• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python mechanics.dynamicsymbols函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sympy.physics.mechanics.dynamicsymbols函数的典型用法代码示例。如果您正苦于以下问题:Python dynamicsymbols函数的具体用法?Python dynamicsymbols怎么用?Python dynamicsymbols使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了dynamicsymbols函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_one_dof

def test_one_dof():
    # This is for a 1 dof spring-mass-damper case.
    # It is described in more detail in the KanesMethod docstring.
    q, u = dynamicsymbols('q u')
    qd, ud = dynamicsymbols('q u', 1)
    m, c, k = symbols('m c k')
    N = ReferenceFrame('N')
    P = Point('P')
    P.set_vel(N, u * N.x)

    kd = [qd - u]
    FL = [(P, (-k * q - c * u) * N.x)]
    pa = Particle('pa', P, m)
    BL = [pa]

    KM = KanesMethod(N, [q], [u], kd)
    KM.kanes_equations(FL, BL)
    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    assert expand(rhs[0]) == expand(-(q * k + u * c) / m)
    assert (KM.linearize(A_and_B=True, new_method=True)[0] ==
            Matrix([[0, 1], [-k/m, -c/m]]))

    # Ensure that the old linearizer still works and that the new linearizer
    # gives the same results. The old linearizer is deprecated and should be
    # removed in >= 0.7.7.
    M_old = KM.mass_matrix_full
    # The old linearizer raises a deprecation warning, so catch it here so
    # it doesn't cause py.test to fail.
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
        F_A_old, F_B_old, r_old = KM.linearize()
    M_new, F_A_new, F_B_new, r_new = KM.linearize(new_method=True)
    assert simplify(M_new.inv() * F_A_new - M_old.inv() * F_A_old) == zeros(2)
开发者ID:A-turing-machine,项目名称:sympy,代码行数:35,代码来源:test_kane.py


示例2: test_linearize_pendulum_lagrange_nonminimal

def test_linearize_pendulum_lagrange_nonminimal():
    q1, q2 = dynamicsymbols('q1:3')
    q1d, q2d = dynamicsymbols('q1:3', level=1)
    L, m, t = symbols('L, m, t')
    g = 9.8
    # Compose World Frame
    N = ReferenceFrame('N')
    pN = Point('N*')
    pN.set_vel(N, 0)
    # A.x is along the pendulum
    theta1 = atan(q2/q1)
    A = N.orientnew('A', 'axis', [theta1, N.z])
    # Create point P, the pendulum mass
    P = pN.locatenew('P1', q1*N.x + q2*N.y)
    P.set_vel(N, P.pos_from(pN).dt(N))
    pP = Particle('pP', P, m)
    # Constraint Equations
    f_c = Matrix([q1**2 + q2**2 - L**2])
    # Calculate the lagrangian, and form the equations of motion
    Lag = Lagrangian(N, pP)
    LM = LagrangesMethod(Lag, [q1, q2], hol_coneqs=f_c, forcelist=[(P, m*g*N.x)], frame=N)
    LM.form_lagranges_equations()
    # Compose operating point
    op_point = {q1: L, q2: 0, q1d: 0, q2d: 0, q1d.diff(t): 0, q2d.diff(t): 0}
    # Solve for multiplier operating point
    lam_op = LM.solve_multipliers(op_point=op_point)
    op_point.update(lam_op)
    # Perform the Linearization
    A, B, inp_vec = LM.linearize([q2], [q2d], [q1], [q1d],
            op_point=op_point, A_and_B=True)
    assert A == Matrix([[0, 1], [-9.8/L, 0]])
    assert B == Matrix([])
开发者ID:Festy,项目名称:sympy,代码行数:32,代码来源:test_linearize.py


示例3: test_linearize_pendulum_lagrange_minimal

def test_linearize_pendulum_lagrange_minimal():
    q1 = dynamicsymbols('q1')                     # angle of pendulum
    q1d = dynamicsymbols('q1', 1)                 # Angular velocity
    L, m, t = symbols('L, m, t')
    g = 9.8

    # Compose world frame
    N = ReferenceFrame('N')
    pN = Point('N*')
    pN.set_vel(N, 0)

    # A.x is along the pendulum
    A = N.orientnew('A', 'axis', [q1, N.z])
    A.set_ang_vel(N, q1d*N.z)

    # Locate point P relative to the origin N*
    P = pN.locatenew('P', L*A.x)
    P.v2pt_theory(pN, N, A)
    pP = Particle('pP', P, m)

    # Solve for eom with Lagranges method
    Lag = Lagrangian(N, pP)
    LM = LagrangesMethod(Lag, [q1], forcelist=[(P, m*g*N.x)], frame=N)
    LM.form_lagranges_equations()

    # Linearize
    A, B, inp_vec = LM.linearize([q1], [q1d], A_and_B=True)

    assert A == Matrix([[0, 1], [-9.8*cos(q1)/L, 0]])
    assert B == Matrix([])
开发者ID:Festy,项目名称:sympy,代码行数:30,代码来源:test_linearize.py


示例4: test_n_link_pendulum_on_cart_higher_order

def test_n_link_pendulum_on_cart_higher_order():
    l0, m0 = symbols("l0 m0")
    l1, m1 = symbols("l1 m1")
    m2 = symbols("m2")
    g = symbols("g")
    q0, q1, q2 = dynamicsymbols("q0 q1 q2")
    u0, u1, u2 = dynamicsymbols("u0 u1 u2")
    F, T1 = dynamicsymbols("F T1")

    kane1 = models.n_link_pendulum_on_cart(2)
    massmatrix1 = Matrix([[m0 + m1 + m2, -l0*m1*cos(q1) - l0*m2*cos(q1),
                           -l1*m2*cos(q2)],
                          [-l0*m1*cos(q1) - l0*m2*cos(q1), l0**2*m1 + l0**2*m2,
                           l0*l1*m2*(sin(q1)*sin(q2) + cos(q1)*cos(q2))],
                          [-l1*m2*cos(q2),
                           l0*l1*m2*(sin(q1)*sin(q2) + cos(q1)*cos(q2)),
                           l1**2*m2]])
    forcing1 = Matrix([[-l0*m1*u1**2*sin(q1) - l0*m2*u1**2*sin(q1) -
                        l1*m2*u2**2*sin(q2) + F],
                       [g*l0*m1*sin(q1) + g*l0*m2*sin(q1) -
                        l0*l1*m2*(sin(q1)*cos(q2) - sin(q2)*cos(q1))*u2**2],
                       [g*l1*m2*sin(q2) - l0*l1*m2*(-sin(q1)*cos(q2) +
                                                    sin(q2)*cos(q1))*u1**2]])
    assert simplify(massmatrix1 - kane1.mass_matrix) == zeros(3)
    assert simplify(forcing1 - kane1.forcing) == Matrix([0, 0, 0])
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:25,代码来源:test_models.py


示例5: test_nonminimal_pendulum

def test_nonminimal_pendulum():
    q1, q2 = dynamicsymbols('q1:3')
    q1d, q2d = dynamicsymbols('q1:3', level=1)
    L, m, t = symbols('L, m, t')
    g = 9.8
    # Compose World Frame
    N = ReferenceFrame('N')
    pN = Point('N*')
    pN.set_vel(N, 0)
    # Create point P, the pendulum mass
    P = pN.locatenew('P1', q1*N.x + q2*N.y)
    P.set_vel(N, P.pos_from(pN).dt(N))
    pP = Particle('pP', P, m)
    # Constraint Equations
    f_c = Matrix([q1**2 + q2**2 - L**2])
    # Calculate the lagrangian, and form the equations of motion
    Lag = Lagrangian(N, pP)
    LM = LagrangesMethod(Lag, [q1, q2], hol_coneqs=f_c,
            forcelist=[(P, m*g*N.x)], frame=N)
    LM.form_lagranges_equations()
    # Check solution
    lam1 = LM.lam_vec[0, 0]
    eom_sol = Matrix([[m*Derivative(q1, t, t) - 9.8*m + 2*lam1*q1],
                      [m*Derivative(q2, t, t) + 2*lam1*q2]])
    assert LM.eom == eom_sol
    # Check multiplier solution
    lam_sol = Matrix([(19.6*q1 + 2*q1d**2 + 2*q2d**2)/(4*q1**2/m + 4*q2**2/m)])
    assert LM.solve_multipliers(sol_type='Matrix') == lam_sol
开发者ID:A-turing-machine,项目名称:sympy,代码行数:28,代码来源:test_lagrange.py


