发者ID:BDGLunde,项目名称:sympy,代码行数:12,代码来源:test_point.py


示例14: test_point_v2pt_theorys

def test_point_v2pt_theorys():
    q = dynamicsymbols('q')
    qd = dynamicsymbols('q', 1)
    N = ReferenceFrame('N')
    B = N.orientnew('B', 'Axis', [q, N.z])
    O = Point('O')
    P = O.locatenew('P', 0)
    O.set_vel(N, 0)
    assert P.v2pt_theory(O, N, B) == 0
    P = O.locatenew('P', B.x)
    assert P.v2pt_theory(O, N, B) == (qd * B.z ^ B.x)
    O.set_vel(N, N.x)
    assert P.v2pt_theory(O, N, B) == N.x + qd * B.y
开发者ID:BDGLunde,项目名称:sympy,代码行数:13,代码来源:test_point.py


示例15: get_equations

def get_equations(m_val, g_val, l_val):
    # This function body is copyied from:
    # http://www.pydy.org/examples/double_pendulum.html
    # Retrieved 2015-09-29
    from sympy import symbols
    from sympy.physics.mechanics import (
        dynamicsymbols, ReferenceFrame, Point, Particle, KanesMethod
    )

    q1, q2 = dynamicsymbols('q1 q2')
    q1d, q2d = dynamicsymbols('q1 q2', 1)
    u1, u2 = dynamicsymbols('u1 u2')
    u1d, u2d = dynamicsymbols('u1 u2', 1)
    l, m, g = symbols('l m g')

    N = ReferenceFrame('N')
    A = N.orientnew('A', 'Axis', [q1, N.z])
    B = N.orientnew('B', 'Axis', [q2, N.z])

    A.set_ang_vel(N, u1 * N.z)
    B.set_ang_vel(N, u2 * N.z)

    O = Point('O')
    P = O.locatenew('P', l * A.x)
    R = P.locatenew('R', l * B.x)

    O.set_vel(N, 0)
    P.v2pt_theory(O, N, A)
    R.v2pt_theory(P, N, B)

    ParP = Particle('ParP', P, m)
    ParR = Particle('ParR', R, m)

    kd = [q1d - u1, q2d - u2]
    FL = [(P, m * g * N.x), (R, m * g * N.x)]
    BL = [ParP, ParR]

    KM = KanesMethod(N, q_ind=[q1, q2], u_ind=[u1, u2], kd_eqs=kd)

    (fr, frstar) = KM.kanes_equations(FL, BL)
    kdd = KM.kindiffdict()
    mm = KM.mass_matrix_full
    fo = KM.forcing_full
    qudots = mm.inv() * fo
    qudots = qudots.subs(kdd)
    qudots.simplify()
    # Edit:
    depv = [q1, q2, u1, u2]
    subs = list(zip([m, g, l], [m_val, g_val, l_val]))
    return zip(depv, [expr.subs(subs) for expr in qudots])
开发者ID:bjodah,项目名称:pyodesys,代码行数:50,代码来源:pydy_double_pendulum.py


示例16: test_rigidbody2

def test_rigidbody2():
    M, v, r, omega = dynamicsymbols('M v r omega')
    N = ReferenceFrame('N')
    b = ReferenceFrame('b')
    b.set_ang_vel(N, omega * b.x)
    P = Point('P')
    I = outer (b.x, b.x)
    Inertia_tuple = (I, P)
    B = RigidBody('B', P, b, M, Inertia_tuple)
    P.set_vel(N, v * b.x)
    assert B.angularmomentum(P, N) == omega * b.x
    O = Point('O')
    O.set_vel(N, v * b.x)
    P.set_pos(O, r * b.y)
    assert B.angularmomentum(O, N) == omega * b.x - M*v*r*b.z
开发者ID:piyushbansal,项目名称:sympy,代码行数:15,代码来源:test_rigidbody.py


示例17: __init__

    def __init__(self):
        #We define some quantities required for tests here..
        self.p = dynamicsymbols('p:3')
        self.q = dynamicsymbols('q:3')
        self.dynamic = list(self.p) + list(self.q)
        self.states = [radians(45) for x in self.p] + \
                               [radians(30) for x in self.q]

        self.I = ReferenceFrame('I')
        self.A = self.I.orientnew('A', 'space', self.p, 'XYZ')
        self.B = self.A.orientnew('B', 'space', self.q, 'XYZ')

        self.O = Point('O')
        self.P1 = self.O.locatenew('P1', 10 * self.I.x + \
                                      10 * self.I.y + 10 * self.I.z)
        self.P2 = self.P1.locatenew('P2', 10 * self.I.x + \
                                    10 * self.I.y + 10 * self.I.z)

        self.point_list1 = [[2, 3, 1], [4, 6, 2], [5, 3, 1], [5, 3, 6]]
        self.point_list2 = [[3, 1, 4], [3, 8, 2], [2, 1, 6], [2, 1, 1]]

        self.shape1 = Cylinder()
        self.shape2 = Cylinder()


        self.Ixx, self.Iyy, self.Izz = symbols('Ixx Iyy Izz')
        self.mass = symbols('mass')
        self.parameters = [self.Ixx, self.Iyy, self.Izz, self.mass]
        self.param_vals = [0, 0, 0, 0]

        self.inertia = inertia(self.A, self.Ixx, self.Iyy, self.Izz)

        self.rigid_body = RigidBody('rigid_body1', self.P1, self.A, \
                                 self.mass, (self.inertia, self.P1))

        self.global_frame1 = VisualizationFrame('global_frame1', \
                                self.A, self.P1, self.shape1)

        self.global_frame2 = VisualizationFrame('global_frame2', \
                                self.B, self.P2, self.shape2)

        self.scene1 = Scene(self.I, self.O, \
                            (self.global_frame1, self.global_frame2), \
                                             name='scene')

        self.particle = Particle('particle1', self.P1, self.mass)

        #To make it more readable
        p = self.p
        q = self.q
        #Here is the dragon ..
        self.transformation_matrix = \
            [[cos(p[1])*cos(p[2]), sin(p[2])*cos(p[1]), -sin(p[1]), 0], \
             [sin(p[0])*sin(p[1])*cos(p[2]) - sin(p[2])*cos(p[0]), \
                  sin(p[0])*sin(p[1])*sin(p[2]) + cos(p[0])*cos(p[2]), \
                  sin(p[0])*cos(p[1]), 0], \
             [sin(p[0])*sin(p[2]) + sin(p[1])*cos(p[0])*cos(p[2]), \
                 -sin(p[0])*cos(p[2]) + sin(p[1])*sin(p[2])*cos(p[0]), \
                  cos(p[0])*cos(p[1]), 0], \
             [10, 10, 10, 1]]
开发者ID:jcrist,项目名称:pydy-viz,代码行数:60,代码来源:test_visualization_frame_scene.py


示例18: test_point_v1pt_theorys

def test_point_v1pt_theorys():
    q, q2 = dynamicsymbols('q q2')
    qd, q2d = dynamicsymbols('q q2', 1)
    qdd, q2dd = dynamicsymbols('q q2', 2)
    N = ReferenceFrame('N')
    B = ReferenceFrame('B')
    B.set_ang_vel(N, qd * B.z)
    O = Point('O')
    P = O.locatenew('P', B.x)
    P.set_vel(B, 0)
    O.set_vel(N, 0)
    assert P.v1pt_theory(O, N, B) == qd * B.y
    O.set_vel(N, N.x)
    assert P.v1pt_theory(O, N, B) == N.x + qd * B.y
    P.set_vel(B, B.z)
    assert P.v1pt_theory(O, N, B) == B.z + N.x + qd * B.y
开发者ID:BDGLunde,项目名称:sympy,代码行数:16,代码来源:test_point.py


示例19: test_disc_on_an_incline_plane

def test_disc_on_an_incline_plane():
    # Disc rolling on an inclined plane
    # First the generalized coordinates are created. The mass center of the
    # disc is located from top vertex of the inclined plane by the generalized
    # coordinate 'y'. The orientation of the disc is defined by the angle
    # 'theta'. The mass of the disc is 'm' and its radius is 'R'. The length of
    # the inclined path is 'l', the angle of inclination is 'alpha'. 'g' is the
    # gravitational constant.
    y, theta = dynamicsymbols('y theta')
    yd, thetad = dynamicsymbols('y theta', 1)
    m, g, R, l, alpha = symbols('m g R l alpha')

    # Next, we create the inertial reference frame 'N'. A reference frame 'A'
    # is attached to the inclined plane. Finally a frame is created which is attached to the disk.
    N = ReferenceFrame('N')
    A = N.orientnew('A', 'Axis', [pi/2 - alpha, N.z])
    B = A.orientnew('B', 'Axis', [-theta, A.z])

    # Creating the disc 'D'; we create the point that represents the mass
    # center of the disc and set its velocity. The inertia dyadic of the disc
    # is created. Finally, we create the disc.
    Do = Point('Do')
    Do.set_vel(N, yd * A.x)
    I = m * R**2 / 2 * B.z | B.z
    D = RigidBody('D', Do, B, m, (I, Do))

    # To construct the Lagrangian, 'L', of the disc, we determine its kinetic
    # and potential energies, T and U, respectively. L is defined as the
    # difference between T and U.
    D.set_potential_energy(m * g * (l - y) * sin(alpha))
    L = Lagrangian(N, D)

    # We then create the list of generalized coordinates and constraint
    # equations. The constraint arises due to the disc rolling without slip on
    # on the inclined path. Also, the constraint is holonomic but we supply the
    # differentiated holonomic equation as the 'LagrangesMethod' class requires
    # that. We then invoke the 'LagrangesMethod' class and supply it the
    # necessary arguments and generate the equations of motion. The'rhs' method
    # solves for the q_double_dots (i.e. the second derivative with respect to
    # time  of the generalized coordinates and the lagrange multiplers.
    q = [y, theta]
    coneq = [yd - R * thetad]
    m = LagrangesMethod(L, q, coneq)
    m.form_lagranges_equations()
    rhs = m.rhs()
    rhs.simplify()
    assert rhs[2] == 2*g*sin(alpha)/3
开发者ID:B-Rich,项目名称:sympy,代码行数:47,代码来源:test_lagrange.py


示例20: test_dub_pen

def test_dub_pen():

    # The system considered is the double pendulum. Like in the
    # test of the simple pendulum above, we begin by creating the generalized
    # coordinates and the simple generalized speeds and accelerations which
    # will be used later. Following this we create frames and points necessary
    # for the kinematics. The procedure isn't explicitly explained as this is
    # similar to the simple  pendulum. Also this is documented on the pydy.org
    # website.
    q1, q2 = dynamicsymbols('q1 q2')
    q1d, q2d = dynamicsymbols('q1 q2', 1)
    q1dd, q2dd = dynamicsymbols('q1 q2', 2)
    u1, u2 = dynamicsymbols('u1 u2')
    u1d, u2d = dynamicsymbols('u1 u2', 1)
    l, m, g = symbols('l m g')

    N = ReferenceFrame('N')
    A = N.orientnew('A', 'Axis', [q1, N.z])
    B = N.orientnew('B', 'Axis', [q2, N.z])

    A.set_ang_vel(N, q1d * A.z)
    B.set_ang_vel(N, q2d * A.z)

    O = Point('O')
    P = O.locatenew('P', l * A.x)
    R = P.locatenew('R', l * B.x)

    O.set_vel(N, 0)
    P.v2pt_theory(O, N, A)
    R.v2pt_theory(P, N, B)

    ParP = Particle('ParP', P, m)
    ParR = Particle('ParR', R, m)

    ParP.potential_energy = - m * g * l * cos(q1)
    ParR.potential_energy = - m * g * l * cos(q1) - m * g * l * cos(q2)
    L = Lagrangian(N, ParP, ParR)
    lm = LagrangesMethod(L, [q1, q2], bodies=[ParP, ParR])
    lm.form_lagranges_equations()

    assert simplify(l*m*(2*g*sin(q1) + l*sin(q1)*sin(q2)*q2dd
        + l*sin(q1)*cos(q2)*q2d**2 - l*sin(q2)*cos(q1)*q2d**2
        + l*cos(q1)*cos(q2)*q2dd + 2*l*q1dd) - lm.eom[0]) == 0
    assert simplify(l*m*(g*sin(q2) + l*sin(q1)*sin(q2)*q1dd
        - l*sin(q1)*cos(q2)*q1d**2 + l*sin(q2)*cos(q1)*q1d**2
        + l*cos(q1)*cos(q2)*q1dd + l*q2dd) - lm.eom[1]) == 0
    assert lm.bodies == [ParP, ParR]
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:47,代码来源:test_lagrange.py



注:本文中的sympy.physics.mechanics.ReferenceFrame类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python mechanics.RigidBody类代码示例发布时间:2022-05-27
下一篇:
Python mechanics.Point类代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap