本文整理汇总了Python中sympy.integrals.meijerint._debug函数的典型用法代码示例。如果您正苦于以下问题:Python _debug函数的具体用法?Python _debug怎么用?Python _debug使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了_debug函数的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: try_meijerg
def try_meijerg(function, xab):
ret = None
if len(xab) == 3 and meijerg is not False:
x, a, b = xab
try:
res = meijerint_definite(function, x, a, b)
except NotImplementedError:
from sympy.integrals.meijerint import _debug
_debug("NotImplementedError from meijerint_definite")
res = None
if res is not None:
f, cond = res
if conds == "piecewise":
ret = Piecewise((f, cond), (self.func(function, (x, a, b)), True))
elif conds == "separate":
if len(self.limits) != 1:
raise ValueError("conds=separate not supported in " "multiple integrals")
ret = f, cond
else:
ret = f
return ret
开发者ID:brajeshvit,项目名称:virtual,代码行数:22,代码来源:integrals.py
示例2: _eval_integral
#.........这里部分代码省略.........
continue
if not meijerg:
# g(x) = Mul(trig)
h = trigintegrate(g, x, conds=conds)
if h is not None:
parts.append(coeff * h)
continue
# g(x) has at least a DiracDelta term
h = deltaintegrate(g, x)
if h is not None:
parts.append(coeff * h)
continue
# Try risch again.
if risch is not False:
try:
h, i = risch_integrate(g, x, separate_integral=True, conds=conds)
except NotImplementedError:
h = None
else:
if i:
h = h + i.doit(risch=False)
parts.append(coeff*h)
continue
# fall back to heurisch
try:
if conds == 'piecewise':
h = heurisch_wrapper(g, x, hints=[])
else:
h = heurisch(g, x, hints=[])
except PolynomialError:
# XXX: this exception means there is a bug in the
# implementation of heuristic Risch integration
# algorithm.
h = None
else:
h = None
if meijerg is not False and h is None:
# rewrite using G functions
try:
h = meijerint_indefinite(g, x)
except NotImplementedError:
from sympy.integrals.meijerint import _debug
_debug('NotImplementedError from meijerint_definite')
res = None
if h is not None:
parts.append(coeff * h)
continue
if h is None and manual is not False:
try:
result = manualintegrate(g, x)
if result is not None and not isinstance(result, Integral):
if result.has(Integral):
# try to have other algorithms do the integrals
# manualintegrate can't handle
result = result.func(*[
arg.doit(manual=False) if arg.has(Integral) else arg
for arg in result.args
]).expand(multinomial=False,
log=False,
power_exp=False,
power_base=False)
if not result.has(Integral):
parts.append(coeff * result)
continue
except (ValueError, PolynomialError):
# can't handle some SymPy expressions
pass
# if we failed maybe it was because we had
# a product that could have been expanded,
# so let's try an expansion of the whole
# thing before giving up; we don't try this
# out the outset because there are things
# that cannot be solved unless they are
# NOT expanded e.g., x**x*(1+log(x)). There
# should probably be a checker somewhere in this
# routine to look for such cases and try to do
# collection on the expressions if they are already
# in an expanded form
if not h and len(args) == 1:
f = f.expand(mul=True, deep=False)
if f.is_Add:
# Note: risch will be identical on the expanded
# expression, but maybe it will be able to pick out parts,
# like x*(exp(x) + erf(x)).
return self._eval_integral(f, x, meijerg=meijerg, risch=risch, conds=conds)
if h is not None:
parts.append(coeff * h)
else:
return None
return Add(*parts)
开发者ID:hrashk,项目名称:sympy,代码行数:101,代码来源:integrals.py
示例3: _eval_integral
#.........这里部分代码省略.........
if order_term is not None:
h = self._eval_integral(g.removeO(), x)
if h is not None:
h_order_expr = self._eval_integral(order_term.expr, x)
if h_order_expr is not None:
h_order_term = order_term.func(h_order_expr, *order_term.variables)
parts.append(coeff*(h + h_order_term))
continue
# NOTE: if there is O(x**n) and we fail to integrate then there is
# no point in trying other methods because they will fail anyway.
return None
# c
# g(x) = (a*x+b)
if g.is_Pow and not g.exp.has(x) and not meijerg:
a = Wild('a', exclude=[x])
b = Wild('b', exclude=[x])
M = g.base.match(a*x + b)
if M is not None:
if g.exp == -1:
h = C.log(g.base)
else:
h = g.base**(g.exp + 1) / (g.exp + 1)
parts.append(coeff * h / M[a])
continue
# poly(x)
# g(x) = -------
# poly(x)
if g.is_rational_function(x) and not meijerg:
parts.append(coeff * ratint(g, x))
continue
if not meijerg:
# g(x) = Mul(trig)
h = trigintegrate(g, x)
if h is not None:
parts.append(coeff * h)
continue
# g(x) has at least a DiracDelta term
h = deltaintegrate(g, x)
if h is not None:
parts.append(coeff * h)
continue
if not meijerg:
# fall back to the more general algorithm
try:
h = heurisch(g, x, hints=[])
except PolynomialError:
# XXX: this exception means there is a bug in the
# implementation of heuristic Risch integration
# algorithm.
h = None
else:
h = None
if meijerg is not False and h is None:
# rewrite using G functions
try:
h = meijerint_indefinite(g, x)
except NotImplementedError:
from sympy.integrals.meijerint import _debug
_debug('NotImplementedError from meijerint_definite')
res = None
if h is not None:
parts.append(coeff * h)
continue
# if we failed maybe it was because we had
# a product that could have been expanded,
# so let's try an expansion of the whole
# thing before giving up; we don't try this
# out the outset because there are things
# that cannot be solved unless they are
# NOT expanded e.g., x**x*(1+log(x)). There
# should probably be a checker somewhere in this
# routine to look for such cases and try to do
# collection on the expressions if they are already
# in an expanded form
if not h and len(args) == 1:
f = f.expand(mul=True, deep=False)
if f.is_Add:
return self._eval_integral(f, x, meijerg)
if h is not None:
parts.append(coeff * h)
else:
return None
return Add(*parts)
开发者ID:BDGLunde,项目名称:sympy,代码行数:101,代码来源:integrals.py
注:本文中的sympy.integrals.meijerint._debug函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论