示例6: test_two_dof

def test_two_dof():
    # This is for a 2 d.o.f., 2 particle spring-mass-damper.
    # The first coordinate is the displacement of the first particle, and the
    # second is the relative displacement between the first and second
    # particles. Speeds are defined as the time derivatives of the particles.
    q1, q2, u1, u2 = dynamicsymbols('q1 q2 u1 u2')
    q1d, q2d, u1d, u2d = dynamicsymbols('q1 q2 u1 u2', 1)
    m, c1, c2, k1, k2 = symbols('m c1 c2 k1 k2')
    N = ReferenceFrame('N')
    P1 = Point('P1')
    P2 = Point('P2')
    P1.set_vel(N, u1 * N.x)
    P2.set_vel(N, (u1 + u2) * N.x)
    kd = [q1d - u1, q2d - u2]

    # Now we create the list of forces, then assign properties to each
    # particle, then create a list of all particles.
    FL = [(P1, (-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2) * N.x), (P2, (-k2 *
        q2 - c2 * u2) * N.x)]
    pa1 = Particle('pa1', P1, m)
    pa2 = Particle('pa2', P2, m)
    BL = [pa1, pa2]

    # Finally we create the KanesMethod object, specify the inertial frame,
    # pass relevant information, and form Fr & Fr*. Then we calculate the mass
    # matrix and forcing terms, and finally solve for the udots.
    KM = KanesMethod(N, q_ind=[q1, q2], u_ind=[u1, u2], kd_eqs=kd)
    KM.kanes_equations(FL, BL)
    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    assert expand(rhs[0]) == expand((-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2)/m)
    assert expand(rhs[1]) == expand((k1 * q1 + c1 * u1 - 2 * k2 * q2 - 2 *
                                    c2 * u2) / m)
开发者ID:A-turing-machine,项目名称:sympy,代码行数:34,代码来源:test_kane.py


示例7: __init__

    def __init__(self):
        #We define some quantities required for tests here..
        self.p = dynamicsymbols('p:3')
        self.q = dynamicsymbols('q:3')
        self.dynamic = list(self.p) + list(self.q)
        self.states = [radians(45) for x in self.p] + \
                               [radians(30) for x in self.q]

        self.I = ReferenceFrame('I')
        self.A = self.I.orientnew('A', 'space', self.p, 'XYZ')
        self.B = self.A.orientnew('B', 'space', self.q, 'XYZ')

        self.O = Point('O')
        self.P1 = self.O.locatenew('P1', 10 * self.I.x + \
                                      10 * self.I.y + 10 * self.I.z)
        self.P2 = self.P1.locatenew('P2', 10 * self.I.x + \
                                    10 * self.I.y + 10 * self.I.z)

        self.point_list1 = [[2, 3, 1], [4, 6, 2], [5, 3, 1], [5, 3, 6]]
        self.point_list2 = [[3, 1, 4], [3, 8, 2], [2, 1, 6], [2, 1, 1]]

        self.shape1 = Cylinder()
        self.shape2 = Cylinder()


        self.Ixx, self.Iyy, self.Izz = symbols('Ixx Iyy Izz')
        self.mass = symbols('mass')
        self.parameters = [self.Ixx, self.Iyy, self.Izz, self.mass]
        self.param_vals = [0, 0, 0, 0]

        self.inertia = inertia(self.A, self.Ixx, self.Iyy, self.Izz)

        self.rigid_body = RigidBody('rigid_body1', self.P1, self.A, \
                                 self.mass, (self.inertia, self.P1))

        self.global_frame1 = VisualizationFrame('global_frame1', \
                                self.A, self.P1, self.shape1)

        self.global_frame2 = VisualizationFrame('global_frame2', \
                                self.B, self.P2, self.shape2)

        self.scene1 = Scene(self.I, self.O, \
                            (self.global_frame1, self.global_frame2), \
                                             name='scene')

        self.particle = Particle('particle1', self.P1, self.mass)

        #To make it more readable
        p = self.p
        q = self.q
        #Here is the dragon ..
        self.transformation_matrix = \
            [[cos(p[1])*cos(p[2]), sin(p[2])*cos(p[1]), -sin(p[1]), 0], \
             [sin(p[0])*sin(p[1])*cos(p[2]) - sin(p[2])*cos(p[0]), \
                  sin(p[0])*sin(p[1])*sin(p[2]) + cos(p[0])*cos(p[2]), \
                  sin(p[0])*cos(p[1]), 0], \
             [sin(p[0])*sin(p[2]) + sin(p[1])*cos(p[0])*cos(p[2]), \
                 -sin(p[0])*cos(p[2]) + sin(p[1])*sin(p[2])*cos(p[0]), \
                  cos(p[0])*cos(p[1]), 0], \
             [10, 10, 10, 1]]
开发者ID:jcrist,项目名称:pydy-viz,代码行数:60,代码来源:test_visualization_frame_scene.py


示例8: test_point_funcs

def test_point_funcs():
    q, q2 = dynamicsymbols('q q2')
    qd, q2d = dynamicsymbols('q q2', 1)
    qdd, q2dd = dynamicsymbols('q q2', 2)
    N = ReferenceFrame('N')
    B = ReferenceFrame('B')
    B.set_ang_vel(N, 5 * B.y)
    O = Point('O')
    P = O.locatenew('P', q * B.x)
    assert P.pos_from(O) == q * B.x
    P.set_vel(B, qd * B.x + q2d * B.y)
    assert P.vel(B) == qd * B.x + q2d * B.y
    O.set_vel(N, 0)
    assert O.vel(N) == 0
    assert P.a1pt_theory(O, N, B) == ((-25 * q + qdd) * B.x + (q2dd) * B.y +
                               (-10 * qd) * B.z)

    B = N.orientnew('B', 'Axis', [q, N.z])
    O = Point('O')
    P = O.locatenew('P', 10 * B.x)
    O.set_vel(N, 5 * N.x)
    assert O.vel(N) == 5 * N.x
    assert P.a2pt_theory(O, N, B) == (-10 * qd**2) * B.x + (10 * qdd) * B.y

    B.set_ang_vel(N, 5 * B.y)
    O = Point('O')
    P = O.locatenew('P', q * B.x)
    P.set_vel(B, qd * B.x + q2d * B.y)
    O.set_vel(N, 0)
    assert P.v1pt_theory(O, N, B) == qd * B.x + q2d * B.y - 5 * q * B.z
开发者ID:BDGLunde,项目名称:sympy,代码行数:30,代码来源:test_point.py


示例9: test_partial_velocity

def test_partial_velocity():
    q1, q2, q3, u1, u2, u3 = dynamicsymbols("q1 q2 q3 u1 u2 u3")
    u4, u5 = dynamicsymbols("u4, u5")
    r = symbols("r")

    N = ReferenceFrame("N")
    Y = N.orientnew("Y", "Axis", [q1, N.z])
    L = Y.orientnew("L", "Axis", [q2, Y.x])
    R = L.orientnew("R", "Axis", [q3, L.y])
    R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)

    C = Point("C")
    C.set_vel(N, u4 * L.x + u5 * (Y.z ^ L.x))
    Dmc = C.locatenew("Dmc", r * L.z)
    Dmc.v2pt_theory(C, N, R)

    vel_list = [Dmc.vel(N), C.vel(N), R.ang_vel_in(N)]
    u_list = [u1, u2, u3, u4, u5]
    assert partial_velocity(vel_list, u_list) == [
        [-r * L.y, 0, L.x],
        [r * L.x, 0, L.y],
        [0, 0, L.z],
        [L.x, L.x, 0],
        [cos(q2) * L.y - sin(q2) * L.z, cos(q2) * L.y - sin(q2) * L.z, 0],
    ]
开发者ID:rishabh11,项目名称:sympy,代码行数:25,代码来源:test_functions.py


示例10: test_n_link_pendulum_on_cart_inputs

def test_n_link_pendulum_on_cart_inputs():
    l0, m0 = symbols("l0 m0")
    m1 = symbols("m1")
    g = symbols("g")
    q0, q1, F, T1 = dynamicsymbols("q0 q1 F T1")
    u0, u1 = dynamicsymbols("u0 u1")

    kane1 = models.n_link_pendulum_on_cart(1)
    massmatrix1 = Matrix([[m0 + m1, -l0*m1*cos(q1)],
                          [-l0*m1*cos(q1), l0**2*m1]])
    forcing1 = Matrix([[-l0*m1*u1**2*sin(q1) + F], [g*l0*m1*sin(q1)]])
    assert simplify(massmatrix1 - kane1.mass_matrix) == zeros(2)
    assert simplify(forcing1 - kane1.forcing) == Matrix([0, 0])

    kane2 = models.n_link_pendulum_on_cart(1, False)
    massmatrix2 = Matrix([[m0 + m1, -l0*m1*cos(q1)],
                          [-l0*m1*cos(q1), l0**2*m1]])
    forcing2 = Matrix([[-l0*m1*u1**2*sin(q1)], [g*l0*m1*sin(q1)]])
    assert simplify(massmatrix2 - kane2.mass_matrix) == zeros(2)
    assert simplify(forcing2 - kane2.forcing) == Matrix([0, 0])

    kane3 = models.n_link_pendulum_on_cart(1, False, True)
    massmatrix3 = Matrix([[m0 + m1, -l0*m1*cos(q1)],
                          [-l0*m1*cos(q1), l0**2*m1]])
    forcing3 = Matrix([[-l0*m1*u1**2*sin(q1)], [g*l0*m1*sin(q1) + T1]])
    assert simplify(massmatrix3 - kane3.mass_matrix) == zeros(2)
    assert simplify(forcing3 - kane3.forcing) == Matrix([0, 0])

    kane4 = models.n_link_pendulum_on_cart(1, True, False)
    massmatrix4 = Matrix([[m0 + m1, -l0*m1*cos(q1)],
                          [-l0*m1*cos(q1), l0**2*m1]])
    forcing4 = Matrix([[-l0*m1*u1**2*sin(q1) + F], [g*l0*m1*sin(q1)]])
    assert simplify(massmatrix4 - kane4.mass_matrix) == zeros(2)
    assert simplify(forcing4 - kane4.forcing) == Matrix([0, 0])
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:34,代码来源:test_models.py


示例11: test_dyadic

def test_dyadic():
    d1 = A.x | A.x
    d2 = A.y | A.y
    d3 = A.x | A.y
    assert d1 * 0 == 0
    assert d1 != 0
    assert d1 * 2 == 2 * A.x | A.x
    assert d1 / 2. == 0.5 * d1
    assert d1 & (0 * d1) == 0
    assert d1 & d2 == 0
    assert d1 & A.x == A.x
    assert d1 ^ A.x == 0
    assert d1 ^ A.y == A.x | A.z
    assert d1 ^ A.z == - A.x | A.y
    assert d2 ^ A.x == - A.y | A.z
    assert A.x ^ d1 == 0
    assert A.y ^ d1 == - A.z | A.x
    assert A.z ^ d1 == A.y | A.x
    assert A.x & d1 == A.x
    assert A.y & d1 == 0
    assert A.y & d2 == A.y
    assert d1 & d3 == A.x | A.y
    assert d3 & d1 == 0
    assert d1.dt(A) == 0
    q = dynamicsymbols('q')
    qd = dynamicsymbols('q', 1)
    B = A.orientnew('B', 'Axis', [q, A.z])
    assert d1.express(B) == d1.express(B, B)
    assert d1.express(B) == ((cos(q)**2) * (B.x | B.x) + (-sin(q) * cos(q)) *
            (B.x | B.y) + (-sin(q) * cos(q)) * (B.y | B.x) + (sin(q)**2) *
            (B.y | B.y))
    assert d1.express(B, A) == (cos(q)) * (B.x | A.x) + (-sin(q)) * (B.y | A.x)
    assert d1.express(A, B) == (cos(q)) * (A.x | B.x) + (-sin(q)) * (A.x | B.y)
    assert d1.dt(B) == (-qd) * (A.y | A.x) + (-qd) * (A.x | A.y)
开发者ID:akritas,项目名称:sympy,代码行数:34,代码来源:test_essential.py


示例12: test_one_dof

def test_one_dof():
    # This is for a 1 dof spring-mass-damper case.
    # It is described in more detail in the Kane docstring.
    q, u = dynamicsymbols('q u')
    qd, ud = dynamicsymbols('q u', 1)
    m, c, k = symbols('m c k')
    N = ReferenceFrame('N')
    P = Point('P')
    P.set_vel(N, u * N.x)

    kd = [qd - u]
    FL = [(P, (-k * q - c * u) * N.x)]
    pa = Particle()
    pa.mass = m
    pa.point = P
    BL = [pa]

    KM = Kane(N)
    KM.coords([q])
    KM.speeds([u])
    KM.kindiffeq(kd)
    KM.kanes_equations(FL, BL)
    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    assert expand(rhs[0]) == expand(-(q * k + u * c) / m)
    assert KM.linearize() == (Matrix([[0, 1], [k, c]]), Matrix([]))
开发者ID:101man,项目名称:sympy,代码行数:27,代码来源:test_kane.py


示例13: test_pend

def test_pend():
    q, u = dynamicsymbols('q u')
    qd, ud = dynamicsymbols('q u', 1)
    m, l, g = symbols('m l g')
    N = ReferenceFrame('N')
    P = Point('P')
    P.set_vel(N, -l * u * sin(q) * N.x + l * u * cos(q) * N.y)
    kd = [qd - u]

    FL = [(P, m * g * N.x)]
    pa = Particle()
    pa.mass = m
    pa.point = P
    BL = [pa]

    KM = Kane(N)
    KM.coords([q])
    KM.speeds([u])
    KM.kindiffeq(kd)
    KM.kanes_equations(FL, BL)
    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    rhs.simplify()
    assert expand(rhs[0]) == expand(-g / l * sin(q))
开发者ID:101man,项目名称:sympy,代码行数:25,代码来源:test_kane.py


示例14: test_one_dof

def test_one_dof():
    # This is for a 1 dof spring-mass-damper case.
    # It is described in more detail in the KanesMethod docstring.
    q, u = dynamicsymbols('q u')
    qd, ud = dynamicsymbols('q u', 1)
    m, c, k = symbols('m c k')
    N = ReferenceFrame('N')
    P = Point('P')
    P.set_vel(N, u * N.x)

    kd = [qd - u]
    FL = [(P, (-k * q - c * u) * N.x)]
    pa = Particle('pa', P, m)
    BL = [pa]

    KM = KanesMethod(N, [q], [u], kd)
    # The old input format raises a deprecation warning, so catch it here so
    # it doesn't cause py.test to fail.
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
        KM.kanes_equations(FL, BL)

    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    assert expand(rhs[0]) == expand(-(q * k + u * c) / m)

    assert simplify(KM.rhs() -
                    KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(2, 1)

    assert (KM.linearize(A_and_B=True, )[0] == Matrix([[0, 1], [-k/m, -c/m]]))
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:31,代码来源:test_kane.py


示例15: setup

    def setup(self):
        # System state variables
        q = me.dynamicsymbols('q')
        qd = me.dynamicsymbols('q', 1)

        # Other system variables
        m, k, b = symbols('m k b')

        # Set up the reference frame
        N = me.ReferenceFrame('N')

        # Set up the points and particles
        P = me.Point('P')
        P.set_vel(N, qd * N.x)

        Pa = me.Particle('Pa', P, m)

        # Define the potential energy and create the Lagrangian
        Pa.potential_energy = k * q**2 / 2.0
        L = me.Lagrangian(N, Pa)

        # Create the list of forces acting on the system
        fl = [(P, -b * qd * N.x)]

        # Create an instance of Lagranges Method
        self.l = me.LagrangesMethod(L, [q], forcelist=fl, frame=N)
开发者ID:sympy,项目名称:sympy_benchmarks,代码行数:26,代码来源:lagrange.py


示例16: test_parallel_axis

def test_parallel_axis():
    # This is for a 2 dof inverted pendulum on a cart.
    # This tests the parallel axis code in Kane. The inertia of the pendulum is
    # defined about the hinge, not about the center of mass.

    # Defining the constants and knowns of the system
    gravity        = symbols('g')
    k, ls          = symbols('k ls')
    a, mA, mC      = symbols('a mA mC')
    F              = dynamicsymbols('F')
    Ix, Iy, Iz     = symbols('Ix Iy Iz')

    # Declaring the Generalized coordinates and speeds
    q1, q2   = dynamicsymbols('q1 q2')
    q1d, q2d = dynamicsymbols('q1 q2', 1)
    u1, u2   = dynamicsymbols('u1 u2')
    u1d, u2d = dynamicsymbols('u1 u2', 1)

    # Creating reference frames
    N = ReferenceFrame('N')
    A = ReferenceFrame('A')

    A.orient(N, 'Axis', [-q2, N.z])
    A.set_ang_vel(N, -u2 * N.z)

    # Origin of Newtonian reference frame
    O = Point('O')

    # Creating and Locating the positions of the cart, C, and the
    # center of mass of the pendulum, A
    C  = O.locatenew('C',  q1 * N.x)
    Ao = C.locatenew('Ao', a * A.y)

    # Defining velocities of the points
    O.set_vel(N, 0)
    C.set_vel(N, u1 * N.x)
    Ao.v2pt_theory(C, N, A)
    Cart     = Particle('Cart', C, mC)
    Pendulum = RigidBody('Pendulum', Ao, A, mA, (inertia(A, Ix, Iy, Iz), C))

    # kinematical differential equations

    kindiffs  = [q1d - u1, q2d - u2]

    bodyList  = [Cart, Pendulum]

    forceList = [(Ao, -N.y * gravity * mA),
                 (C,  -N.y * gravity * mC),
                 (C,  -N.x * k * (q1 - ls)),
                 (C,   N.x * F)]

    km=Kane(N)
    km.coords([q1, q2])
    km.speeds([u1, u2])
    km.kindiffeq(kindiffs)
    (fr,frstar) = km.kanes_equations(forceList, bodyList)
    mm = km.mass_matrix_full
    assert mm[3, 3] == -Iz
开发者ID:johanhake,项目名称:sympy,代码行数:58,代码来源:test_kane.py


示例17: test_aux

def test_aux():
    # Same as above, except we have 2 auxiliary speeds for the ground contact
    # point, which is known to be zero. In one case, we go through then
    # substitute the aux. speeds in at the end (they are zero, as well as their
    # derivative), in the other case, we use the built-in auxiliary speed part
    # of Kane. The equations from each should be the same.
    q1, q2, q3, u1, u2, u3  = dynamicsymbols('q1 q2 q3 u1 u2 u3')
    q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1)
    u4, u5, f1, f2 = dynamicsymbols('u4, u5, f1, f2')
    u4d, u5d = dynamicsymbols('u4, u5', 1)
    r, m, g = symbols('r m g')

    N = ReferenceFrame('N')
    Y = N.orientnew('Y', 'Axis', [q1, N.z])
    L = Y.orientnew('L', 'Axis', [q2, Y.x])
    R = L.orientnew('R', 'Axis', [q3, L.y])
    R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)
    R.set_ang_acc(N, R.ang_vel_in(N).dt(R) + (R.ang_vel_in(N) ^
        R.ang_vel_in(N)))

    C = Point('C')
    C.set_vel(N, u4 * L.x + u5 * (Y.z ^ L.x))
    Dmc = C.locatenew('Dmc', r * L.z)
    Dmc.v2pt_theory(C, N, R)
    Dmc.a2pt_theory(C, N, R)

    I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2)

    kd = [q1d - u3/cos(q3), q2d - u1, q3d - u2 + u3 * tan(q2)]

    ForceList = [(Dmc, - m * g * Y.z), (C, f1 * L.x + f2 * (Y.z ^ L.x))]
    BodyD = RigidBody()
    BodyD.mc = Dmc
    BodyD.inertia = (I, Dmc)
    BodyD.frame = R
    BodyD.mass = m
    BodyList = [BodyD]

    KM = Kane(N)
    KM.coords([q1, q2, q3])
    KM.speeds([u1, u2, u3, u4, u5])
    KM.kindiffeq(kd)
    kdd = KM.kindiffdict()
    (fr, frstar) = KM.kanes_equations(ForceList, BodyList)
    fr = fr.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5:0})
    frstar = frstar.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5:0})

    KM2 = Kane(N)
    KM2.coords([q1, q2, q3])
    KM2.speeds([u1, u2, u3], u_auxiliary=[u4, u5])
    KM2.kindiffeq(kd)
    (fr2, frstar2) = KM2.kanes_equations(ForceList, BodyList)
    fr2 = fr2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5:0})
    frstar2 = frstar2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5:0})

    assert fr.expand() == fr2.expand()
    assert frstar.expand() == frstar2.expand()
开发者ID:101man,项目名称:sympy,代码行数:57,代码来源:test_kane.py


示例18: test_kin_eqs

def test_kin_eqs():
    q0, q1, q2, q3 = dynamicsymbols('q0 q1 q2 q3')
    q0d, q1d, q2d, q3d = dynamicsymbols('q0 q1 q2 q3', 1)
    u1, u2, u3 = dynamicsymbols('u1 u2 u3')
    kds = kinematic_equations([u1, u2, u3], [q0, q1, q2, q3], 'quaternion')
    assert kds == [-0.5 * q0 * u1 - 0.5 * q2 * u3 + 0.5 * q3 * u2 + q1d,
            -0.5 * q0 * u2 + 0.5 * q1 * u3 - 0.5 * q3 * u1 + q2d,
            -0.5 * q0 * u3 - 0.5 * q1 * u2 + 0.5 * q2 * u1 + q3d,
            0.5 * q1 * u1 + 0.5 * q2 * u2 + 0.5 * q3 * u3 + q0d]
开发者ID:BDGLunde,项目名称:sympy,代码行数:9,代码来源:test_functions.py


示例19: __init__

 def __init__(self, coordinate_name, *args, **kwargs):
     super(RevoluteJoint, self).__init__(*args, **kwargs)
     # TODO where should these be stored?
     # TODO this would manage creating an extra speed for a quaternion.
     # TODO ensure coordinate names are not getting overwritten.
     self._rotation = dynamicsymbols(coordinate_name)
     self._rotationdot = dynamicsymbols(coordinate_name, 1)
     self._rotspeed = dynamicsymbols('%s_u' % coordinate_name)
     self._rotspeeddot = dynamicsymbols('%s_u' % coordinate_name, 1)
开发者ID:chrisdembia,项目名称:pydy-linkage,代码行数:9,代码来源:linkage.py


示例20: test_integrate

    def test_integrate(self):

        times = np.linspace(0, 1, 100)

        # Try without calling generate_ode_function.
        # ------------------------------------------
        sys = System(self.kane, times=times)
        x_01 = sys.integrate()

        sys = System(self.kane, times=times)
        sys.generate_ode_function(generator='lambdify')
        x_02 = sys.integrate()

        testing.assert_allclose(x_01, x_02)

        # Ensure that the defaults are as expected.
        # -----------------------------------------
        constants_dict = dict(zip(sm.symbols('m0, k0, c0, g'),
                                  [1.0, 1.0, 1.0, 1.0]))
        specified_dict = {dynamicsymbols('f0'): 0.0}
        x_03 = sys.ode_solver(sys.evaluate_ode_function, [0, 0], sys.times,
                              args=(specified_dict, constants_dict))
        testing.assert_allclose(x_02, x_03)

        # Ensure that initial conditions are reordered properly.
        # ------------------------------------------------------
        sys = System(self.kane, times=times)
        # I know that this is the order of the states.
        x0 = [5.1, 3.7]
        ic = {dynamicsymbols('x0'): x0[0], dynamicsymbols('v0'): x0[1]}
        sys.initial_conditions = ic
        x_04 = sys.integrate()
        x_05 = sys.ode_solver(
            sys.evaluate_ode_function, x0, sys.times,
            args=(sys._specifieds_padded_with_defaults(),
                  sys._constants_padded_with_defaults()))

        testing.assert_allclose(x_04, x_05)

        # Test a generator other than lambdify.
        # -------------------------------------
        if theano:
            sys.generate_ode_function(generator='theano')
            sys.times = times
            x_06 = sys.integrate()
            testing.assert_allclose(x_04, x_06)
        else:
            warnings.warn("Theano was not found so the related tests are being"
                          " skipped.", PyDyImportWarning)

        # Unrecognized generator.
        # -----------------------
        sys = System(self.kane, times=times)
        with testing.assert_raises(NotImplementedError):
            sys.generate_ode_function(generator='made-up')
开发者ID:tokencolour,项目名称:pydy,代码行数:55,代码来源:test_system.py



注:本文中的sympy.physics.mechanics.dynamicsymbols函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python mechanics.inertia函数代码示例发布时间:2022-05-27
下一篇:
Python mechanics.dot函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap