本文整理汇总了Python中sympy.mpmath.libmp.normalize函数的典型用法代码示例。如果您正苦于以下问题:Python normalize函数的具体用法?Python normalize怎么用?Python normalize使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了normalize函数的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: add_terms
def add_terms(terms, prec, target_prec):
"""
Helper for evalf_add. Adds a list of (mpfval, accuracy) terms.
"""
if len(terms) == 1:
if not terms[0]:
# XXX: this is supposed to represent a scaled zero
return mpf_shift(fone, target_prec), -1
return terms[0]
max_extra_prec = 2*prec
sum_man, sum_exp, absolute_error = 0, 0, MINUS_INF
for x, accuracy in terms:
if not x:
continue
sign, man, exp, bc = x
if sign:
man = -man
absolute_error = max(absolute_error, bc+exp-accuracy)
delta = exp - sum_exp
if exp >= sum_exp:
# x much larger than existing sum?
# first: quick test
if (delta > max_extra_prec) and \
((not sum_man) or delta-bitcount(abs(sum_man)) > max_extra_prec):
sum_man = man
sum_exp = exp
else:
sum_man += (man << delta)
else:
delta = -delta
# x much smaller than existing sum?
if delta-bc > max_extra_prec:
if not sum_man:
sum_man, sum_exp = man, exp
else:
sum_man = (sum_man << delta) + man
sum_exp = exp
if absolute_error == MINUS_INF:
return None, None
if not sum_man:
# XXX: this is supposed to represent a scaled zero
return mpf_shift(fone, absolute_error), -1
if sum_man < 0:
sum_sign = 1
sum_man = -sum_man
else:
sum_sign = 0
sum_bc = bitcount(sum_man)
sum_accuracy = sum_exp + sum_bc - absolute_error
r = normalize(sum_sign, sum_man, sum_exp, sum_bc, target_prec,
round_nearest), sum_accuracy
#print "returning", to_str(r[0],50), r[1]
return r
开发者ID:fxkr,项目名称:sympy,代码行数:53,代码来源:evalf.py
示例2: evalf_mul
def evalf_mul(v, prec, options):
from sympy.core.core import C
res = pure_complex(v)
if res:
# the only pure complex that is a mul is h*I
_, h = res
im, _, im_acc, _ = evalf(h, prec, options)
return None, im, None, im_acc
args = list(v.args)
# see if any argument is NaN or oo and thus warrants a special return
special = []
for arg in args:
arg = evalf(arg, prec, options)
if arg[0] is None:
continue
arg = C.Float._new(arg[0], 1)
if arg is S.NaN or arg.is_unbounded:
special.append(arg)
if special:
from sympy.core.mul import Mul
special = Mul(*special)
return evalf(special, prec + 4, {})
# With guard digits, multiplication in the real case does not destroy
# accuracy. This is also true in the complex case when considering the
# total accuracy; however accuracy for the real or imaginary parts
# separately may be lower.
acc = prec
# XXX: big overestimate
working_prec = prec + len(args) + 5
# Empty product is 1
start = man, exp, bc = MPZ(1), 0, 1
# First, we multiply all pure real or pure imaginary numbers.
# direction tells us that the result should be multiplied by
# I**direction; all other numbers get put into complex_factors
# to be multiplied out after the first phase.
last = len(args)
direction = 0
args.append(S.One)
complex_factors = []
for i, arg in enumerate(args):
if i != last and pure_complex(arg):
args[-1] = (args[-1] * arg).expand()
continue
elif i == last and arg is S.One:
continue
re, im, re_acc, im_acc = evalf(arg, working_prec, options)
if re and im:
complex_factors.append((re, im, re_acc, im_acc))
continue
elif re:
(s, m, e, b), w_acc = re, re_acc
elif im:
(s, m, e, b), w_acc = im, im_acc
direction += 1
else:
return None, None, None, None
direction += 2 * s
man *= m
exp += e
bc += b
if bc > 3 * working_prec:
man >>= working_prec
exp += working_prec
acc = min(acc, w_acc)
sign = (direction & 2) >> 1
if not complex_factors:
v = normalize(sign, man, exp, bitcount(man), prec, rnd)
# multiply by i
if direction & 1:
return None, v, None, acc
else:
return v, None, acc, None
else:
# initialize with the first term
if (man, exp, bc) != start:
# there was a real part; give it an imaginary part
re, im = (sign, man, exp, bitcount(man)), (0, MPZ(0), 0, 0)
i0 = 0
else:
# there is no real part to start (other than the starting 1)
wre, wim, wre_acc, wim_acc = complex_factors[0]
acc = min(acc, complex_accuracy((wre, wim, wre_acc, wim_acc)))
re = wre
im = wim
i0 = 1
for wre, wim, wre_acc, wim_acc in complex_factors[i0:]:
# acc is the overall accuracy of the product; we aren't
# computing exact accuracies of the product.
acc = min(acc, complex_accuracy((wre, wim, wre_acc, wim_acc)))
use_prec = working_prec
#.........这里部分代码省略.........
开发者ID:smichr,项目名称:sympy,代码行数:101,代码来源:evalf.py
示例3: add_terms
def add_terms(terms, prec, target_prec):
"""
Helper for evalf_add. Adds a list of (mpfval, accuracy) terms.
Returns
-------
- None, None if there are no non-zero terms;
- terms[0] if there is only 1 term;
- scaled_zero if the sum of the terms produces a zero by cancellation
e.g. mpfs representing 1 and -1 would produce a scaled zero which need
special handling since they are not actually zero and they are purposely
malformed to ensure that they can't be used in anything but accuracy
calculations;
- a tuple that is scaled to target_prec that corresponds to the
sum of the terms.
The returned mpf tuple will be normalized to target_prec; the input
prec is used to define the working precision.
XXX explain why this is needed and why one can't just loop using mpf_add
"""
from sympy.core.core import C
terms = [t for t in terms if not iszero(t)]
if not terms:
return None, None
elif len(terms) == 1:
return terms[0]
# see if any argument is NaN or oo and thus warrants a special return
special = []
for t in terms:
arg = C.Float._new(t[0], 1)
if arg is S.NaN or arg.is_unbounded:
special.append(arg)
if special:
from sympy.core.add import Add
rv = evalf(Add(*special), prec + 4, {})
return rv[0], rv[2]
working_prec = 2 * prec
sum_man, sum_exp, absolute_error = 0, 0, MINUS_INF
for x, accuracy in terms:
sign, man, exp, bc = x
if sign:
man = -man
absolute_error = max(absolute_error, bc + exp - accuracy)
delta = exp - sum_exp
if exp >= sum_exp:
# x much larger than existing sum?
# first: quick test
if (delta > working_prec) and ((not sum_man) or delta - bitcount(abs(sum_man)) > working_prec):
sum_man = man
sum_exp = exp
else:
sum_man += man << delta
else:
delta = -delta
# x much smaller than existing sum?
if delta - bc > working_prec:
if not sum_man:
sum_man, sum_exp = man, exp
else:
sum_man = (sum_man << delta) + man
sum_exp = exp
if not sum_man:
return scaled_zero(absolute_error)
if sum_man < 0:
sum_sign = 1
sum_man = -sum_man
else:
sum_sign = 0
sum_bc = bitcount(sum_man)
sum_accuracy = sum_exp + sum_bc - absolute_error
r = normalize(sum_sign, sum_man, sum_exp, sum_bc, target_prec, rnd), sum_accuracy
# print "returning", to_str(r[0],50), r[1]
return r
开发者ID:smichr,项目名称:sympy,代码行数:80,代码来源:evalf.py
示例4: evalf_mul
def evalf_mul(v, prec, options):
args = v.args
# With guard digits, multiplication in the real case does not destroy
# accuracy. This is also true in the complex case when considering the
# total accuracy; however accuracy for the real or imaginary parts
# separately may be lower.
acc = prec
target_prec = prec
# XXX: big overestimate
prec = prec + len(args) + 5
direction = 0
# Empty product is 1
man, exp, bc = MPZ(1), 0, 1
direction = 0
complex_factors = []
# First, we multiply all pure real or pure imaginary numbers.
# direction tells us that the result should be multiplied by
# i**direction
for arg in args:
re, im, re_acc, im_acc = evalf(arg, prec, options)
if re and im:
complex_factors.append((re, im, re_acc, im_acc))
continue
elif re:
(s, m, e, b), w_acc = re, re_acc
elif im:
(s, m, e, b), w_acc = im, im_acc
direction += 1
else:
return None, None, None, None
direction += 2*s
man *= m
exp += e
bc += b
if bc > 3*prec:
man >>= prec
exp += prec
acc = min(acc, w_acc)
sign = (direction & 2) >> 1
v = normalize(sign, man, exp, bitcount(man), prec, round_nearest)
if complex_factors:
# make existing real scalar look like an imaginary and
# multiply by the remaining complex numbers
re, im = v, (0, MPZ(0), 0, 0)
for wre, wim, wre_acc, wim_acc in complex_factors:
# acc is the overall accuracy of the product; we aren't
# computing exact accuracies of the product.
acc = min(acc,
complex_accuracy((wre, wim, wre_acc, wim_acc)))
A = mpf_mul(re, wre, prec)
B = mpf_mul(mpf_neg(im), wim, prec)
C = mpf_mul(re, wim, prec)
D = mpf_mul(im, wre, prec)
re, xre_acc = add_terms([(A, acc), (B, acc)], prec, target_prec)
im, xim_acc = add_terms([(C, acc), (D, acc)], prec, target_prec)
if options.get('verbose'):
print "MUL: wanted", target_prec, "accurate bits, got", acc
# multiply by i
if direction & 1:
return mpf_neg(im), re, acc, acc
else:
return re, im, acc, acc
else:
# multiply by i
if direction & 1:
return None, v, None, acc
else:
return v, None, acc, None
开发者ID:fxkr,项目名称:sympy,代码行数:69,代码来源:evalf.py
注:本文中的sympy.mpmath.libmp.normalize函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论