• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python ntheory.totient函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sympy.ntheory.totient函数的典型用法代码示例。如果您正苦于以下问题:Python totient函数的具体用法?Python totient怎么用?Python totient使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了totient函数的16个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: pohlig_helman

def pohlig_helman(Y, g, p):
	print("Solving 0x%s = 0x%s^x (mod 0x%s)" % (hex(Y), hex(g), hex(p)))
	#print(factorint(p))

	t1 = time.clock()
	n = totient(p)
	t2 = time.clock()
	q = factorint(n)
	t3 = time.clock()

	print("totient(%i) = %i" % (p, n))
	print("factor(%i) = %s" % (n, str(q)))

	print("totient time: " + str(t2-t1))
	print("factor time: " + str(t3-t2))

	t4 = time.clock()
	x_is = list()
	mods = list()
	for p_i in q:
		e = q[p_i]
		
		x_i = solve_xi(Y, g, p, p_i, e, n)
		print("x = %i mod %i" % (x_i, pow(p_i, e)))
		x_is.append(x_i)
		mods.append(pow(p_i, e))
	x = chinese_remainder(mods, x_is)

	t5 = time.clock()

	print("x = %i" % x)
	print("ph time: " + str(t5-t4))

	return x
开发者ID:Henkru,项目名称:anglerek-keyfinder,代码行数:34,代码来源:anglerek-keyfinder.py


示例2: test_totient

def test_totient():
    assert [totient(k) for k in range(1, 12)] == [1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10]
    assert totient(5005) == 2880
    assert totient(5006) == 2502
    assert totient(5009) == 5008
    assert totient(2 ** 100) == 2 ** 99

    m = Symbol("m", integer=True)
    assert totient(m)
    assert totient(m).subs(m, 3 ** 10) == 3 ** 10 - 3 ** 9
    assert summation(totient(m), (m, 1, 11)) == 42

    n = Symbol("n", integer=True, positive=True)
    assert totient(n).is_integer
开发者ID:whimsy-Pan,项目名称:sympy,代码行数:14,代码来源:test_factor_.py


示例3: test

def test(totients,n):
	print "Starting Test"
	a = totients
	b = correctTotients(n)
	if a==b:
		print "Pass!"
	for i in range(len(a)):
		if a[i]!=b[i]:
			print i,totient(i),a[i],b[i]
			print "Fail!"
			break
开发者ID:jkschin,项目名称:project_euler,代码行数:11,代码来源:351.py


示例4: test_generate

def test_generate():
    assert nextprime(-4) == 2
    assert nextprime(2) == 3
    assert nextprime(5) == 7
    assert nextprime(12) == 13
    assert nextprime(90) == 97
    assert nextprime(10**40) == (10**40 + 121)
    assert prevprime(3) == 2
    assert prevprime(7) == 5
    assert prevprime(13) == 11
    assert prevprime(97) == 89
    assert prevprime(10**40) == (10**40 - 17)
    assert list(primerange(2, 7)) == [2, 3, 5]
    assert list(primerange(2, 10)) == [2, 3, 5, 7]
    assert list(primerange(1050, 1100)) == [1051, 1061,
        1063, 1069, 1087, 1091, 1093, 1097]
    s = Sieve()
    for i in range(30, 2350, 376):
        for j in range(2, 5096, 1139):
            A = list(s.primerange(i, i + j))
            B = list(primerange(i, i + j))
            assert A == B
    s = Sieve()
    assert s[10] == 29

    assert nextprime(2, 2) == 5

    raises(ValueError, lambda: totient(0))

    raises(ValueError, lambda: reduced_totient(0))

    raises(ValueError, lambda: primorial(0))

    assert mr(1, [2]) is False

    func = lambda i: (i**2 + 1) % 51
    assert next(cycle_length(func, 4)) == (6, 2)
    assert list(cycle_length(func, 4, values=True)) == \
        [17, 35, 2, 5, 26, 14, 44, 50, 2, 5, 26, 14]
    assert next(cycle_length(func, 4, nmax=5)) == (5, None)
    assert list(cycle_length(func, 4, nmax=5, values=True)) == \
        [17, 35, 2, 5, 26]
开发者ID:JamesdeLisle,项目名称:sympy,代码行数:42,代码来源:test_generate.py


示例5: rsa_private_key

def rsa_private_key(p, q, e):
    r"""
    The RSA *private key* is the pair `(n,d)`, where `n`
    is a product of two primes and `d` is the inverse of
    `e` (mod `\phi(n)`).

    Examples
    ========

    >>> from sympy.crypto.crypto import rsa_private_key
    >>> p, q, e = 3, 5, 7
    >>> rsa_private_key(p, q, e)
    (15, 7)

    """
    n = p*q
    phi = totient(n)
    if isprime(p) and isprime(q) and gcd(e, phi) == 1:
        return n, pow(e, phi - 1, phi)
    return False
开发者ID:AALEKH,项目名称:sympy,代码行数:20,代码来源:crypto.py


示例6: rsa_public_key

def rsa_public_key(p, q, e):
    r"""
    The RSA *public key* is the pair `(n,e)`, where `n`
    is a product of two primes and `e` is relatively
    prime (coprime) to the Euler totient `\phi(n)`.

    Examples
    ========

    >>> from sympy.crypto.crypto import rsa_public_key
    >>> p, q, e = 3, 5, 7
    >>> n, e = rsa_public_key(p, q, e)
    >>> n
    15
    >>> e
    7

    """
    n = p*q
    phi = totient(n)
    if isprime(p) and isprime(q) and gcd(e, phi) == 1:
        return n, e
    return False
开发者ID:Upabjojr,项目名称:sympy,代码行数:23,代码来源:crypto.py


示例7: test_residue

def test_residue():
    assert n_order(2, 13) == 12
    assert [n_order(a, 7) for a in range(1, 7)] == \
           [1, 3, 6, 3, 6, 2]
    assert n_order(5, 17) == 16
    assert n_order(17, 11) == n_order(6, 11)
    assert n_order(101, 119) == 6
    assert n_order(11, (10**50 + 151)**2) == 10000000000000000000000000000000000000000000000030100000000000000000000000000000000000000000000022650
    raises(ValueError, lambda: n_order(6, 9))

    assert is_primitive_root(2, 7) is False
    assert is_primitive_root(3, 8) is False
    assert is_primitive_root(11, 14) is False
    assert is_primitive_root(12, 17) == is_primitive_root(29, 17)
    raises(ValueError, lambda: is_primitive_root(3, 6))

    assert [primitive_root(i) for i in range(2, 31)] == [1, 2, 3, 2, 5, 3, \
       None, 2, 3, 2, None, 2, 3, None, None, 3, 5, 2, None, None, 7, 5, \
       None, 2, 7, 2, None, 2, None]

    for p in primerange(3, 100):
        it = _primitive_root_prime_iter(p)
        assert len(list(it)) == totient(totient(p))
    assert primitive_root(97) == 5
    assert primitive_root(97**2) == 5
    assert primitive_root(40487) == 5
    # note that primitive_root(40487) + 40487 = 40492 is a primitive root
    # of 40487**2, but it is not the smallest
    assert primitive_root(40487**2) == 10
    assert primitive_root(82) == 7
    p = 10**50 + 151
    assert primitive_root(p) == 11
    assert primitive_root(2*p) == 11
    assert primitive_root(p**2) == 11
    raises(ValueError, lambda: primitive_root(-3))

    assert is_quad_residue(3, 7) is False
    assert is_quad_residue(10, 13) is True
    assert is_quad_residue(12364, 139) == is_quad_residue(12364 % 139, 139)
    assert is_quad_residue(207, 251) is True
    assert is_quad_residue(0, 1) is True
    assert is_quad_residue(1, 1) is True
    assert is_quad_residue(0, 2) == is_quad_residue(1, 2) is True
    assert is_quad_residue(1, 4) is True
    assert is_quad_residue(2, 27) is False
    assert is_quad_residue(13122380800, 13604889600) is True
    assert [j for j in range(14) if is_quad_residue(j, 14)] == \
           [0, 1, 2, 4, 7, 8, 9, 11]
    raises(ValueError, lambda: is_quad_residue(1.1, 2))
    raises(ValueError, lambda: is_quad_residue(2, 0))


    assert quadratic_residues(12) == [0, 1, 4, 9]
    assert quadratic_residues(13) == [0, 1, 3, 4, 9, 10, 12]
    assert [len(quadratic_residues(i)) for i in range(1, 20)] == \
      [1, 2, 2, 2, 3, 4, 4, 3, 4, 6, 6, 4, 7, 8, 6, 4, 9, 8, 10]

    assert list(sqrt_mod_iter(6, 2)) == [0]
    assert sqrt_mod(3, 13) == 4
    assert sqrt_mod(3, -13) == 4
    assert sqrt_mod(6, 23) == 11
    assert sqrt_mod(345, 690) == 345

    for p in range(3, 100):
        d = defaultdict(list)
        for i in range(p):
            d[pow(i, 2, p)].append(i)
        for i in range(1, p):
            it = sqrt_mod_iter(i, p)
            v = sqrt_mod(i, p, True)
            if v:
                v = sorted(v)
                assert d[i] == v
            else:
                assert not d[i]

    assert sqrt_mod(9, 27, True) == [3, 6, 12, 15, 21, 24]
    assert sqrt_mod(9, 81, True) == [3, 24, 30, 51, 57, 78]
    assert sqrt_mod(9, 3**5, True) == [3, 78, 84, 159, 165, 240]
    assert sqrt_mod(81, 3**4, True) == [0, 9, 18, 27, 36, 45, 54, 63, 72]
    assert sqrt_mod(81, 3**5, True) == [9, 18, 36, 45, 63, 72, 90, 99, 117,\
            126, 144, 153, 171, 180, 198, 207, 225, 234]
    assert sqrt_mod(81, 3**6, True) == [9, 72, 90, 153, 171, 234, 252, 315,\
            333, 396, 414, 477, 495, 558, 576, 639, 657, 720]
    assert sqrt_mod(81, 3**7, True) == [9, 234, 252, 477, 495, 720, 738, 963,\
            981, 1206, 1224, 1449, 1467, 1692, 1710, 1935, 1953, 2178]

    for a, p in [(26214400, 32768000000), (26214400, 16384000000),
        (262144, 1048576), (87169610025, 163443018796875),
        (22315420166400, 167365651248000000)]:
        assert pow(sqrt_mod(a, p), 2, p) == a

    n = 70
    a, p = 5**2*3**n*2**n, 5**6*3**(n+1)*2**(n+2)
    it = sqrt_mod_iter(a, p)
    for i in range(10):
        assert pow(next(it), 2, p) == a
    a, p = 5**2*3**n*2**n, 5**6*3**(n+1)*2**(n+3)
    it = sqrt_mod_iter(a, p)
    for i in range(2):
#.........这里部分代码省略.........
开发者ID:LuckyStrikes1090,项目名称:sympy,代码行数:101,代码来源:test_ntheory.py


示例8: test_totient

def test_totient():
    assert [totient(k) for k in range(1, 12)] == [1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10]
    assert totient(5005) == 2880
    assert totient(5006) == 2502
    assert totient(5009) == 5008
开发者ID:hitej,项目名称:meta-core,代码行数:5,代码来源:test_ntheory.py


示例9: test_totient

def test_totient():
    assert [totient(k) for k in range(1, 12)] == \
        [1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10]
    assert totient(5005) == 2880
    assert totient(5006) == 2502
    assert totient(5009) == 5008
    assert totient(2**100) == 2**99

    raises(ValueError, lambda: totient(30.1))
    raises(ValueError, lambda: totient(20.001))

    m = Symbol("m", integer=True)
    assert totient(m)
    assert totient(m).subs(m, 3**10) == 3**10 - 3**9
    assert summation(totient(m), (m, 1, 11)) == 42

    n = Symbol("n", integer=True, positive=True)
    assert totient(n).is_integer

    x=Symbol("x", integer=False)
    raises(ValueError, lambda: totient(x))

    y=Symbol("y", positive=False)
    raises(ValueError, lambda: totient(y))

    z=Symbol("z", positive=True, integer=True)
    raises(ValueError, lambda: totient(2**(-z)))
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:27,代码来源:test_factor_.py


示例10: test_residue

def test_residue():
    assert n_order(2, 13) == 12
    assert [n_order(a, 7) for a in range(1, 7)] == \
           [1, 3, 6, 3, 6, 2]
    assert n_order(5, 17) == 16
    assert n_order(17, 11) == n_order(6, 11)
    assert n_order(101, 119) == 6
    assert n_order(11, (10**50 + 151)**2) == 10000000000000000000000000000000000000000000000030100000000000000000000000000000000000000000000022650
    raises(ValueError, lambda: n_order(6, 9))

    assert is_primitive_root(2, 7) is False
    assert is_primitive_root(3, 8) is False
    assert is_primitive_root(11, 14) is False
    assert is_primitive_root(12, 17) == is_primitive_root(29, 17)
    raises(ValueError, lambda: is_primitive_root(3, 6))

    assert [primitive_root(i) for i in range(2, 31)] == [1, 2, 3, 2, 5, 3, \
       None, 2, 3, 2, None, 2, 3, None, None, 3, 5, 2, None, None, 7, 5, \
       None, 2, 7, 2, None, 2, None]

    for p in primerange(3, 100):
        it = _primitive_root_prime_iter(p)
        assert len(list(it)) == totient(totient(p))
    assert primitive_root(97) == 5
    assert primitive_root(97**2) == 5
    assert primitive_root(40487) == 5
    # note that primitive_root(40487) + 40487 = 40492 is a primitive root
    # of 40487**2, but it is not the smallest
    assert primitive_root(40487**2) == 10
    assert primitive_root(82) == 7
    p = 10**50 + 151
    assert primitive_root(p) == 11
    assert primitive_root(2*p) == 11
    assert primitive_root(p**2) == 11
    raises(ValueError, lambda: primitive_root(-3))

    assert is_quad_residue(3, 7) is False
    assert is_quad_residue(10, 13) is True
    assert is_quad_residue(12364, 139) == is_quad_residue(12364 % 139, 139)
    assert is_quad_residue(207, 251) is True
    assert is_quad_residue(0, 1) is True
    assert is_quad_residue(1, 1) is True
    assert is_quad_residue(0, 2) == is_quad_residue(1, 2) is True
    assert is_quad_residue(1, 4) is True
    assert is_quad_residue(2, 27) is False
    assert is_quad_residue(13122380800, 13604889600) is True
    assert [j for j in range(14) if is_quad_residue(j, 14)] == \
           [0, 1, 2, 4, 7, 8, 9, 11]
    raises(ValueError, lambda: is_quad_residue(1.1, 2))
    raises(ValueError, lambda: is_quad_residue(2, 0))


    assert quadratic_residues(S.One) == [0]
    assert quadratic_residues(1) == [0]
    assert quadratic_residues(12) == [0, 1, 4, 9]
    assert quadratic_residues(12) == [0, 1, 4, 9]
    assert quadratic_residues(13) == [0, 1, 3, 4, 9, 10, 12]
    assert [len(quadratic_residues(i)) for i in range(1, 20)] == \
      [1, 2, 2, 2, 3, 4, 4, 3, 4, 6, 6, 4, 7, 8, 6, 4, 9, 8, 10]

    assert list(sqrt_mod_iter(6, 2)) == [0]
    assert sqrt_mod(3, 13) == 4
    assert sqrt_mod(3, -13) == 4
    assert sqrt_mod(6, 23) == 11
    assert sqrt_mod(345, 690) == 345

    for p in range(3, 100):
        d = defaultdict(list)
        for i in range(p):
            d[pow(i, 2, p)].append(i)
        for i in range(1, p):
            it = sqrt_mod_iter(i, p)
            v = sqrt_mod(i, p, True)
            if v:
                v = sorted(v)
                assert d[i] == v
            else:
                assert not d[i]

    assert sqrt_mod(9, 27, True) == [3, 6, 12, 15, 21, 24]
    assert sqrt_mod(9, 81, True) == [3, 24, 30, 51, 57, 78]
    assert sqrt_mod(9, 3**5, True) == [3, 78, 84, 159, 165, 240]
    assert sqrt_mod(81, 3**4, True) == [0, 9, 18, 27, 36, 45, 54, 63, 72]
    assert sqrt_mod(81, 3**5, True) == [9, 18, 36, 45, 63, 72, 90, 99, 117,\
            126, 144, 153, 171, 180, 198, 207, 225, 234]
    assert sqrt_mod(81, 3**6, True) == [9, 72, 90, 153, 171, 234, 252, 315,\
            333, 396, 414, 477, 495, 558, 576, 639, 657, 720]
    assert sqrt_mod(81, 3**7, True) == [9, 234, 252, 477, 495, 720, 738, 963,\
            981, 1206, 1224, 1449, 1467, 1692, 1710, 1935, 1953, 2178]

    for a, p in [(26214400, 32768000000), (26214400, 16384000000),
        (262144, 1048576), (87169610025, 163443018796875),
        (22315420166400, 167365651248000000)]:
        assert pow(sqrt_mod(a, p), 2, p) == a

    n = 70
    a, p = 5**2*3**n*2**n, 5**6*3**(n+1)*2**(n+2)
    it = sqrt_mod_iter(a, p)
    for i in range(10):
        assert pow(next(it), 2, p) == a
#.........这里部分代码省略.........
开发者ID:asmeurer,项目名称:sympy,代码行数:101,代码来源:test_residue.py


示例11: test_generate

def test_generate():
    from sympy.ntheory.generate import sieve
    sieve._reset()
    assert nextprime(-4) == 2
    assert nextprime(2) == 3
    assert nextprime(5) == 7
    assert nextprime(12) == 13
    assert prevprime(3) == 2
    assert prevprime(7) == 5
    assert prevprime(13) == 11
    assert prevprime(19) == 17
    assert prevprime(20) == 19

    sieve.extend_to_no(9)
    assert sieve._list[-1] == 23

    assert sieve._list[-1] < 31
    assert 31 in sieve

    assert nextprime(90) == 97
    assert nextprime(10**40) == (10**40 + 121)
    assert prevprime(97) == 89
    assert prevprime(10**40) == (10**40 - 17)

    assert list(sieve.primerange(10, 1)) == []
    assert list(sieve.primerange(5, 9)) == [5, 7]
    sieve._reset(prime=True)
    assert list(sieve.primerange(2, 12)) == [2, 3, 5, 7, 11]

    assert list(sieve.totientrange(5, 15)) == [4, 2, 6, 4, 6, 4, 10, 4, 12, 6]
    sieve._reset(totient=True)
    assert list(sieve.totientrange(3, 13)) == [2, 2, 4, 2, 6, 4, 6, 4, 10, 4]
    assert list(sieve.totientrange(900, 1000)) == [totient(x) for x in range(900, 1000)]
    assert list(sieve.totientrange(0, 1)) == []
    assert list(sieve.totientrange(1, 2)) == [1]

    assert list(sieve.mobiusrange(5, 15)) == [-1, 1, -1, 0, 0, 1, -1, 0, -1, 1]
    sieve._reset(mobius=True)
    assert list(sieve.mobiusrange(3, 13)) == [-1, 0, -1, 1, -1, 0, 0, 1, -1, 0]
    assert list(sieve.mobiusrange(1050, 1100)) == [mobius(x) for x in range(1050, 1100)]
    assert list(sieve.mobiusrange(0, 1)) == []
    assert list(sieve.mobiusrange(1, 2)) == [1]

    assert list(primerange(10, 1)) == []
    assert list(primerange(2, 7)) == [2, 3, 5]
    assert list(primerange(2, 10)) == [2, 3, 5, 7]
    assert list(primerange(1050, 1100)) == [1051, 1061,
        1063, 1069, 1087, 1091, 1093, 1097]
    s = Sieve()
    for i in range(30, 2350, 376):
        for j in range(2, 5096, 1139):
            A = list(s.primerange(i, i + j))
            B = list(primerange(i, i + j))
            assert A == B
    s = Sieve()
    assert s[10] == 29

    assert nextprime(2, 2) == 5

    raises(ValueError, lambda: totient(0))

    raises(ValueError, lambda: reduced_totient(0))

    raises(ValueError, lambda: primorial(0))

    assert mr(1, [2]) is False

    func = lambda i: (i**2 + 1) % 51
    assert next(cycle_length(func, 4)) == (6, 2)
    assert list(cycle_length(func, 4, values=True)) == \
        [17, 35, 2, 5, 26, 14, 44, 50, 2, 5, 26, 14]
    assert next(cycle_length(func, 4, nmax=5)) == (5, None)
    assert list(cycle_length(func, 4, nmax=5, values=True)) == \
        [17, 35, 2, 5, 26]
    sieve.extend(3000)
    assert nextprime(2968) == 2969
    assert prevprime(2930) == 2927
    raises(ValueError, lambda: prevprime(1))
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:78,代码来源:test_generate.py


示例12: phi2

__author__ = 'Prateek'
from sympy.ntheory import factorint
from sympy.ntheory import totient


def phi2(n):
    value = n
    for prime, exp in factorint(n).items():
        value = value * (1 - prime ** -1)
    return int(value)


if __author__ == 'Prateek':
    print phi2(666)
    print totient(666)
开发者ID:prateekgulati,项目名称:numberTheory,代码行数:15,代码来源:phy2.py


示例13: sumtot

def sumtot(j):
	result = 0
	for k in range(n//(j+1)+1, n//j +1):
		#result = modf(result+totient(k))
		result = result+totient(k)
	return result
开发者ID:desaxce,项目名称:euler,代码行数:6,代码来源:pb465.py


示例14: print

#	if j%100==0:
#		print("Processing j = ", j)
#	PSI.append(totientsum(n//j))
#	j+=1
#print("Done with totient sums")

#with open('sumstot.txt', 'wb') as f:
	#pickle.dump(PSI, f)

with open('sumstot.txt', 'rb') as f:
	PSI = pickle.load(f)

#print("Computing L")
L = 1
for j in range(2, int(sqrt(n))+1):
	L = mod(L*mod(int(pow(n//j+1, totient(j), 1000000007))))
#print("L - Part 1 complete")
for j in range(1, int(sqrt(n))+1): # sometimes up to sqrt(n), sometimes just below
	L = mod(L*mod(int(pow(j+1, PSI[j-1]-PSI[j], 1000000007))))
	#L = mod(L*mod(int(pow(j+1, sumtot(j)))))
L = mod(L*(n+1))
#print("L - Part 2 complete")
#print("Done with L")

L8 = mod(int(pow(L, 8)))
L4 = mod(int(pow(L, 4)))

#print("Computing T")
T  = 0
for j in range(2, int(sqrt(n))+1):
	T = mod(T+(2*(n//j)*L4 - (n//j)*(n//j))*totient(j))
开发者ID:desaxce,项目名称:euler,代码行数:31,代码来源:pb465.py


示例15: correctTotients

def correctTotients(n):
	totients = [0]*(n+1)
	for i in range(1,len(totients)):
		totients[i]=totient(i)
	return totients
开发者ID:jkschin,项目名称:project_euler,代码行数:5,代码来源:351.py


示例16: print

from sympy.ntheory import totient

limit = 1000001
solution = 0

print(sum(totient(n) for n in range(2, limit)))
开发者ID:jvujcic,项目名称:ProjectEuler,代码行数:6,代码来源:072.py



注:本文中的sympy.ntheory.totient函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python modular.crt函数代码示例发布时间:2022-05-27
下一篇:
Python ntheory.primorial函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap