• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python transforms.inverse_mellin_transform函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sympy.integrals.transforms.inverse_mellin_transform函数的典型用法代码示例。如果您正苦于以下问题:Python inverse_mellin_transform函数的具体用法?Python inverse_mellin_transform怎么用?Python inverse_mellin_transform使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了inverse_mellin_transform函数的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_expint

def test_expint():
    from sympy import E1, expint, Max, re, lerchphi, Symbol, simplify, Si, Ci, Ei

    aneg = Symbol("a", negative=True)
    u = Symbol("u", polar=True)

    assert mellin_transform(E1(x), x, s) == (gamma(s) / s, (0, oo), True)
    assert inverse_mellin_transform(gamma(s) / s, s, x, (0, oo)).rewrite(expint).expand() == E1(x)
    assert mellin_transform(expint(a, x), x, s) == (gamma(s) / (a + s - 1), (Max(1 - re(a), 0), oo), True)
    # XXX IMT has hickups with complicated strips ...
    assert simplify(
        unpolarify(
            inverse_mellin_transform(gamma(s) / (aneg + s - 1), s, x, (1 - aneg, oo)).rewrite(expint).expand(func=True)
        )
    ) == expint(aneg, x)

    assert mellin_transform(Si(x), x, s) == (
        -2 ** s * sqrt(pi) * gamma(s / 2 + S(1) / 2) / (2 * s * gamma(-s / 2 + 1)),
        (-1, 0),
        True,
    )
    assert inverse_mellin_transform(
        -2 ** s * sqrt(pi) * gamma((s + 1) / 2) / (2 * s * gamma(-s / 2 + 1)), s, x, (-1, 0)
    ) == Si(x)

    assert mellin_transform(Ci(sqrt(x)), x, s) == (
        -2 ** (2 * s - 1) * sqrt(pi) * gamma(s) / (s * gamma(-s + S(1) / 2)),
        (0, 1),
        True,
    )
    assert inverse_mellin_transform(
        -4 ** s * sqrt(pi) * gamma(s) / (2 * s * gamma(-s + S(1) / 2)), s, u, (0, 1)
    ).expand() == Ci(sqrt(u))

    # TODO LT of Si, Shi, Chi is a mess ...
    assert laplace_transform(Ci(x), x, s) == (-log(1 + s ** 2) / 2 / s, 0, True)
    assert laplace_transform(expint(a, x), x, s) == (lerchphi(s * polar_lift(-1), 1, a), 0, S(0) < re(a))
    assert laplace_transform(expint(1, x), x, s) == (log(s + 1) / s, 0, True)
    assert laplace_transform(expint(2, x), x, s) == ((s - log(s + 1)) / s ** 2, 0, True)

    assert inverse_laplace_transform(-log(1 + s ** 2) / 2 / s, s, u).expand() == Heaviside(u) * Ci(u)
    assert inverse_laplace_transform(log(s + 1) / s, s, x).rewrite(expint) == Heaviside(x) * E1(x)
    assert (
        inverse_laplace_transform((s - log(s + 1)) / s ** 2, s, x).rewrite(expint).expand()
        == (expint(2, x) * Heaviside(x)).rewrite(Ei).rewrite(expint).expand()
    )
开发者ID:whimsy-Pan,项目名称:sympy,代码行数:46,代码来源:test_transforms.py


示例2: test_as_integral

def test_as_integral():
    from sympy import Function, Integral
    f = Function('f')
    assert mellin_transform(f(x), x, s).rewrite('Integral') == \
        Integral(x**(s - 1)*f(x), (x, 0, oo))
    assert fourier_transform(f(x), x, s).rewrite('Integral') == \
        Integral(f(x)*exp(-2*I*pi*s*x), (x, -oo, oo))
    assert laplace_transform(f(x), x, s).rewrite('Integral') == \
        Integral(f(x)*exp(-s*x), (x, 0, oo))
    assert str(inverse_mellin_transform(f(s), s, x, (a, b)).rewrite('Integral')) \
        == "Integral(x**(-s)*f(s), (s, _c - oo*I, _c + oo*I))"
    assert str(inverse_laplace_transform(f(s), s, x).rewrite('Integral')) == \
        "Integral(f(s)*exp(s*x), (s, _c - oo*I, _c + oo*I))"
    assert inverse_fourier_transform(f(s), s, x).rewrite('Integral') == \
        Integral(f(s)*exp(2*I*pi*s*x), (s, -oo, oo))
开发者ID:FedericoV,项目名称:sympy,代码行数:15,代码来源:test_transforms.py


示例3: test_issue_8882

def test_issue_8882():
    # This is the original test.
    # from sympy import diff, Integral, integrate
    # r = Symbol('r')
    # psi = 1/r*sin(r)*exp(-(a0*r))
    # h = -1/2*diff(psi, r, r) - 1/r*psi
    # f = 4*pi*psi*h*r**2
    # assert integrate(f, (r, -oo, 3), meijerg=True).has(Integral) == True

    # To save time, only the critical part is included.
    F = -a**(-s + 1)*(4 + 1/a**2)**(-s/2)*sqrt(1/a**2)*exp(-s*I*pi)* \
        sin(s*atan(sqrt(1/a**2)/2))*gamma(s)
    raises(IntegralTransformError, lambda:
        inverse_mellin_transform(F, s, x, (-1, oo),
        **{'as_meijerg': True, 'needeval': True}))
开发者ID:aprasanna,项目名称:sympy,代码行数:15,代码来源:test_transforms.py



注:本文中的sympy.integrals.transforms.inverse_mellin_transform函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python transforms.laplace_transform函数代码示例发布时间:2022-05-27
下一篇:
Python transforms.inverse_laplace_transform函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap