• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python ntheory.nextprime函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sympy.ntheory.nextprime函数的典型用法代码示例。如果您正苦于以下问题:Python nextprime函数的具体用法?Python nextprime怎么用?Python nextprime使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了nextprime函数的19个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: main7

def main7():
    seed(0)
    p = nextprime(randrange(2**96))
    q = nextprime(randrange(2**97))
    n = p * q
    print(p, q, n)
    print(qsieve(n))
开发者ID:wangjiezhe,项目名称:ent_note,代码行数:7,代码来源:rsa.py


示例2: main4

def main4():
    print(crack_when_pq_close(23360947609))
    p = nextprime(2**128)
    print(p)
    q = nextprime(p)
    print(q)
    print(crack_when_pq_close(p * q))
开发者ID:wangjiezhe,项目名称:ent_note,代码行数:7,代码来源:rsa.py


示例3: dmp_zz_collins_resultant

def dmp_zz_collins_resultant(f, g, u, K):
    """
    Collins's modular resultant algorithm in `Z[X]`.

    Examples
    ========

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.euclidtools import dmp_zz_collins_resultant

    >>> f = ZZ.map([[1], [1, 2]])
    >>> g = ZZ.map([[2, 1], [3]])

    >>> dmp_zz_collins_resultant(f, g, 1, ZZ)
    [-2, -5, 1]

    """

    n = dmp_degree(f, u)
    m = dmp_degree(g, u)

    if n < 0 or m < 0:
        return dmp_zero(u-1)

    A = dmp_max_norm(f, u, K)
    B = dmp_max_norm(g, u, K)

    a = dmp_ground_LC(f, u, K)
    b = dmp_ground_LC(g, u, K)

    v = u - 1

    B = K(2)*K.factorial(n+m)*A**m*B**n
    r, p, P = dmp_zero(v), K.one, K.one

    while P <= B:
        p = K(nextprime(p))

        while not (a % p) or not (b % p):
            p = K(nextprime(p))

        F = dmp_ground_trunc(f, p, u, K)
        G = dmp_ground_trunc(g, p, u, K)

        try:
            R = dmp_zz_modular_resultant(F, G, p, u, K)
        except HomomorphismFailed:
            continue

        if K.is_one(P):
            r = R
        else:
            r = dmp_apply_pairs(r, R, _collins_crt, (P, p, K), v, K)

        P *= p

    return r
开发者ID:dyao-vu,项目名称:meta-core,代码行数:57,代码来源:euclidtools.py


示例4: dmp_zz_collins_resultant

def dmp_zz_collins_resultant(f, g, u, K):
    """
    Collins's modular resultant algorithm in `Z[X]`.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> f = x + y + 2
    >>> g = 2*x*y + x + 3

    >>> R.dmp_zz_collins_resultant(f, g)
    -2*y**2 - 5*y + 1

    """

    n = dmp_degree(f, u)
    m = dmp_degree(g, u)

    if n < 0 or m < 0:
        return dmp_zero(u - 1)

    A = dmp_max_norm(f, u, K)
    B = dmp_max_norm(g, u, K)

    a = dmp_ground_LC(f, u, K)
    b = dmp_ground_LC(g, u, K)

    v = u - 1

    B = K(2)*K.factorial(K(n + m))*A**m*B**n
    r, p, P = dmp_zero(v), K.one, K.one

    while P <= B:
        p = K(nextprime(p))

        while not (a % p) or not (b % p):
            p = K(nextprime(p))

        F = dmp_ground_trunc(f, p, u, K)
        G = dmp_ground_trunc(g, p, u, K)

        try:
            R = dmp_zz_modular_resultant(F, G, p, u, K)
        except HomomorphismFailed:
            continue

        if K.is_one(P):
            r = R
        else:
            r = dmp_apply_pairs(r, R, _collins_crt, (P, p, K), v, K)

        P *= p

    return r
开发者ID:AdrianPotter,项目名称:sympy,代码行数:57,代码来源:euclidtools.py


示例5: rsa

def rsa(bits):
    p = nextprime(randrange(2**(bits // 2 + 1)))
    q = nextprime(randrange(2**(bits // 2 + 1)))
    n = p * q
    phi_n = (p - 1) * (q - 1)
    while True:
        e = randrange(1, phi_n)
        if gcd(e, phi_n) == 1:
            break
    d = inv_mod(e, phi_n)
    return e, d, n
开发者ID:wangjiezhe,项目名称:ent_note,代码行数:11,代码来源:rsa.py


示例6: GetLongestConsSumPrimes

def GetLongestConsSumPrimes(step,limit):
	sum = step
	count = 1
	i = nextprime(step)
	while (sum + i)<limit:
		sum += i
		count += 1
		i = nextprime(i)
		
	while isprime(sum) == False :	
		i = prevprime(i)
		sum -= i
		count -= 1

	return (count,sum)
开发者ID:azusa0127,项目名称:ProjectEuler,代码行数:15,代码来源:p50.py


示例7: swinnerton_dyer_poly

def swinnerton_dyer_poly(n, x=None, **args):
    """Generates n-th Swinnerton-Dyer polynomial in `x`.  """
    if n <= 0:
        raise ValueError(
            "can't generate Swinnerton-Dyer polynomial of order %s" % n)

    if x is not None:
        x, cls = sympify(x), Poly
    else:
        x, cls = Dummy('x'), PurePoly

    p, elts = 2, [[x, -sqrt(2)],
                  [x, sqrt(2)]]

    for i in xrange(2, n + 1):
        p, _elts = nextprime(p), []

        neg_sqrt = -sqrt(p)
        pos_sqrt = +sqrt(p)

        for elt in elts:
            _elts.append(elt + [neg_sqrt])
            _elts.append(elt + [pos_sqrt])

        elts = _elts

    poly = []

    for elt in elts:
        poly.append(Add(*elt))

    if not args.get('polys', False):
        return Mul(*poly).expand()
    else:
        return PurePoly(Mul(*poly), x)
开发者ID:Acebulf,项目名称:sympy,代码行数:35,代码来源:specialpolys.py


示例8: swinnerton_dyer_poly

def swinnerton_dyer_poly(n, x=None, **args):
    """Generates n-th Swinnerton-Dyer polynomial in `x`.  """
    from numberfields import minimal_polynomial
    if n <= 0:
        raise ValueError(
            "can't generate Swinnerton-Dyer polynomial of order %s" % n)

    if x is not None:
        sympify(x)
    else:
        x = Dummy('x')

    if n > 3:
        p = 2
        a = [sqrt(2)]
        for i in xrange(2, n + 1):
            p = nextprime(p)
            a.append(sqrt(p))
        return minimal_polynomial(Add(*a), x, polys=args.get('polys', False))

    if n == 1:
        ex = x**2 - 2
    elif n == 2:
        ex = x**4 - 10*x**2 + 1
    elif n == 3:
        ex = x**8 - 40*x**6 + 352*x**4 - 960*x**2 + 576
    if not args.get('polys', False):
        return ex
    else:
        return PurePoly(ex, x)
开发者ID:alhirzel,项目名称:sympy,代码行数:30,代码来源:specialpolys.py


示例9: swinnerton_dyer_poly

def swinnerton_dyer_poly(n, x=None, **args):
    """Generates n-th Swinnerton-Dyer polynomial in `x`.  """
    if n <= 0:
        raise ValueError("can't generate Swinnerton-Dyer polynomial of order %s" % n)

    if x is not None:
        x = sympify(x)
    else:
        x = Symbol('x', dummy=True)

    p, elts = 2, [[x, -2**Rational(1,2)],
                  [x,  2**Rational(1,2)]]

    for i in xrange(2, n+1):
        p, _elts = nextprime(p), []

        neg_sqrt = -p**Rational(1,2)
        pos_sqrt = +p**Rational(1,2)

        for elt in elts:
            _elts.append(elt + [neg_sqrt])
            _elts.append(elt + [pos_sqrt])

        elts = _elts

    poly = []

    for elt in elts:
        poly.append(Add(*elt))

    if not args.get('polys', False):
        return Mul(*poly).expand()
    else:
        return Poly(Mul(*poly))
开发者ID:Sumith1896,项目名称:sympy-polys,代码行数:34,代码来源:specialpolys.py


示例10: test_generate

def test_generate():
    assert nextprime(-4) == 2
    assert nextprime(2) == 3
    assert nextprime(5) == 7
    assert nextprime(90) == 97
    assert nextprime(10**40) == (10**40 + 121)
    assert prevprime(3) == 2
    assert prevprime(7) == 5
    assert prevprime(97) == 89
    assert prevprime(10**40) == (10**40 - 17)
    assert list(primerange(2, 7)) == [2, 3, 5]
    assert list(primerange(2, 10)) == [2, 3, 5, 7]
    assert list(primerange(1050, 1100)) == [1051, 1061, \
        1063, 1069, 1087, 1091, 1093, 1097]
    s = Sieve()
    for i in range(30, 2350, 376):
        for j in range(2, 5096, 1139):
            A = list(s.primerange(i, i+j))
            B = list(primerange(i, i+j))
            assert A == B
    s = Sieve()
    assert s[10] == 29
开发者ID:smichr,项目名称:sympy-live,代码行数:22,代码来源:test_ntheory.py


示例11: doProblem

def doProblem():
	LIMIT = 1000000
	step = 2
	maxLength = 0
	maxIndex = 0
	maxSum = 0
	while step < (LIMIT-maxSum):
		if GetLongestConsSumPrimes(step,LIMIT)[0] > maxLength:
			maxLength = GetLongestConsSumPrimes(step,LIMIT)[0]
			maxSum = GetLongestConsSumPrimes(step,LIMIT)[1]
			maxIndex = step
			print(maxIndex,maxLength,maxSum)
		step = nextprime(step)
	return (maxIndex,maxLength,maxSum)
开发者ID:azusa0127,项目名称:ProjectEuler,代码行数:14,代码来源:p50.py


示例12: _inv_totient_estimate

def _inv_totient_estimate(m):
    """
    Find ``(L, U)`` such that ``L <= phi^-1(m) <= U``.

    Examples
    ========

    >>> from sympy.polys.polyroots import _inv_totient_estimate

    >>> _inv_totient_estimate(192)
    (192, 840)
    >>> _inv_totient_estimate(400)
    (400, 1750)

    """
    primes = [ d + 1 for d in divisors(m) if isprime(d + 1) ]

    a, b = 1, 1

    for p in primes:
        a *= p
        b *= p - 1

    L = m
    U = int(math.ceil(m*(float(a)/b)))

    P = p = 2
    primes = []

    while P <= U:
        p = nextprime(p)
        primes.append(p)
        P *= p

    P //= p
    b = 1

    for p in primes[:-1]:
        b *= p - 1

    U = int(math.ceil(m*(float(P)/b)))

    return L, U
开发者ID:bjodah,项目名称:sympy,代码行数:43,代码来源:polyroots.py


示例13: test_generate

def test_generate():
    assert nextprime(-4) == 2
    assert nextprime(2) == 3
    assert nextprime(5) == 7
    assert nextprime(12) == 13
    assert nextprime(90) == 97
    assert nextprime(10**40) == (10**40 + 121)
    assert prevprime(3) == 2
    assert prevprime(7) == 5
    assert prevprime(13) == 11
    assert prevprime(97) == 89
    assert prevprime(10**40) == (10**40 - 17)
    assert list(primerange(2, 7)) == [2, 3, 5]
    assert list(primerange(2, 10)) == [2, 3, 5, 7]
    assert list(primerange(1050, 1100)) == [1051, 1061,
        1063, 1069, 1087, 1091, 1093, 1097]
    s = Sieve()
    for i in range(30, 2350, 376):
        for j in range(2, 5096, 1139):
            A = list(s.primerange(i, i + j))
            B = list(primerange(i, i + j))
            assert A == B
    s = Sieve()
    assert s[10] == 29

    assert nextprime(2, 2) == 5

    raises(ValueError, lambda: totient(0))

    raises(ValueError, lambda: reduced_totient(0))

    raises(ValueError, lambda: primorial(0))

    assert mr(1, [2]) is False

    func = lambda i: (i**2 + 1) % 51
    assert next(cycle_length(func, 4)) == (6, 2)
    assert list(cycle_length(func, 4, values=True)) == \
        [17, 35, 2, 5, 26, 14, 44, 50, 2, 5, 26, 14]
    assert next(cycle_length(func, 4, nmax=5)) == (5, None)
    assert list(cycle_length(func, 4, nmax=5, values=True)) == \
        [17, 35, 2, 5, 26]
开发者ID:JamesdeLisle,项目名称:sympy,代码行数:42,代码来源:test_generate.py


示例14: swinnerton_dyer_poly

def swinnerton_dyer_poly(n, x=None, polys=False):
    """Generates n-th Swinnerton-Dyer polynomial in `x`.

    Parameters
    ----------
    n : int
        `n` decides the order of polynomial
    x : optional
    polys : bool, optional
        ``polys=True`` returns an expression, otherwise
        (default) returns an expression.
    """
    from .numberfields import minimal_polynomial
    if n <= 0:
        raise ValueError(
            "can't generate Swinnerton-Dyer polynomial of order %s" % n)

    if x is not None:
        sympify(x)
    else:
        x = Dummy('x')

    if n > 3:
        p = 2
        a = [sqrt(2)]
        for i in range(2, n + 1):
            p = nextprime(p)
            a.append(sqrt(p))
        return minimal_polynomial(Add(*a), x, polys=args.get('polys', False))

    if n == 1:
        ex = x**2 - 2
    elif n == 2:
        ex = x**4 - 10*x**2 + 1
    elif n == 3:
        ex = x**8 - 40*x**6 + 352*x**4 - 960*x**2 + 576

    return PurePoly(ex, x) if polys else ex
开发者ID:carstimon,项目名称:sympy,代码行数:38,代码来源:specialpolys.py


示例15: dmp_zz_wang

def dmp_zz_wang(f, u, K, **args):
    """Factor primitive square-free polynomials in `Z[X]`.

       Given a multivariate polynomial `f` in `Z[x_1,...,x_n]`, which
       is primitive and square-free in `x_1`, computes factorization
       of `f` into irreducibles over integers.

       The procedure is based on Wang's Enhanced Extended Zassenhaus
       algorithm. The algorithm works by viewing `f` as a univariate
       polynomial in `Z[x_2,...,x_n][x_1]`, for which an evaluation
       mapping is computed::

                         x_2 -> a_2, ..., x_n -> a_n

       where `a_i`, for `i = 2, ..., n`, are carefully chosen integers.
       The mapping is used to transform `f` into a univariate polynomial
       in `Z[x_1]`, which can be factored efficiently using Zassenhaus
       algorithm. The last step is to lift univariate factors to obtain
       true multivariate factors. For this purpose a parallel Hensel
       lifting procedure is used.

       References
       ==========

       .. [Wang78] P. S. Wang, An Improved Multivariate Polynomial Factoring
           Algorithm, Math. of Computation 32, 1978, pp. 1215--1231

       .. [Geddes92] K. Geddes, S. R. Czapor, G. Labahn, Algorithms for
           Computer Algebra, Springer, 1992, pp. 264--272
    """
    ct, T = dmp_zz_factor(dmp_LC(f, K), u-1, K)

    b = dmp_zz_mignotte_bound(f, u, K)
    p = K(nextprime(b))

    eez_mod = args.get('mod', None)

    if eez_mod is None:
        if u == 1:
            eez_mod = 2
        else:
            eez_mod = 1

    history, configs, A, r = set([]), [], [K.zero]*u, None

    try:
        cs, s, E = dmp_zz_wang_test_points(f, T, ct, A, u, K)

        _, H = dup_zz_factor_sqf(s, K)

        r = len(H)

        if r == 1:
            return [f]

        bad_points = set([tuple(A)])
        configs = [(s, cs, E, H, A)]
    except EvaluationFailed:
        pass

    while len(configs) < EEZ_NUM_OK:
        for _ in xrange(EEZ_NUM_TRY):
            A = [ K(randint(-eez_mod, eez_mod)) for _ in xrange(u) ]

            if tuple(A) not in history:
                history.add(tuple(A))
            else:
                continue

            try:
                cs, s, E = dmp_zz_wang_test_points(f, T, ct, A, u, K)
            except EvaluationFailed:
                continue

            _, H = dup_zz_factor_sqf(s, K)

            rr = len(H)

            if r is not None:
                if rr != r: # pragma: no cover
                    if rr < r:
                        configs, r = [], rr
                    else:
                        continue
            else:
                r = rr

            if r == 1:
                return [f]

            configs.append((s, cs, E, H, A))

            if len(configs) == EEZ_NUM_OK:
                break
        else:
            eez_mod += EEZ_MOD_STEP

    s_norm, s_arg, i = None, 0, 0

    for s, _, _, _, _ in configs:
#.........这里部分代码省略.........
开发者ID:Aang,项目名称:sympy,代码行数:101,代码来源:factortools.py


示例16: test_factorint

def test_factorint():
    assert primefactors(123456) == [2, 3, 643]
    assert factorint(0) == {0: 1}
    assert factorint(1) == {}
    assert factorint(-1) == {-1: 1}
    assert factorint(-2) == {-1: 1, 2: 1}
    assert factorint(-16) == {-1: 1, 2: 4}
    assert factorint(2) == {2: 1}
    assert factorint(126) == {2: 1, 3: 2, 7: 1}
    assert factorint(123456) == {2: 6, 3: 1, 643: 1}
    assert factorint(5951757) == {3: 1, 7: 1, 29: 2, 337: 1}
    assert factorint(64015937) == {7993: 1, 8009: 1}
    assert factorint(2**(2**6) + 1) == {274177: 1, 67280421310721: 1}
    assert multiproduct(factorint(fac(200))) == fac(200)
    for b, e in factorint(fac(150)).items():
        assert e == fac_multiplicity(150, b)
    assert factorint(103005006059**7) == {103005006059: 7}
    assert factorint(31337**191) == {31337: 191}
    assert factorint(2**1000 * 3**500 * 257**127 * 383**60) == \
        {2: 1000, 3: 500, 257: 127, 383: 60}
    assert len(factorint(fac(10000))) == 1229
    assert factorint(12932983746293756928584532764589230) == \
        {2: 1, 5: 1, 73: 1, 727719592270351: 1, 63564265087747: 1, 383: 1}
    assert factorint(727719592270351) == {727719592270351: 1}
    assert factorint(2**64 + 1, use_trial=False) == factorint(2**64 + 1)
    for n in range(60000):
        assert multiproduct(factorint(n)) == n
    assert pollard_rho(2**64 + 1, seed=1) == 274177
    assert pollard_rho(19, seed=1) is None
    assert factorint(3, limit=2) == {3: 1}
    assert factorint(12345) == {3: 1, 5: 1, 823: 1}
    assert factorint(
        12345, limit=3) == {4115: 1, 3: 1}  # the 5 is greater than the limit
    assert factorint(1, limit=1) == {}
    assert factorint(0, 3) == {0: 1}
    assert factorint(12, limit=1) == {12: 1}
    assert factorint(30, limit=2) == {2: 1, 15: 1}
    assert factorint(16, limit=2) == {2: 4}
    assert factorint(124, limit=3) == {2: 2, 31: 1}
    assert factorint(4*31**2, limit=3) == {2: 2, 31: 2}
    p1 = nextprime(2**32)
    p2 = nextprime(2**16)
    p3 = nextprime(p2)
    assert factorint(p1*p2*p3) == {p1: 1, p2: 1, p3: 1}
    assert factorint(13*17*19, limit=15) == {13: 1, 17*19: 1}
    assert factorint(1951*15013*15053, limit=2000) == {225990689: 1, 1951: 1}
    assert factorint(primorial(17) + 1, use_pm1=0) == \
        {long(19026377261): 1, 3467: 1, 277: 1, 105229: 1}
    # when prime b is closer than approx sqrt(8*p) to prime p then they are
    # "close" and have a trivial factorization
    a = nextprime(2**2**8)  # 78 digits
    b = nextprime(a + 2**2**4)
    assert 'Fermat' in capture(lambda: factorint(a*b, verbose=1))

    raises(ValueError, lambda: pollard_rho(4))
    raises(ValueError, lambda: pollard_pm1(3))
    raises(ValueError, lambda: pollard_pm1(10, B=2))
    # verbose coverage
    n = nextprime(2**16)*nextprime(2**17)*nextprime(1901)
    assert 'with primes' in capture(lambda: factorint(n, verbose=1))
    capture(lambda: factorint(nextprime(2**16)*1012, verbose=1))

    n = nextprime(2**17)
    capture(lambda: factorint(n**3, verbose=1))  # perfect power termination
    capture(lambda: factorint(2*n, verbose=1))  # factoring complete msg

    # exceed 1st
    n = nextprime(2**17)
    n *= nextprime(n)
    assert '1000' in capture(lambda: factorint(n, limit=1000, verbose=1))
    n *= nextprime(n)
    assert len(factorint(n)) == 3
    assert len(factorint(n, limit=p1)) == 3
    n *= nextprime(2*n)
    # exceed 2nd
    assert '2001' in capture(lambda: factorint(n, limit=2000, verbose=1))
    assert capture(
        lambda: factorint(n, limit=4000, verbose=1)).count('Pollard') == 2
    # non-prime pm1 result
    n = nextprime(8069)
    n *= nextprime(2*n)*nextprime(2*n, 2)
    capture(lambda: factorint(n, verbose=1))  # non-prime pm1 result
    # factor fermat composite
    p1 = nextprime(2**17)
    p2 = nextprime(2*p1)
    assert factorint((p1*p2**2)**3) == {p1: 3, p2: 6}
    # Test for non integer input
    raises(ValueError, lambda: factorint(4.5))
开发者ID:LuckyStrikes1090,项目名称:sympy,代码行数:88,代码来源:test_ntheory.py


示例17: dmp_zz_wang

def dmp_zz_wang(f, u, K, mod=None):
    """
    Factor primitive square-free polynomials in `Z[X]`.

    Given a multivariate polynomial `f` in `Z[x_1,...,x_n]`, which
    is primitive and square-free in `x_1`, computes factorization
    of `f` into irreducibles over integers.

    The procedure is based on Wang's Enhanced Extended Zassenhaus
    algorithm. The algorithm works by viewing `f` as a univariate
    polynomial in `Z[x_2,...,x_n][x_1]`, for which an evaluation
    mapping is computed::

                      x_2 -> a_2, ..., x_n -> a_n

    where `a_i`, for `i = 2, ..., n`, are carefully chosen integers.
    The mapping is used to transform `f` into a univariate polynomial
    in `Z[x_1]`, which can be factored efficiently using Zassenhaus
    algorithm. The last step is to lift univariate factors to obtain
    true multivariate factors. For this purpose a parallel Hensel
    lifting procedure is used.

    **References**

    1. [Wang78]_
    2. [Geddes92]_

    """
    ct, T = dmp_zz_factor(dmp_LC(f, K), u-1, K)

    b = dmp_zz_mignotte_bound(f, u, K)
    p = K(nextprime(b))

    if mod is None:
        if u == 1:
            mod = 2
        else:
            mod = 1

    history, configs, A, r = set([]), [], [K.zero]*u, None

    try:
        cs, s, E = dmp_zz_wang_test_points(f, T, ct, A, u, K)

        _, H = dup_zz_factor_sqf(s, K)

        r = len(H)

        if r == 1:
            return [f]

        bad_points = set([tuple(A)])
        configs = [(s, cs, E, H, A)]
    except EvaluationFailed:
        pass

    eez_num_configs = query('EEZ_NUMBER_OF_CONFIGS')
    eez_num_tries = query('EEZ_NUMBER_OF_TRIES')
    eez_mod_step = query('EEZ_MODULUS_STEP')

    while len(configs) < eez_num_configs:
        for _ in xrange(eez_num_tries):
            A = [ K(randint(-mod, mod)) for _ in xrange(u) ]

            if tuple(A) not in history:
                history.add(tuple(A))
            else:
                continue

            try:
                cs, s, E = dmp_zz_wang_test_points(f, T, ct, A, u, K)
            except EvaluationFailed:
                continue

            _, H = dup_zz_factor_sqf(s, K)

            rr = len(H)

            if r is not None:
                if rr != r: # pragma: no cover
                    if rr < r:
                        configs, r = [], rr
                    else:
                        continue
            else:
                r = rr

            if r == 1:
                return [f]

            configs.append((s, cs, E, H, A))

            if len(configs) == eez_num_configs:
                break
        else:
            mod += eez_mod_step

    s_norm, s_arg, i = None, 0, 0

    for s, _, _, _, _ in configs:
#.........这里部分代码省略.........
开发者ID:TeddyBoomer,项目名称:wxgeometrie,代码行数:101,代码来源:factortools.py


示例18: sumcons

#               than previous streak... (streak, sum)
#           3. subtract lowest prime in streak
#           4. repeat 1-3 until max series length < streak


def sumcons(Nmin, Nmax):
    retval = (-1, -1)
    tot = 0
    for i, n in enumerate(nt.primerange(Nmin, Nmax)):
        if i == 0:
            continue
        if tot >= Nmax:
            break
        if nt.isprime(tot):
            retval = (i, tot)
        tot = tot + n
    return retval

Nmax = 1000000
start = 1
nconsprimes = []
tots = []
while start < Nmax:
    (n, N) = sumcons(start, Nmax)
    if n > 0:
        nconsprimes.append(n)
        tots.append(N)
    start = nt.nextprime(start)

print(max([(n, N) for (n, N) in zip(nconsprimes, tots) if n > 20]))
开发者ID:evan-phelps,项目名称:project-euler,代码行数:30,代码来源:p50.py


示例19: test_generate

def test_generate():
    from sympy.ntheory.generate import sieve
    sieve._reset()
    assert nextprime(-4) == 2
    assert nextprime(2) == 3
    assert nextprime(5) == 7
    assert nextprime(12) == 13
    assert prevprime(3) == 2
    assert prevprime(7) == 5
    assert prevprime(13) == 11
    assert prevprime(19) == 17
    assert prevprime(20) == 19

    sieve.extend_to_no(9)
    assert sieve._list[-1] == 23

    assert sieve._list[-1] < 31
    assert 31 in sieve

    assert nextprime(90) == 97
    assert nextprime(10**40) == (10**40 + 121)
    assert prevprime(97) == 89
    assert prevprime(10**40) == (10**40 - 17)

    assert list(sieve.primerange(10, 1)) == []
    assert list(sieve.primerange(5, 9)) == [5, 7]
    sieve._reset(prime=True)
    assert list(sieve.primerange(2, 12)) == [2, 3, 5, 7, 11]

    assert list(sieve.totientrange(5, 15)) == [4, 2, 6, 4, 6, 4, 10, 4, 12, 6]
    sieve._reset(totient=True)
    assert list(sieve.totientrange(3, 13)) == [2, 2, 4, 2, 6, 4, 6, 4, 10, 4]
    assert list(sieve.totientrange(900, 1000)) == [totient(x) for x in range(900, 1000)]
    assert list(sieve.totientrange(0, 1)) == []
    assert list(sieve.totientrange(1, 2)) == [1]

    assert list(sieve.mobiusrange(5, 15)) == [-1, 1, -1, 0, 0, 1, -1, 0, -1, 1]
    sieve._reset(mobius=True)
    assert list(sieve.mobiusrange(3, 13)) == [-1, 0, -1, 1, -1, 0, 0, 1, -1, 0]
    assert list(sieve.mobiusrange(1050, 1100)) == [mobius(x) for x in range(1050, 1100)]
    assert list(sieve.mobiusrange(0, 1)) == []
    assert list(sieve.mobiusrange(1, 2)) == [1]

    assert list(primerange(10, 1)) == []
    assert list(primerange(2, 7)) == [2, 3, 5]
    assert list(primerange(2, 10)) == [2, 3, 5, 7]
    assert list(primerange(1050, 1100)) == [1051, 1061,
        1063, 1069, 1087, 1091, 1093, 1097]
    s = Sieve()
    for i in range(30, 2350, 376):
        for j in range(2, 5096, 1139):
            A = list(s.primerange(i, i + j))
            B = list(primerange(i, i + j))
            assert A == B
    s = Sieve()
    assert s[10] == 29

    assert nextprime(2, 2) == 5

    raises(ValueError, lambda: totient(0))

    raises(ValueError, lambda: reduced_totient(0))

    raises(ValueError, lambda: primorial(0))

    assert mr(1, [2]) is False

    func = lambda i: (i**2 + 1) % 51
    assert next(cycle_length(func, 4)) == (6, 2)
    assert list(cycle_length(func, 4, values=True)) == \
        [17, 35, 2, 5, 26, 14, 44, 50, 2, 5, 26, 14]
    assert next(cycle_length(func, 4, nmax=5)) == (5, None)
    assert list(cycle_length(func, 4, nmax=5, values=True)) == \
        [17, 35, 2, 5, 26]
    sieve.extend(3000)
    assert nextprime(2968) == 2969
    assert prevprime(2930) == 2927
    raises(ValueError, lambda: prevprime(1))
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:78,代码来源:test_generate.py



注:本文中的sympy.ntheory.nextprime函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python ntheory.perfect_power函数代码示例发布时间:2022-05-27
下一篇:
Python ntheory.multiplicity函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap