本文整理汇总了Python中sympy.physics.mechanics.dynamicsymbols函数的典型用法代码示例。如果您正苦于以下问题:Python dynamicsymbols函数的具体用法?Python dynamicsymbols怎么用?Python dynamicsymbols使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了dynamicsymbols函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_one_dof
def test_one_dof():
# This is for a 1 dof spring-mass-damper case.
# It is described in more detail in the KanesMethod docstring.
q, u = dynamicsymbols('q u')
qd, ud = dynamicsymbols('q u', 1)
m, c, k = symbols('m c k')
N = ReferenceFrame('N')
P = Point('P')
P.set_vel(N, u * N.x)
kd = [qd - u]
FL = [(P, (-k * q - c * u) * N.x)]
pa = Particle('pa', P, m)
BL = [pa]
KM = KanesMethod(N, [q], [u], kd)
KM.kanes_equations(FL, BL)
MM = KM.mass_matrix
forcing = KM.forcing
rhs = MM.inv() * forcing
assert expand(rhs[0]) == expand(-(q * k + u * c) / m)
assert (KM.linearize(A_and_B=True, new_method=True)[0] ==
Matrix([[0, 1], [-k/m, -c/m]]))
# Ensure that the old linearizer still works and that the new linearizer
# gives the same results. The old linearizer is deprecated and should be
# removed in >= 0.7.7.
M_old = KM.mass_matrix_full
# The old linearizer raises a deprecation warning, so catch it here so
# it doesn't cause py.test to fail.
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
F_A_old, F_B_old, r_old = KM.linearize()
M_new, F_A_new, F_B_new, r_new = KM.linearize(new_method=True)
assert simplify(M_new.inv() * F_A_new - M_old.inv() * F_A_old) == zeros(2)
开发者ID:A-turing-machine,项目名称:sympy,代码行数:35,代码来源:test_kane.py
示例2: test_linearize_pendulum_lagrange_nonminimal
def test_linearize_pendulum_lagrange_nonminimal():
q1, q2 = dynamicsymbols('q1:3')
q1d, q2d = dynamicsymbols('q1:3', level=1)
L, m, t = symbols('L, m, t')
g = 9.8
# Compose World Frame
N = ReferenceFrame('N')
pN = Point('N*')
pN.set_vel(N, 0)
# A.x is along the pendulum
theta1 = atan(q2/q1)
A = N.orientnew('A', 'axis', [theta1, N.z])
# Create point P, the pendulum mass
P = pN.locatenew('P1', q1*N.x + q2*N.y)
P.set_vel(N, P.pos_from(pN).dt(N))
pP = Particle('pP', P, m)
# Constraint Equations
f_c = Matrix([q1**2 + q2**2 - L**2])
# Calculate the lagrangian, and form the equations of motion
Lag = Lagrangian(N, pP)
LM = LagrangesMethod(Lag, [q1, q2], hol_coneqs=f_c, forcelist=[(P, m*g*N.x)], frame=N)
LM.form_lagranges_equations()
# Compose operating point
op_point = {q1: L, q2: 0, q1d: 0, q2d: 0, q1d.diff(t): 0, q2d.diff(t): 0}
# Solve for multiplier operating point
lam_op = LM.solve_multipliers(op_point=op_point)
op_point.update(lam_op)
# Perform the Linearization
A, B, inp_vec = LM.linearize([q2], [q2d], [q1], [q1d],
op_point=op_point, A_and_B=True)
assert A == Matrix([[0, 1], [-9.8/L, 0]])
assert B == Matrix([])
开发者ID:Festy,项目名称:sympy,代码行数:32,代码来源:test_linearize.py
示例3: test_linearize_pendulum_lagrange_minimal
def test_linearize_pendulum_lagrange_minimal():
q1 = dynamicsymbols('q1') # angle of pendulum
q1d = dynamicsymbols('q1', 1) # Angular velocity
L, m, t = symbols('L, m, t')
g = 9.8
# Compose world frame
N = ReferenceFrame('N')
pN = Point('N*')
pN.set_vel(N, 0)
# A.x is along the pendulum
A = N.orientnew('A', 'axis', [q1, N.z])
A.set_ang_vel(N, q1d*N.z)
# Locate point P relative to the origin N*
P = pN.locatenew('P', L*A.x)
P.v2pt_theory(pN, N, A)
pP = Particle('pP', P, m)
# Solve for eom with Lagranges method
Lag = Lagrangian(N, pP)
LM = LagrangesMethod(Lag, [q1], forcelist=[(P, m*g*N.x)], frame=N)
LM.form_lagranges_equations()
# Linearize
A, B, inp_vec = LM.linearize([q1], [q1d], A_and_B=True)
assert A == Matrix([[0, 1], [-9.8*cos(q1)/L, 0]])
assert B == Matrix([])
开发者ID:Festy,项目名称:sympy,代码行数:30,代码来源:test_linearize.py
示例4: test_n_link_pendulum_on_cart_higher_order
def test_n_link_pendulum_on_cart_higher_order():
l0, m0 = symbols("l0 m0")
l1, m1 = symbols("l1 m1")
m2 = symbols("m2")
g = symbols("g")
q0, q1, q2 = dynamicsymbols("q0 q1 q2")
u0, u1, u2 = dynamicsymbols("u0 u1 u2")
F, T1 = dynamicsymbols("F T1")
kane1 = models.n_link_pendulum_on_cart(2)
massmatrix1 = Matrix([[m0 + m1 + m2, -l0*m1*cos(q1) - l0*m2*cos(q1),
-l1*m2*cos(q2)],
[-l0*m1*cos(q1) - l0*m2*cos(q1), l0**2*m1 + l0**2*m2,
l0*l1*m2*(sin(q1)*sin(q2) + cos(q1)*cos(q2))],
[-l1*m2*cos(q2),
l0*l1*m2*(sin(q1)*sin(q2) + cos(q1)*cos(q2)),
l1**2*m2]])
forcing1 = Matrix([[-l0*m1*u1**2*sin(q1) - l0*m2*u1**2*sin(q1) -
l1*m2*u2**2*sin(q2) + F],
[g*l0*m1*sin(q1) + g*l0*m2*sin(q1) -
l0*l1*m2*(sin(q1)*cos(q2) - sin(q2)*cos(q1))*u2**2],
[g*l1*m2*sin(q2) - l0*l1*m2*(-sin(q1)*cos(q2) +
sin(q2)*cos(q1))*u1**2]])
assert simplify(massmatrix1 - kane1.mass_matrix) == zeros(3)
assert simplify(forcing1 - kane1.forcing) == Matrix([0, 0, 0])
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:25,代码来源:test_models.py
示例5: test_nonminimal_pendulum
def test_nonminimal_pendulum():
q1, q2 = dynamicsymbols('q1:3')
q1d, q2d = dynamicsymbols('q1:3', level=1)
L, m, t = symbols('L, m, t')
g = 9.8
# Compose World Frame
N = ReferenceFrame('N')
pN = Point('N*')
pN.set_vel(N, 0)
# Create point P, the pendulum mass
P = pN.locatenew('P1', q1*N.x + q2*N.y)
P.set_vel(N, P.pos_from(pN).dt(N))
pP = Particle('pP', P, m)
# Constraint Equations
f_c = Matrix([q1**2 + q2**2 - L**2])
# Calculate the lagrangian, and form the equations of motion
Lag = Lagrangian(N, pP)
LM = LagrangesMethod(Lag, [q1, q2], hol_coneqs=f_c,
forcelist=[(P, m*g*N.x)], frame=N)
LM.form_lagranges_equations()
# Check solution
lam1 = LM.lam_vec[0, 0]
eom_sol = Matrix([[m*Derivative(q1, t, t) - 9.8*m + 2*lam1*q1],
[m*Derivative(q2, t, t) + 2*lam1*q2]])
assert LM.eom == eom_sol
# Check multiplier solution
lam_sol = Matrix([(19.6*q1 + 2*q1d**2 + 2*q2d**2)/(4*q1**2/m + 4*q2**2/m)])
assert LM.solve_multipliers(sol_type='Matrix') == lam_sol
开发者ID:A-turing-machine,项目名称:sympy,代码行数:28,代码来源:test_lagrange.py
示例6: test_two_dof
def test_two_dof():
# This is for a 2 d.o.f., 2 particle spring-mass-damper.
# The first coordinate is the displacement of the first particle, and the
# second is the relative displacement between the first and second
# particles. Speeds are defined as the time derivatives of the particles.
q1, q2, u1, u2 = dynamicsymbols('q1 q2 u1 u2')
q1d, q2d, u1d, u2d = dynamicsymbols('q1 q2 u1 u2', 1)
m, c1, c2, k1, k2 = symbols('m c1 c2 k1 k2')
N = ReferenceFrame('N')
P1 = Point('P1')
P2 = Point('P2')
P1.set_vel(N, u1 * N.x)
P2.set_vel(N, (u1 + u2) * N.x)
kd = [q1d - u1, q2d - u2]
# Now we create the list of forces, then assign properties to each
# particle, then create a list of all particles.
FL = [(P1, (-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2) * N.x), (P2, (-k2 *
q2 - c2 * u2) * N.x)]
pa1 = Particle('pa1', P1, m)
pa2 = Particle('pa2', P2, m)
BL = [pa1, pa2]
# Finally we create the KanesMethod object, specify the inertial frame,
# pass relevant information, and form Fr & Fr*. Then we calculate the mass
# matrix and forcing terms, and finally solve for the udots.
KM = KanesMethod(N, q_ind=[q1, q2], u_ind=[u1, u2], kd_eqs=kd)
KM.kanes_equations(FL, BL)
MM = KM.mass_matrix
forcing = KM.forcing
rhs = MM.inv() * forcing
assert expand(rhs[0]) == expand((-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2)/m)
assert expand(rhs[1]) == expand((k1 * q1 + c1 * u1 - 2 * k2 * q2 - 2 *
c2 * u2) / m)
开发者ID:A-turing-machine,项目名称:sympy,代码行数:34,代码来源:test_kane.py
示例7: __init__
def __init__(self):
#We define some quantities required for tests here..
self.p = dynamicsymbols('p:3')
self.q = dynamicsymbols('q:3')
self.dynamic = list(self.p) + list(self.q)
self.states = [radians(45) for x in self.p] + \
[radians(30) for x in self.q]
self.I = ReferenceFrame('I')
self.A = self.I.orientnew('A', 'space', self.p, 'XYZ')
self.B = self.A.orientnew('B', 'space', self.q, 'XYZ')
self.O = Point('O')
self.P1 = self.O.locatenew('P1', 10 * self.I.x + \
10 * self.I.y + 10 * self.I.z)
self.P2 = self.P1.locatenew('P2', 10 * self.I.x + \
10 * self.I.y + 10 * self.I.z)
self.point_list1 = [[2, 3, 1], [4, 6, 2], [5, 3, 1], [5, 3, 6]]
self.point_list2 = [[3, 1, 4], [3, 8, 2], [2, 1, 6], [2, 1, 1]]
self.shape1 = Cylinder()
self.shape2 = Cylinder()
self.Ixx, self.Iyy, self.Izz = symbols('Ixx Iyy Izz')
self.mass = symbols('mass')
self.parameters = [self.Ixx, self.Iyy, self.Izz, self.mass]
self.param_vals = [0, 0, 0, 0]
self.inertia = inertia(self.A, self.Ixx, self.Iyy, self.Izz)
self.rigid_body = RigidBody('rigid_body1', self.P1, self.A, \
self.mass, (self.inertia, self.P1))
self.global_frame1 = VisualizationFrame('global_frame1', \
self.A, self.P1, self.shape1)
self.global_frame2 = VisualizationFrame('global_frame2', \
self.B, self.P2, self.shape2)
self.scene1 = Scene(self.I, self.O, \
(self.global_frame1, self.global_frame2), \
name='scene')
self.particle = Particle('particle1', self.P1, self.mass)
#To make it more readable
p = self.p
q = self.q
#Here is the dragon ..
self.transformation_matrix = \
[[cos(p[1])*cos(p[2]), sin(p[2])*cos(p[1]), -sin(p[1]), 0], \
[sin(p[0])*sin(p[1])*cos(p[2]) - sin(p[2])*cos(p[0]), \
sin(p[0])*sin(p[1])*sin(p[2]) + cos(p[0])*cos(p[2]), \
sin(p[0])*cos(p[1]), 0], \
[sin(p[0])*sin(p[2]) + sin(p[1])*cos(p[0])*cos(p[2]), \
-sin(p[0])*cos(p[2]) + sin(p[1])*sin(p[2])*cos(p[0]), \
cos(p[0])*cos(p[1]), 0], \
[10, 10, 10, 1]]
开发者ID:jcrist,项目名称:pydy-viz,代码行数:60,代码来源:test_visualization_frame_scene.py
示例8: test_point_funcs
def test_point_funcs():
q, q2 = dynamicsymbols('q q2')
qd, q2d = dynamicsymbols('q q2', 1)
qdd, q2dd = dynamicsymbols('q q2', 2)
N = ReferenceFrame('N')
B = ReferenceFrame('B')
B.set_ang_vel(N, 5 * B.y)
O = Point('O')
P = O.locatenew('P', q * B.x)
assert P.pos_from(O) == q * B.x
P.set_vel(B, qd * B.x + q2d * B.y)
assert P.vel(B) == qd * B.x + q2d * B.y
O.set_vel(N, 0)
assert O.vel(N) == 0
assert P.a1pt_theory(O, N, B) == ((-25 * q + qdd) * B.x + (q2dd) * B.y +
(-10 * qd) * B.z)
B = N.orientnew('B', 'Axis', [q, N.z])
O = Point('O')
P = O.locatenew('P', 10 * B.x)
O.set_vel(N, 5 * N.x)
assert O.vel(N) == 5 * N.x
assert P.a2pt_theory(O, N, B) == (-10 * qd**2) * B.x + (10 * qdd) * B.y
B.set_ang_vel(N, 5 * B.y)
O = Point('O')
P = O.locatenew('P', q * B.x)
P.set_vel(B, qd * B.x + q2d * B.y)
O.set_vel(N, 0)
assert P.v1pt_theory(O, N, B) == qd * B.x + q2d * B.y - 5 * q * B.z
开发者ID:BDGLunde,项目名称:sympy,代码行数:30,代码来源:test_point.py
示例9: test_partial_velocity
def test_partial_velocity():
q1, q2, q3, u1, u2, u3 = dynamicsymbols("q1 q2 q3 u1 u2 u3")
u4, u5 = dynamicsymbols("u4, u5")
r = symbols("r")
N = ReferenceFrame("N")
Y = N.orientnew("Y", "Axis", [q1, N.z])
L = Y.orientnew("L", "Axis", [q2, Y.x])
R = L.orientnew("R", "Axis", [q3, L.y])
R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)
C = Point("C")
C.set_vel(N, u4 * L.x + u5 * (Y.z ^ L.x))
Dmc = C.locatenew("Dmc", r * L.z)
Dmc.v2pt_theory(C, N, R)
vel_list = [Dmc.vel(N), C.vel(N), R.ang_vel_in(N)]
u_list = [u1, u2, u3, u4, u5]
assert partial_velocity(vel_list, u_list) == [
[-r * L.y, 0, L.x],
[r * L.x, 0, L.y],
[0, 0, L.z],
[L.x, L.x, 0],
[cos(q2) * L.y - sin(q2) * L.z, cos(q2) * L.y - sin(q2) * L.z, 0],
]
开发者ID:rishabh11,项目名称:sympy,代码行数:25,代码来源:test_functions.py
示例10: test_n_link_pendulum_on_cart_inputs
def test_n_link_pendulum_on_cart_inputs():
l0, m0 = symbols("l0 m0")
m1 = symbols("m1")
g = symbols("g")
q0, q1, F, T1 = dynamicsymbols("q0 q1 F T1")
u0, u1 = dynamicsymbols("u0 u1")
kane1 = models.n_link_pendulum_on_cart(1)
massmatrix1 = Matrix([[m0 + m1, -l0*m1*cos(q1)],
[-l0*m1*cos(q1), l0**2*m1]])
forcing1 = Matrix([[-l0*m1*u1**2*sin(q1) + F], [g*l0*m1*sin(q1)]])
assert simplify(massmatrix1 - kane1.mass_matrix) == zeros(2)
assert simplify(forcing1 - kane1.forcing) == Matrix([0, 0])
kane2 = models.n_link_pendulum_on_cart(1, False)
massmatrix2 = Matrix([[m0 + m1, -l0*m1*cos(q1)],
[-l0*m1*cos(q1), l0**2*m1]])
forcing2 = Matrix([[-l0*m1*u1**2*sin(q1)], [g*l0*m1*sin(q1)]])
assert simplify(massmatrix2 - kane2.mass_matrix) == zeros(2)
assert simplify(forcing2 - kane2.forcing) == Matrix([0, 0])
kane3 = models.n_link_pendulum_on_cart(1, False, True)
massmatrix3 = Matrix([[m0 + m1, -l0*m1*cos(q1)],
[-l0*m1*cos(q1), l0**2*m1]])
forcing3 = Matrix([[-l0*m1*u1**2*sin(q1)], [g*l0*m1*sin(q1) + T1]])
assert simplify(massmatrix3 - kane3.mass_matrix) == zeros(2)
assert simplify(forcing3 - kane3.forcing) == Matrix([0, 0])
kane4 = models.n_link_pendulum_on_cart(1, True, False)
massmatrix4 = Matrix([[m0 + m1, -l0*m1*cos(q1)],
[-l0*m1*cos(q1), l0**2*m1]])
forcing4 = Matrix([[-l0*m1*u1**2*sin(q1) + F], [g*l0*m1*sin(q1)]])
assert simplify(massmatrix4 - kane4.mass_matrix) == zeros(2)
assert simplify(forcing4 - kane4.forcing) == Matrix([0, 0])
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:34,代码来源:test_models.py
示例11: test_dyadic
def test_dyadic():
d1 = A.x | A.x
d2 = A.y | A.y
d3 = A.x | A.y
assert d1 * 0 == 0
assert d1 != 0
assert d1 * 2 == 2 * A.x | A.x
assert d1 / 2. == 0.5 * d1
assert d1 & (0 * d1) == 0
assert d1 & d2 == 0
assert d1 & A.x == A.x
assert d1 ^ A.x == 0
assert d1 ^ A.y == A.x | A.z
assert d1 ^ A.z == - A.x | A.y
assert d2 ^ A.x == - A.y | A.z
assert A.x ^ d1 == 0
assert A.y ^ d1 == - A.z | A.x
assert A.z ^ d1 == A.y | A.x
assert A.x & d1 == A.x
assert A.y & d1 == 0
assert A.y & d2 == A.y
assert d1 & d3 == A.x | A.y
assert d3 & d1 == 0
assert d1.dt(A) == 0
q = dynamicsymbols('q')
qd = dynamicsymbols('q', 1)
B = A.orientnew('B', 'Axis', [q, A.z])
assert d1.express(B) == d1.express(B, B)
assert d1.express(B) == ((cos(q)**2) * (B.x | B.x) + (-sin(q) * cos(q)) *
(B.x | B.y) + (-sin(q) * cos(q)) * (B.y | B.x) + (sin(q)**2) *
(B.y | B.y))
assert d1.express(B, A) == (cos(q)) * (B.x | A.x) + (-sin(q)) * (B.y | A.x)
assert d1.express(A, B) == (cos(q)) * (A.x | B.x) + (-sin(q)) * (A.x | B.y)
assert d1.dt(B) == (-qd) * (A.y | A.x) + (-qd) * (A.x | A.y)
开发者ID:akritas,项目名称:sympy,代码行数:34,代码来源:test_essential.py
示例12: test_one_dof
def test_one_dof():
# This is for a 1 dof spring-mass-damper case.
# It is described in more detail in the Kane docstring.
q, u = dynamicsymbols('q u')
qd, ud = dynamicsymbols('q u', 1)
m, c, k = symbols('m c k')
N = ReferenceFrame('N')
P = Point('P')
P.set_vel(N, u * N.x)
kd = [qd - u]
FL = [(P, (-k * q - c * u) * N.x)]
pa = Particle()
pa.mass = m
pa.point = P
BL = [pa]
KM = Kane(N)
KM.coords([q])
KM.speeds([u])
KM.kindiffeq(kd)
KM.kanes_equations(FL, BL)
MM = KM.mass_matrix
forcing = KM.forcing
rhs = MM.inv() * forcing
assert expand(rhs[0]) == expand(-(q * k + u * c) / m)
assert KM.linearize() == (Matrix([[0, 1], [k, c]]), Matrix([]))
开发者ID:101man,项目名称:sympy,代码行数:27,代码来源:test_kane.py
示例13: test_pend
def test_pend():
q, u = dynamicsymbols('q u')
qd, ud = dynamicsymbols('q u', 1)
m, l, g = symbols('m l g')
N = ReferenceFrame('N')
P = Point('P')
P.set_vel(N, -l * u * sin(q) * N.x + l * u * cos(q) * N.y)
kd = [qd - u]
FL = [(P, m * g * N.x)]
pa = Particle()
pa.mass = m
pa.point = P
BL = [pa]
KM = Kane(N)
KM.coords([q])
KM.speeds([u])
KM.kindiffeq(kd)
KM.kanes_equations(FL, BL)
MM = KM.mass_matrix
forcing = KM.forcing
rhs = MM.inv() * forcing
rhs.simplify()
assert expand(rhs[0]) == expand(-g / l * sin(q))
开发者ID:101man,项目名称:sympy,代码行数:25,代码来源:test_kane.py
示例14: test_one_dof
def test_one_dof():
# This is for a 1 dof spring-mass-damper case.
# It is described in more detail in the KanesMethod docstring.
q, u = dynamicsymbols('q u')
qd, ud = dynamicsymbols('q u', 1)
m, c, k = symbols('m c k')
N = ReferenceFrame('N')
P = Point('P')
P.set_vel(N, u * N.x)
kd = [qd - u]
FL = [(P, (-k * q - c * u) * N.x)]
pa = Particle('pa', P, m)
BL = [pa]
KM = KanesMethod(N, [q], [u], kd)
# The old input format raises a deprecation warning, so catch it here so
# it doesn't cause py.test to fail.
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
KM.kanes_equations(FL, BL)
MM = KM.mass_matrix
forcing = KM.forcing
rhs = MM.inv() * forcing
assert expand(rhs[0]) == expand(-(q * k + u * c) / m)
assert simplify(KM.rhs() -
KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(2, 1)
assert (KM.linearize(A_and_B=True, )[0] == Matrix([[0, 1], [-k/m, -c/m]]))
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:31,代码来源:test_kane.py
示例15: setup
def setup(self):
# System state variables
q = me.dynamicsymbols('q')
qd = me.dynamicsymbols('q', 1)
# Other system variables
m, k, b = symbols('m k b')
# Set up the reference frame
N = me.ReferenceFrame('N')
# Set up the points and particles
P = me.Point('P')
P.set_vel(N, qd * N.x)
Pa = me.Particle('Pa', P, m)
# Define the potential energy and create the Lagrangian
Pa.potential_energy = k * q**2 / 2.0
L = me.Lagrangian(N, Pa)
# Create the list of forces acting on the system
fl = [(P, -b * qd * N.x)]
# Create an instance of Lagranges Method
self.l = me.LagrangesMethod(L, [q], forcelist=fl, frame=N)
开发者ID:sympy,项目名称:sympy_benchmarks,代码行数:26,代码来源:lagrange.py
示例16: test_parallel_axis
def test_parallel_axis():
# This is for a 2 dof inverted pendulum on a cart.
# This tests the parallel axis code in Kane. The inertia of the pendulum is
# defined about the hinge, not about the center of mass.
# Defining the constants and knowns of the system
gravity = symbols('g')
k, ls = symbols('k ls')
a, mA, mC = symbols('a mA mC')
F = dynamicsymbols('F')
Ix, Iy, Iz = symbols('Ix Iy Iz')
# Declaring the Generalized coordinates and speeds
q1, q2 = dynamicsymbols('q1 q2')
q1d, q2d = dynamicsymbols('q1 q2', 1)
u1, u2 = dynamicsymbols('u1 u2')
u1d, u2d = dynamicsymbols('u1 u2', 1)
# Creating reference frames
N = ReferenceFrame('N')
A = ReferenceFrame('A')
A.orient(N, 'Axis', [-q2, N.z])
A.set_ang_vel(N, -u2 * N.z)
# Origin of Newtonian reference frame
O = Point('O')
# Creating and Locating the positions of the cart, C, and the
# center of mass of the pendulum, A
C = O.locatenew('C', q1 * N.x)
Ao = C.locatenew('Ao', a * A.y)
# Defining velocities of the points
O.set_vel(N, 0)
C.set_vel(N, u1 * N.x)
Ao.v2pt_theory(C, N, A)
Cart = Particle('Cart', C, mC)
Pendulum = RigidBody('Pendulum', Ao, A, mA, (inertia(A, Ix, Iy, Iz), C))
# kinematical differential equations
kindiffs = [q1d - u1, q2d - u2]
bodyList = [Cart, Pendulum]
forceList = [(Ao, -N.y * gravity * mA),
(C, -N.y * gravity * mC),
(C, -N.x * k * (q1 - ls)),
(C, N.x * F)]
km=Kane(N)
km.coords([q1, q2])
km.speeds([u1, u2])
km.kindiffeq(kindiffs)
(fr,frstar) = km.kanes_equations(forceList, bodyList)
mm = km.mass_matrix_full
assert mm[3, 3] == -Iz
开发者ID:johanhake,项目名称:sympy,代码行数:58,代码来源:test_kane.py
示例17: test_aux
def test_aux():
# Same as above, except we have 2 auxiliary speeds for the ground contact
# point, which is known to be zero. In one case, we go through then
# substitute the aux. speeds in at the end (they are zero, as well as their
# derivative), in the other case, we use the built-in auxiliary speed part
# of Kane. The equations from each should be the same.
q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3')
q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1)
u4, u5, f1, f2 = dynamicsymbols('u4, u5, f1, f2')
u4d, u5d = dynamicsymbols('u4, u5', 1)
r, m, g = symbols('r m g')
N = ReferenceFrame('N')
Y = N.orientnew('Y', 'Axis', [q1, N.z])
L = Y.orientnew('L', 'Axis', [q2, Y.x])
R = L.orientnew('R', 'Axis', [q3, L.y])
R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)
R.set_ang_acc(N, R.ang_vel_in(N).dt(R) + (R.ang_vel_in(N) ^
R.ang_vel_in(N)))
C = Point('C')
C.set_vel(N, u4 * L.x + u5 * (Y.z ^ L.x))
Dmc = C.locatenew('Dmc', r * L.z)
Dmc.v2pt_theory(C, N, R)
Dmc.a2pt_theory(C, N, R)
I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2)
kd = [q1d - u3/cos(q3), q2d - u1, q3d - u2 + u3 * tan(q2)]
ForceList = [(Dmc, - m * g * Y.z), (C, f1 * L.x + f2 * (Y.z ^ L.x))]
BodyD = RigidBody()
BodyD.mc = Dmc
BodyD.inertia = (I, Dmc)
BodyD.frame = R
BodyD.mass = m
BodyList = [BodyD]
KM = Kane(N)
KM.coords([q1, q2, q3])
KM.speeds([u1, u2, u3, u4, u5])
KM.kindiffeq(kd)
kdd = KM.kindiffdict()
(fr, frstar) = KM.kanes_equations(ForceList, BodyList)
fr = fr.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5:0})
frstar = frstar.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5:0})
KM2 = Kane(N)
KM2.coords([q1, q2, q3])
KM2.speeds([u1, u2, u3], u_auxiliary=[u4, u5])
KM2.kindiffeq(kd)
(fr2, frstar2) = KM2.kanes_equations(ForceList, BodyList)
fr2 = fr2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5:0})
frstar2 = frstar2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5:0})
assert fr.expand() == fr2.expand()
assert frstar.expand() == frstar2.expand()
开发者ID:101man,项目名称:sympy,代码行数:57,代码来源:test_kane.py
示例18: test_kin_eqs
def test_kin_eqs():
q0, q1, q2, q3 = dynamicsymbols('q0 q1 q2 q3')
q0d, q1d, q2d, q3d = dynamicsymbols('q0 q1 q2 q3', 1)
u1, u2, u3 = dynamicsymbols('u1 u2 u3')
kds = kinematic_equations([u1, u2, u3], [q0, q1, q2, q3], 'quaternion')
assert kds == [-0.5 * q0 * u1 - 0.5 * q2 * u3 + 0.5 * q3 * u2 + q1d,
-0.5 * q0 * u2 + 0.5 * q1 * u3 - 0.5 * q3 * u1 + q2d,
-0.5 * q0 * u3 - 0.5 * q1 * u2 + 0.5 * q2 * u1 + q3d,
0.5 * q1 * u1 + 0.5 * q2 * u2 + 0.5 * q3 * u3 + q0d]
开发者ID:BDGLunde,项目名称:sympy,代码行数:9,代码来源:test_functions.py
示例19: __init__
def __init__(self, coordinate_name, *args, **kwargs):
super(RevoluteJoint, self).__init__(*args, **kwargs)
# TODO where should these be stored?
# TODO this would manage creating an extra speed for a quaternion.
# TODO ensure coordinate names are not getting overwritten.
self._rotation = dynamicsymbols(coordinate_name)
self._rotationdot = dynamicsymbols(coordinate_name, 1)
self._rotspeed = dynamicsymbols('%s_u' % coordinate_name)
self._rotspeeddot = dynamicsymbols('%s_u' % coordinate_name, 1)
开发者ID:chrisdembia,项目名称:pydy-linkage,代码行数:9,代码来源:linkage.py
示例20: test_integrate
def test_integrate(self):
times = np.linspace(0, 1, 100)
# Try without calling generate_ode_function.
# ------------------------------------------
sys = System(self.kane, times=times)
x_01 = sys.integrate()
sys = System(self.kane, times=times)
sys.generate_ode_function(generator='lambdify')
x_02 = sys.integrate()
testing.assert_allclose(x_01, x_02)
# Ensure that the defaults are as expected.
# -----------------------------------------
constants_dict = dict(zip(sm.symbols('m0, k0, c0, g'),
[1.0, 1.0, 1.0, 1.0]))
specified_dict = {dynamicsymbols('f0'): 0.0}
x_03 = sys.ode_solver(sys.evaluate_ode_function, [0, 0], sys.times,
args=(specified_dict, constants_dict))
testing.assert_allclose(x_02, x_03)
# Ensure that initial conditions are reordered properly.
# ------------------------------------------------------
sys = System(self.kane, times=times)
# I know that this is the order of the states.
x0 = [5.1, 3.7]
ic = {dynamicsymbols('x0'): x0[0], dynamicsymbols('v0'): x0[1]}
sys.initial_conditions = ic
x_04 = sys.integrate()
x_05 = sys.ode_solver(
sys.evaluate_ode_function, x0, sys.times,
args=(sys._specifieds_padded_with_defaults(),
sys._constants_padded_with_defaults()))
testing.assert_allclose(x_04, x_05)
# Test a generator other than lambdify.
# -------------------------------------
if theano:
sys.generate_ode_function(generator='theano')
sys.times = times
x_06 = sys.integrate()
testing.assert_allclose(x_04, x_06)
else:
warnings.warn("Theano was not found so the related tests are being"
" skipped.", PyDyImportWarning)
# Unrecognized generator.
# -----------------------
sys = System(self.kane, times=times)
with testing.assert_raises(NotImplementedError):
sys.generate_ode_function(generator='made-up')
开发者ID:tokencolour,项目名称:pydy,代码行数:55,代码来源:test_system.py
注:本文中的sympy.physics.mechanics.dynamicsymbols函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论