• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python geometry.Point类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sympy.geometry.Point的典型用法代码示例。如果您正苦于以下问题:Python Point类的具体用法?Python Point怎么用?Python Point使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了Point类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: main

def main():

    O = Point(0, 0)
    p0 = Point(0, 10.1)
    p1 = Point(1.4, -9.6)
    m = p0.midpoint(p1)
    X = Line(O, Point(10, 0))
    Y = Line(O, Point(0, 10))

    ellipse = Ellipse(Point(0, 0), 5 , 10)
    sortie = Segment(Point(-0.01, 10), Point(0.01, 10))

    ray = Ray(m, p1)

    reflections = 0
    
    while not sortie.intersection(ray) and reflections < 5:
        targets = ellipse.intersection(ray)
        print " Targets: ", targets
        origin = next_origin(ray.p1, targets)
        tangents = ellipse.tangent_lines(origin)
        if len(tangents) > 1:
            print("Error computing intersection")
            break
        tangent = tangents.pop()
        alpha = next_angle(ray, tangent, (X, Y))
        reflections += 1
        ray = Ray(origin, angle=alpha)
        print "Reflections :", reflections
开发者ID:icot,项目名称:euler,代码行数:29,代码来源:p144.py


示例2: test_reflect

def test_reflect():
    b = Symbol('b')
    m = Symbol('m')
    l = Line((0, b), slope=m)
    p = Point(x, y)
    r = p.reflect(l)
    dp = l.perpendicular_segment(p).length
    dr = l.perpendicular_segment(r).length
    assert test_numerically(dp, dr)
    t = Triangle((0, 0), (1, 0), (2, 3))
    assert t.area == -t.reflect(l).area
    e = Ellipse((1, 0), 1, 2)
    assert e.area == -e.reflect(Line((1, 0), slope=0)).area
    assert e.area == -e.reflect(Line((1, 0), slope=oo)).area
    raises(NotImplementedError, lambda: e.reflect(Line((1,0), slope=m)))
    # test entity overrides
    c = Circle((x, y), 3)
    cr = c.reflect(l)
    assert cr == Circle(r, -3)
    assert c.area == -cr.area
    pent = RegularPolygon((1, 2), 1, 5)
    l = Line((0, pi), slope=sqrt(2))
    rpent = pent.reflect(l)
    poly_pent = Polygon(*pent.vertices)
    assert rpent.center == pent.center.reflect(l)
    assert str([w.n(3) for w in rpent.vertices]) == (
        '[Point(-0.586, 4.27), Point(-1.69, 4.66), '
        'Point(-2.41, 3.73), Point(-1.74, 2.76), '
        'Point(-0.616, 3.10)]')
    assert pent.area.equals(-rpent.area)
开发者ID:Acebulf,项目名称:sympy,代码行数:30,代码来源:test_geometry.py


示例3: test_reflect_entity_overrides

def test_reflect_entity_overrides():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    b = Symbol('b')
    m = Symbol('m')
    l = Line((0, b), slope=m)
    p = Point(x, y)
    r = p.reflect(l)
    c = Circle((x, y), 3)
    cr = c.reflect(l)
    assert cr == Circle(r, -3)
    assert c.area == -cr.area

    pent = RegularPolygon((1, 2), 1, 5)
    l = Line(pent.vertices[1],
        slope=Rational(random() - .5, random() - .5))
    rpent = pent.reflect(l)
    assert rpent.center == pent.center.reflect(l)
    rvert = [i.reflect(l) for i in pent.vertices]
    for v in rpent.vertices:
        for i in range(len(rvert)):
            ri = rvert[i]
            if ri.equals(v):
                rvert.remove(ri)
                break
    assert not rvert
    assert pent.area.equals(-rpent.area)
开发者ID:asmeurer,项目名称:sympy,代码行数:27,代码来源:test_entity.py


示例4: test_transform

def test_transform():
    p = Point(1, 1)
    assert p.transform(rotate(pi/2)) == Point(-1, 1)
    assert p.transform(scale(3, 2)) == Point(3, 2)
    assert p.transform(translate(1, 2)) == Point(2, 3)
    assert Point(1, 1).scale(2, 3, (4, 5)) == \
        Point(-2, -7)
    assert Point(1, 1).translate(4, 5) == \
        Point(5, 6)
开发者ID:kpsychas,项目名称:sympy,代码行数:9,代码来源:test_point.py


示例5: test_subs

def test_subs():
    p = Point(x, 2)
    q = Point(1, 1)
    r = Point(3, 4)
    for o in [p,
              Segment(p, q),
              Ray(p, q),
              Line(p, q),
              Triangle(p, q, r),
              RegularPolygon(p, 3, 6),
              Polygon(p, q, r, Point(5,4)),
              Circle(p, 3),
              Ellipse(p, 3, 4)]:
        assert 'y' in str(o.subs(x, y))
    assert p.subs({x: 1}) == Point(1, 2)
开发者ID:101man,项目名称:sympy,代码行数:15,代码来源:test_geometry.py


示例6: test_subs

def test_subs():
    p = Point(x, 2)
    q = Point(1, 1)
    r = Point(3, 4)
    for o in [p,
              Segment(p, q),
              Ray(p, q),
              Line(p, q),
              Triangle(p, q, r),
              RegularPolygon(p, 3, 6),
              Polygon(p, q, r, Point(5,4)),
              Circle(p, 3),
              Ellipse(p, 3, 4)]:
        assert 'y' in str(o.subs(x, y))
    assert p.subs({x: 1}) == Point(1, 2)
    assert Point(1, 2).subs(Point(1, 2), Point(3, 4)) == Point(3, 4)
    assert Point(1, 2).subs((1,2), Point(3,4)) == Point(3, 4)
    assert Point(1, 2).subs(Point(1,2), Point(3,4)) == Point(3, 4)
    assert Point(1, 2).subs(set([(1, 2)])) == Point(2, 2)
    raises(ValueError, lambda: Point(1, 2).subs(1))
    raises(ValueError, lambda: Point(1, 1).subs((Point(1, 1), Point(1, 2)), 1, 2))
开发者ID:parleur,项目名称:sympy,代码行数:21,代码来源:test_geometry.py


示例7: test_reflect

def test_reflect():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    b = Symbol('b')
    m = Symbol('m')
    l = Line((0, b), slope=m)
    p = Point(x, y)
    r = p.reflect(l)
    dp = l.perpendicular_segment(p).length
    dr = l.perpendicular_segment(r).length

    assert verify_numerically(dp, dr)
    t = Triangle((0, 0), (1, 0), (2, 3))
    assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=oo)) \
        == Triangle(Point(5, 0), Point(4, 0), Point(4, 2))
    assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=oo)) \
        == Triangle(Point(-1, 0), Point(-2, 0), Point(-2, 2))
    assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=0)) \
        == Triangle(Point(1, 6), Point(2, 6), Point(2, 4))
    assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=0)) \
        == Triangle(Point(1, 0), Point(2, 0), Point(2, -2))
开发者ID:alexako,项目名称:sympy,代码行数:21,代码来源:test_polygon.py


示例8: test_reflect_entity_overrides

def test_reflect_entity_overrides():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    b = Symbol('b')
    m = Symbol('m')
    l = Line((0, b), slope=m)
    p = Point(x, y)
    r = p.reflect(l)
    c = Circle((x, y), 3)
    cr = c.reflect(l)
    assert cr == Circle(r, -3)
    assert c.area == -cr.area

    pent = RegularPolygon((1, 2), 1, 5)
    l = Line((0, pi), slope=sqrt(2))
    rpent = pent.reflect(l)
    assert rpent.center == pent.center.reflect(l)
    assert str([w.n(3) for w in rpent.vertices]) == (
        '[Point2D(-0.586, 4.27), Point2D(-1.69, 4.66), '
        'Point2D(-2.41, 3.73), Point2D(-1.74, 2.76), '
        'Point2D(-0.616, 3.10)]')
    assert pent.area.equals(-rpent.area)
开发者ID:AlexanderKulka,项目名称:sympy,代码行数:22,代码来源:test_entity.py


示例9: centroid

def centroid(*args):
    """Find the centroid (center of mass) of the collection containing only Points,
    Segments or Polygons. The centroid is the weighted average of the individual centroid
    where the weights are the lengths (of segments) or areas (of polygons).
    Overlapping regions will add to the weight of that region.

    If there are no objects (or a mixture of objects) then None is returned.

    See Also
    ========

    sympy.geometry.point.Point, sympy.geometry.line.Segment,
    sympy.geometry.polygon.Polygon

    Examples
    ========

    >>> from sympy import Point, Segment, Polygon
    >>> from sympy.geometry.util import centroid
    >>> p = Polygon((0, 0), (10, 0), (10, 10))
    >>> q = p.translate(0, 20)
    >>> p.centroid, q.centroid
    (Point2D(20/3, 10/3), Point2D(20/3, 70/3))
    >>> centroid(p, q)
    Point2D(20/3, 40/3)
    >>> p, q = Segment((0, 0), (2, 0)), Segment((0, 0), (2, 2))
    >>> centroid(p, q)
    Point2D(1, 2 - sqrt(2))
    >>> centroid(Point(0, 0), Point(2, 0))
    Point2D(1, 0)

    Stacking 3 polygons on top of each other effectively triples the
    weight of that polygon:

    >>> p = Polygon((0, 0), (1, 0), (1, 1), (0, 1))
    >>> q = Polygon((1, 0), (3, 0), (3, 1), (1, 1))
    >>> centroid(p, q)
    Point2D(3/2, 1/2)
    >>> centroid(p, p, p, q) # centroid x-coord shifts left
    Point2D(11/10, 1/2)

    Stacking the squares vertically above and below p has the same
    effect:

    >>> centroid(p, p.translate(0, 1), p.translate(0, -1), q)
    Point2D(11/10, 1/2)

    """

    from sympy.geometry import Polygon, Segment, Point
    if args:
        if all(isinstance(g, Point) for g in args):
            c = Point(0, 0)
            for g in args:
                c += g
            den = len(args)
        elif all(isinstance(g, Segment) for g in args):
            c = Point(0, 0)
            L = 0
            for g in args:
                l = g.length
                c += g.midpoint*l
                L += l
            den = L
        elif all(isinstance(g, Polygon) for g in args):
            c = Point(0, 0)
            A = 0
            for g in args:
                a = g.area
                c += g.centroid*a
                A += a
            den = A
        c /= den
        return c.func(*[i.simplify() for i in c.args])
开发者ID:asmeurer,项目名称:sympy,代码行数:74,代码来源:util.py


示例10: test_ellipse

def test_ellipse():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p4 = Point(0, 1)

    e1 = Ellipse(p1, 1, 1)
    e2 = Ellipse(p2, half, 1)
    e3 = Ellipse(p1, y1, y1)
    c1 = Circle(p1, 1)
    c2 = Circle(p2, 1)
    c3 = Circle(Point(sqrt(2), sqrt(2)), 1)

    # Test creation with three points
    cen, rad = Point(3*half, 2), 5*half
    assert Circle(Point(0, 0), Point(3, 0), Point(0, 4)) == Circle(cen, rad)
    raises(
        GeometryError, lambda: Circle(Point(0, 0), Point(1, 1), Point(2, 2)))

    raises(ValueError, lambda: Ellipse(None, None, None, 1))
    raises(GeometryError, lambda: Circle(Point(0, 0)))

    # Basic Stuff
    assert Ellipse(None, 1, 1).center == Point(0, 0)
    assert e1 == c1
    assert e1 != e2
    assert p4 in e1
    assert p2 not in e2
    assert e1.area == pi
    assert e2.area == pi/2
    assert e3.area == pi*y1*abs(y1)
    assert c1.area == e1.area
    assert c1.circumference == e1.circumference
    assert e3.circumference == 2*pi*y1
    assert e1.plot_interval() == e2.plot_interval() == [t, -pi, pi]
    assert e1.plot_interval(x) == e2.plot_interval(x) == [x, -pi, pi]
    assert Ellipse(None, 1, None, 1).circumference == 2*pi
    assert c1.minor == 1
    assert c1.major == 1
    assert c1.hradius == 1
    assert c1.vradius == 1

    # Private Functions
    assert hash(c1) == hash(Circle(Point(1, 0), Point(0, 1), Point(0, -1)))
    assert c1 in e1
    assert (Line(p1, p2) in e1) is False
    assert e1.__cmp__(e1) == 0
    assert e1.__cmp__(Point(0, 0)) > 0

    # Encloses
    assert e1.encloses(Segment(Point(-0.5, -0.5), Point(0.5, 0.5))) is True
    assert e1.encloses(Line(p1, p2)) is False
    assert e1.encloses(Ray(p1, p2)) is False
    assert e1.encloses(e1) is False
    assert e1.encloses(
        Polygon(Point(-0.5, -0.5), Point(-0.5, 0.5), Point(0.5, 0.5))) is True
    assert e1.encloses(RegularPolygon(p1, 0.5, 3)) is True
    assert e1.encloses(RegularPolygon(p1, 5, 3)) is False
    assert e1.encloses(RegularPolygon(p2, 5, 3)) is False

    # with generic symbols, the hradius is assumed to contain the major radius
    M = Symbol('M')
    m = Symbol('m')
    c = Ellipse(p1, M, m).circumference
    _x = c.atoms(Dummy).pop()
    assert c == 4*M*C.Integral(
        sqrt((1 - _x**2*(M**2 - m**2)/M**2)/(1 - _x**2)), (_x, 0, 1))

    assert e2.arbitrary_point() in e2

    # Foci
    f1, f2 = Point(sqrt(12), 0), Point(-sqrt(12), 0)
    ef = Ellipse(Point(0, 0), 4, 2)
    assert ef.foci in [(f1, f2), (f2, f1)]

    # Tangents
    v = sqrt(2) / 2
    p1_1 = Point(v, v)
    p1_2 = p2 + Point(half, 0)
    p1_3 = p2 + Point(0, 1)
    assert e1.tangent_lines(p4) == c1.tangent_lines(p4)
    assert e2.tangent_lines(p1_2) == [Line(p1_2, p2 + Point(half, 1))]
    assert e2.tangent_lines(p1_3) == [Line(p1_3, p2 + Point(half, 1))]
    assert c1.tangent_lines(p1_1) == [Line(p1_1, Point(0, sqrt(2)))]
    assert c1.tangent_lines(p1) == []
    assert e2.is_tangent(Line(p1_2, p2 + Point(half, 1)))
    assert e2.is_tangent(Line(p1_3, p2 + Point(half, 1)))
    assert c1.is_tangent(Line(p1_1, Point(0, sqrt(2))))
    assert e1.is_tangent(Line(Point(0, 0), Point(1, 1))) is False
    assert c1.is_tangent(e1) is False
    assert c1.is_tangent(Ellipse(Point(2, 0), 1, 1)) is True
    assert c1.is_tangent(
        Polygon(Point(1, 1), Point(1, -1), Point(2, 0))) is True
    assert c1.is_tangent(
        Polygon(Point(1, 1), Point(1, 0), Point(2, 0))) is False

    assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(0, 0)) == \
        [Line(Point(0, 0), Point(77/25, 132/25)),
     Line(Point(0, 0), Point(33/5, 22/5))]
    assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(3, 4)) == \
        [Line(Point(3, 4), Point(3, 5)), Line(Point(3, 4), Point(5, 4))]
#.........这里部分代码省略.........
开发者ID:KsenijaM,项目名称:sympy,代码行数:101,代码来源:test_geometry.py


示例11: test_line_geom

def test_line_geom():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    x1 = Symbol('x1', real=True)
    y1 = Symbol('y1', real=True)
    half = Rational(1, 2)
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p3 = Point(x1, x1)
    p4 = Point(y1, y1)
    p5 = Point(x1, 1 + x1)
    p6 = Point(1, 0)
    p7 = Point(0, 1)
    p8 = Point(2, 0)
    p9 = Point(2, 1)

    l1 = Line(p1, p2)
    l2 = Line(p3, p4)
    l3 = Line(p3, p5)
    l4 = Line(p1, p6)
    l5 = Line(p1, p7)
    l6 = Line(p8, p9)
    l7 = Line(p2, p9)
    raises(ValueError, lambda: Line(Point(0, 0), Point(0, 0)))

    # Basic stuff
    assert Line((1, 1), slope=1) == Line((1, 1), (2, 2))
    assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2))
    assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2))
    raises(TypeError, lambda: Line((1, 1), 1))
    assert Line(p1, p2) == Line(p1, p2)
    assert Line(p1, p2) != Line(p2, p1)
    assert l1 != l2
    assert l1 != l3
    assert l1.slope == 1
    assert l1.length == oo
    assert l3.slope == oo
    assert l4.slope == 0
    assert l4.coefficients == (0, 1, 0)
    assert l4.equation(x=x, y=y) == y
    assert l5.slope == oo
    assert l5.coefficients == (1, 0, 0)
    assert l5.equation() == x
    assert l6.equation() == x - 2
    assert l7.equation() == y - 1
    assert p1 in l1  # is p1 on the line l1?
    assert p1 not in l3
    assert Line((-x, x), (-x + 1, x - 1)).coefficients == (1, 1, 0)

    assert simplify(l1.equation()) in (x - y, y - x)
    assert simplify(l3.equation()) in (x - x1, x1 - x)

    assert Line(p1, p2).scale(2, 1) == Line(p1, p9)

    assert l2.arbitrary_point() in l2
    for ind in range(0, 5):
        assert l3.random_point() in l3

    # Orthogonality
    p1_1 = Point(-x1, x1)
    l1_1 = Line(p1, p1_1)
    assert l1.perpendicular_line(p1.args).equals( Line(Point(0, 0), Point(1, -1)) )
    assert l1.perpendicular_line(p1).equals( Line(Point(0, 0), Point(1, -1)) )
    assert Line.is_perpendicular(l1, l1_1)
    assert Line.is_perpendicular(l1, l2) is False
    p = l1.random_point()
    assert l1.perpendicular_segment(p) == p

    # Parallelity
    l2_1 = Line(p3, p5)
    assert l2.parallel_line(p1_1).equals( Line(Point(-x1, x1), Point(-y1, 2*x1 - y1)) )
    assert l2_1.parallel_line(p1.args).equals( Line(Point(0, 0), Point(0, -1)) )
    assert l2_1.parallel_line(p1).equals( Line(Point(0, 0), Point(0, -1)) )
    assert Line.is_parallel(l1, l2)
    assert Line.is_parallel(l2, l3) is False
    assert Line.is_parallel(l2, l2.parallel_line(p1_1))
    assert Line.is_parallel(l2_1, l2_1.parallel_line(p1))

    # Intersection
    assert intersection(l1, p1) == [p1]
    assert intersection(l1, p5) == []
    assert intersection(l1, l2) in [[l1], [l2]]
    assert intersection(l1, l1.parallel_line(p5)) == []

    # Concurrency
    l3_1 = Line(Point(5, x1), Point(-Rational(3, 5), x1))
    assert Line.are_concurrent(l1) is False
    assert Line.are_concurrent(l1, l3)
    assert Line.are_concurrent(l1, l1, l1, l3)
    assert Line.are_concurrent(l1, l3, l3_1)
    assert Line.are_concurrent(l1, l1_1, l3) is False

    # Projection
    assert l2.projection(p4) == p4
    assert l1.projection(p1_1) == p1
    assert l3.projection(p2) == Point(x1, 1)
    raises(GeometryError, lambda: Line(Point(0, 0), Point(1, 0))
           .projection(Circle(Point(0, 0), 1)))

    # Finding angles
#.........这里部分代码省略.........
开发者ID:alexako,项目名称:sympy,代码行数:101,代码来源:test_line.py


示例12: test_concyclic_doctest_bug

def test_concyclic_doctest_bug():
    p1, p2 = Point(-1, 0), Point(1, 0)
    p3, p4 = Point(0, 1), Point(-1, 2)
    assert Point.is_concyclic(p1, p2, p3)
    assert not Point.is_concyclic(p1, p2, p3, p4)
开发者ID:flacjacket,项目名称:sympy,代码行数:5,代码来源:test_geometry.py


示例13: test_line

def test_line():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p3 = Point(x1, x1)
    p4 = Point(y1, y1)
    p5 = Point(x1, 1 + x1)
    p6 = Point(1, 0)
    p7 = Point(0, 1)
    p8 = Point(2, 0)
    p9 = Point(2, 1)

    l1 = Line(p1, p2)
    l2 = Line(p3, p4)
    l3 = Line(p3, p5)
    l4 = Line(p1, p6)
    l5 = Line(p1, p7)
    l6 = Line(p8, p9)
    l7 = Line(p2, p9)
    raises(ValueError, lambda: Line(Point(0, 0), Point(0, 0)))

    # Basic stuff
    assert Line((1, 1), slope=1) == Line((1, 1), (2, 2))
    assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2))
    assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2))
    raises(ValueError, lambda: Line((1, 1), 1))
    assert Line(p1, p2) == Line(p2, p1)
    assert l1 == l2
    assert l1 != l3
    assert l1.slope == 1
    assert l1.length == oo
    assert l3.slope == oo
    assert l4.slope == 0
    assert l4.coefficients == (0, 1, 0)
    assert l4.equation(x=x, y=y) == y
    assert l5.slope == oo
    assert l5.coefficients == (1, 0, 0)
    assert l5.equation() == x
    assert l6.equation() == x - 2
    assert l7.equation() == y - 1
    assert p1 in l1  # is p1 on the line l1?
    assert p1 not in l3
    assert Line((-x, x), (-x + 1, x - 1)).coefficients == (1, 1, 0)

    assert simplify(l1.equation()) in (x - y, y - x)
    assert simplify(l3.equation()) in (x - x1, x1 - x)

    assert Line(p1, p2).scale(2, 1) == Line(p1, p9)

    assert l2.arbitrary_point() in l2
    for ind in xrange(0, 5):
        assert l3.random_point() in l3

    # Orthogonality
    p1_1 = Point(-x1, x1)
    l1_1 = Line(p1, p1_1)
    assert l1.perpendicular_line(p1) == l1_1
    assert Line.is_perpendicular(l1, l1_1)
    assert Line.is_perpendicular(l1, l2) == False
    p = l1.random_point()
    assert l1.perpendicular_segment(p) == p

    # Parallelity
    p2_1 = Point(-2 * x1, 0)
    l2_1 = Line(p3, p5)
    assert l2.parallel_line(p1_1) == Line(p2_1, p1_1)
    assert l2_1.parallel_line(p1) == Line(p1, Point(0, 2))
    assert Line.is_parallel(l1, l2)
    assert Line.is_parallel(l2, l3) == False
    assert Line.is_parallel(l2, l2.parallel_line(p1_1))
    assert Line.is_parallel(l2_1, l2_1.parallel_line(p1))

    # Intersection
    assert intersection(l1, p1) == [p1]
    assert intersection(l1, p5) == []
    assert intersection(l1, l2) in [[l1], [l2]]
    assert intersection(l1, l1.parallel_line(p5)) == []

    # Concurrency
    l3_1 = Line(Point(5, x1), Point(-Rational(3, 5), x1))
    assert Line.is_concurrent(l1) == False
    assert Line.is_concurrent(l1, l3)
    assert Line.is_concurrent(l1, l3, l3_1)
    assert Line.is_concurrent(l1, l1_1, l3) == False

    # Projection
    assert l2.projection(p4) == p4
    assert l1.projection(p1_1) == p1
    assert l3.projection(p2) == Point(x1, 1)
    raises(GeometryError, lambda: Line(Point(0, 0), Point(1, 0)).projection(Circle(Point(0, 0), 1)))

    # Finding angles
    l1_1 = Line(p1, Point(5, 0))
    assert feq(Line.angle_between(l1, l1_1).evalf(), pi.evalf() / 4)

    # Testing Rays and Segments (very similar to Lines)
    assert Ray((1, 1), angle=pi / 4) == Ray((1, 1), (2, 2))
    assert Ray((1, 1), angle=pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=-pi / 2) == Ray((1, 1), (1, 0))
    assert Ray((1, 1), angle=-3 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=5 * pi / 2) == Ray((1, 1), (1, 2))
#.........这里部分代码省略.........
开发者ID:flacjacket,项目名称:sympy,代码行数:101,代码来源:test_geometry.py


示例14: test_point

def test_point():
    p1 = Point(x1, x2)
    p2 = Point(y1, y2)
    p3 = Point(0, 0)
    p4 = Point(1, 1)

    assert p3.x == 0
    assert p3.y == 0

    assert p4.x == 1
    assert p4.y == 1

    assert len(p1) == 2
    assert p2[1] == y2
    assert (p3+p4) == p4
    assert (p2-p1) == Point(y1-x1, y2-x2)
    assert p4*5 == Point(5, 5)
    assert -p2 == Point(-y1, -y2)

    assert Point.midpoint(p3, p4) == Point(half, half)
    assert Point.midpoint(p1, p4) == Point(half + half*x1, half + half*x2)
    assert Point.midpoint(p2, p2) == p2

    assert Point.distance(p3, p4) == sqrt(2)
    assert Point.distance(p1, p1) == 0
    #assert Point.distance(p3, p2) == abs(p2)

    p1_1 = Point(x1, x1)
    p1_2 = Point(y2, y2)
    p1_3 = Point(x1 + 1, x1)
    assert Point.is_collinear(p3)
    assert Point.is_collinear(p3, p4)
    assert Point.is_collinear(p3, p4, p1_1, p1_2)
    assert Point.is_collinear(p3, p4, p1_1, p1_3) == False

    x_pos = Symbol('x', real=True, positive=True)
    p2_1 = Point(x_pos, 0)
    p2_2 = Point(0, x_pos)
    p2_3 = Point(-x_pos, 0)
    p2_4 = Point(0, -x_pos)
    p2_5 = Point(x_pos, 5)
    assert Point.is_concyclic(p2_1)
    assert Point.is_concyclic(p2_1, p2_2)
    assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4)
    assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_5) == False
开发者ID:pernici,项目名称:sympy,代码行数:45,代码来源:test_geometry.py


示例15: test__normalize_dimension

def test__normalize_dimension():
    assert Point._normalize_dimension(Point(1, 2), Point(3, 4)) == [
        Point(1, 2), Point(3, 4)]
    assert Point._normalize_dimension(
        Point(1, 2), Point(3, 4, 0), on_morph='ignore') == [
        Point(1, 2, 0), Point(3, 4, 0)]
开发者ID:chaffra,项目名称:sympy,代码行数:6,代码来源:test_point.py


示例16: test_point3D

def test_point3D():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    x1 = Symbol('x1', real=True)
    x2 = Symbol('x2', real=True)
    x3 = Symbol('x3', real=True)
    y1 = Symbol('y1', real=True)
    y2 = Symbol('y2', real=True)
    y3 = Symbol('y3', real=True)
    half = Rational(1, 2)
    p1 = Point3D(x1, x2, x3)
    p2 = Point3D(y1, y2, y3)
    p3 = Point3D(0, 0, 0)
    p4 = Point3D(1, 1, 1)
    p5 = Point3D(0, 1, 2)

    assert p1 in p1
    assert p1 not in p2
    assert p2.y == y2
    assert (p3 + p4) == p4
    assert (p2 - p1) == Point3D(y1 - x1, y2 - x2, y3 - x3)
    assert p4*5 == Point3D(5, 5, 5)
    assert -p2 == Point3D(-y1, -y2, -y3)

    assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3))
    assert Point3D.midpoint(p3, p4) == Point3D(half, half, half)
    assert Point3D.midpoint(p1, p4) == Point3D(half + half*x1, half + half*x2,
                                         half + half*x3)
    assert Point3D.midpoint(p2, p2) == p2
    assert p2.midpoint(p2) == p2

    assert Point3D.distance(p3, p4) == sqrt(3)
    assert Point3D.distance(p1, p1) == 0
    assert Point3D.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2 + p2.z**2)

    p1_1 = Point3D(x1, x1, x1)
    p1_2 = Point3D(y2, y2, y2)
    p1_3 = Point3D(x1 + 1, x1, x1)
    Point3D.are_collinear(p3)
    assert Point3D.are_collinear(p3, p4)
    assert Point3D.are_collinear(p3, p4, p1_1, p1_2)
    assert Point3D.are_collinear(p3, p4, p1_1, p1_3) is False
    assert Point3D.are_collinear(p3, p3, p4, p5) is False

    assert p3.intersection(Point3D(0, 0, 0)) == [p3]
    assert p3.intersection(p4) == []


    assert p4 * 5 == Point3D(5, 5, 5)
    assert p4 / 5 == Point3D(0.2, 0.2, 0.2)

    raises(ValueError, lambda: Point3D(0, 0, 0) + 10)

    # Point differences should be simplified
    assert Point3D(x*(x - 1), y, 2) - Point3D(x**2 - x, y + 1, 1) == \
        Point3D(0, -1, 1)

    a, b = Rational(1, 2), Rational(1, 3)
    assert Point(a, b).evalf(2) == \
        Point(a.n(2), b.n(2))
    raises(ValueError, lambda: Point(1, 2) + 1)

    # test transformations
    p = Point3D(1, 1, 1)
    assert p.scale(2, 3) == Point3D(2, 3, 1)
    assert p.translate(1, 2) == Point3D(2, 3, 1)
    assert p.translate(1) == Point3D(2, 1, 1)
    assert p.translate(z=1) == Point3D(1, 1, 2)
    assert p.translate(*p.args) == Point3D(2, 2, 2)

    # Test __new__
    assert Point3D(0.1, 0.2, evaluate=False, on_morph='ignore').args[0].is_Float


    # Test length property returns correctly
    assert p.length == 0
    assert p1_1.length == 0
    assert p1_2.length == 0

    # Test are_colinear type error
    raises(TypeError, lambda: Point3D.are_collinear(p, x))

    # Test are_coplanar
    assert Point.are_coplanar()
    assert Point.are_coplanar((1, 2, 0), (1, 2, 0), (1, 3, 0))
    assert Point.are_coplanar((1, 2, 0), (1, 2, 3))
    with warnings.catch_warnings(record=True) as w:
        raises(ValueError, lambda: Point2D.are_coplanar((1, 2), (1, 2, 3)))
    assert Point3D.are_coplanar((1, 2, 0), (1, 2, 3))
    assert Point.are_coplanar((0, 0, 0), (1, 1, 0), (1, 1, 1), (1, 2, 1)) is False
    planar2 = Point3D(1, -1, 1)
    planar3 = Point3D(-1, 1, 1)
    assert Point3D.are_coplanar(p, planar2, planar3) == True
    assert Point3D.are_coplanar(p, planar2, planar3, p3) == False
    assert Point.are_coplanar(p, planar2)
    planar2 = Point3D(1, 1, 2)
    planar3 = Point3D(1, 1, 3)
    assert Point3D.are_coplanar(p, planar2, planar3)  # line, not plane
    plane = Plane((1, 2, 1), (2, 1, 0), (3, 1, 2))
    assert Point.are_coplanar(*[plane.projection(((-1)**i, i)) for i in range(4)])
#.........这里部分代码省略.........
开发者ID:chaffra,项目名称:sympy,代码行数:101,代码来源:test_point.py


示例17: test_ellipse_geom

def test_ellipse_geom():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    t = Symbol('t', real=True)
    y1 = Symbol('y1', real=True)
    half = Rational(1, 2)
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p4 = Point(0, 1)

    e1 = Ellipse(p1, 1, 1)
    e2 = Ellipse(p2, half, 1)
    e3 = Ellipse(p1, y1, y1)
    c1 = Circle(p1, 1)
    c2 = Circle(p2, 1)
    c3 = Circle(Point(sqrt(2), sqrt(2)), 1)
    l1 = Line(p1, p2)

    # Test creation with three points
    cen, rad = Point(3*half, 2), 5*half
    assert Circle(Point(0, 0), Point(3, 0), Point(0, 4)) == Circle(cen, rad)
    assert Circle(Point(0, 0), Point(1, 1), Point(2, 2)) == Segment2D(Point2D(0, 0), Point2D(2, 2))

    raises(ValueError, lambda: Ellipse(None, None, None, 1))
    raises(GeometryError, lambda: Circle(Point(0, 0)))

    # Basic Stuff
    assert Ellipse(None, 1, 1).center == Point(0, 0)
    assert e1 == c1
    assert e1 != e2
    assert e1 != l1
    assert p4 in e1
    assert p2 not in e2
    assert e1.area == pi
    assert e2.area == pi/2
    assert e3.area == pi*y1*abs(y1)
    assert c1.area == e1.area
    assert c1.circumference == e1.circumference
    assert e3.circumference == 2*pi*y1
    assert e1.plot_interval() == e2.plot_interval() == [t, -pi, pi]
    assert e1.plot_interval(x) == e2.plot_interval(x) == [x, -pi, pi]

    assert c1.minor == 1
    assert c1.major == 1
    assert c1.hradius == 1
    assert c1.vradius == 1

    assert Ellipse((1, 1), 0, 0) == Point(1, 1)
    assert Ellipse((1, 1), 1, 0) == Segment(Point(0, 1), Point(2, 1))
    assert Ellipse((1, 1), 0, 1) == Segment(Point(1, 0), Point(1, 2))

    # Private Functions
    assert hash(c1) == hash(Circle(Point(1, 0), Point(0, 1), Point(0, -1)))
    assert c1 in e1
    assert (Line(p1, p2) in e1) is False
    assert e1.__cmp__(e1) == 0
    assert e1.__cmp__(Point(0, 0)) > 0

    # Encloses
    assert e1.encloses(Segment(Point(-0.5, -0.5), Point(0.5, 0.5))) is True
    assert e1.encloses(Line(p1, p2)) is False
    assert e1.encloses(Ray(p1, p2)) is False
    assert e1.encloses(e1) is False
    assert e1.encloses(
        Polygon(Point(-0.5, -0.5), Point(-0.5, 0.5), Point(0.5, 0.5))) is True
    assert e1.encloses(RegularPolygon(p1, 0.5, 3)) is True
    assert e1.encloses(RegularPolygon(p1, 5, 3)) is False
    assert e1.encloses(RegularPolygon(p2, 5, 3)) is False

    assert e2.arbitrary_point() in e2

    # Foci
    f1, f2 = Point(sqrt(12), 0), Point(-sqrt(12), 0)
    ef = Ellipse(Point(0, 0), 4, 2)
    assert ef.foci in [(f1, f2), (f2, f1)]

    # Tangents
    v = sqrt(2) / 2
    p1_1 = Point(v, v)
    p1_2 = p2 + Point(half, 0)
    p1_3 = p2 + Point(0, 1)
    assert e1.tangent_lines(p4) == c1.tangent_lines(p4)
    assert e2.tangent_lines(p1_2) == [Line(Point(S(3)/2, 1), Point(S(3)/2, S(1)/2))]
    assert e2.tangent_lines(p1_3) == [Line(Point(1, 2), Point(S(5)/4, 2))]
    assert c1.tangent_lines(p1_1) != [Line(p1_1, Point(0, sqrt(2)))]
    assert c1.tangent_lines(p1) == []
    assert e2.is_tangent(Line(p1_2, p2 + Point(half, 1)))
    assert e2.is_tangent(Line(p1_3, p2 + Point(half, 1)))
    assert c1.is_tangent(Line(p1_1, Point(0, sqrt(2))))
    assert e1.is_tangent(Line(Point(0, 0), Point(1, 1))) is False
    assert c1.is_tangent(e1) is True
    assert c1.is_tangent(Ellipse(Point(2, 0), 1, 1)) is True
    assert c1.is_tangent(
        Polygon(Point(1, 1), Point(1, -1), Point(2, 0))) is True
    assert c1.is_tangent(
        Polygon(Point(1, 1), Point(1, 0), Point(2, 0))) is False
    assert Circle(Point(5, 5), 3).is_tangent(Circle(Point(0, 5), 1)) is False

    assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(0, 0)) == \
        [Line(Point(0, 0), Point(S(77)/25, S(132)/25)),
#.........这里部分代码省略.........
开发者ID:oscarbenjamin,项目名称:sympy,代码行数:101,代码来源:test_ellipse.py


示例18: test_point

def test_point():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    x1 = Symbol('x1', real=True)
    x2 = Symbol('x2', real=True)
    y1 = Symbol('y1', real=True)
    y2 = Symbol('y2', real=True)
    half = Rational(1, 2)
    p1 = Point(x1, x2)
    p2 = Point(y1, y2)
    p3 = Point(0, 0)
    p4 = Point(1, 1)
    p5 = Point(0, 1)

    assert p1 in p1
    assert p1 not in p2
    assert p2.y == y2
    assert (p3 + p4) == p4
    assert (p2 - p1) == Point(y1 - x1, y2 - x2)
    assert p4*5 == Point(5, 5)
    assert -p2 == Point(-y1, -y2)
    raises(ValueError, lambda: Point(3, I))
    raises(ValueError, lambda: Point(2*I, I))
    raises(ValueError, lambda: Point(3 + I, I))

    assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3))
    assert Point.midpoint(p3, p4) == Point(half, half)
    assert Point.midpoint(p1, p4) == Point(half + half*x1, half + half*x2)
    assert Point.midpoint(p2, p2) == p2
    assert p2.midpoint(p2) == p2

    assert Point.distance(p3, p4) == sqrt(2)
    assert Point.distance(p1, p1) == 0
    assert Point.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2)

    assert Point.taxicab_distance(p4, p3) == 2

    p1_1 = Point(x1, x1)
    p1_2 = Point(y2, y2)
    p1_3 = Point(x1 + 1, x1)
    assert Point.is_collinear(p3)
    assert Point.is_collinear(p3, p4)
    assert Point.is_collinear(p3, p4, p1_1, p1_2)
    assert Point.is_collinear(p3, p4, p1_1, p1_3) is False
    assert Point.is_collinear(p3, p3, p4, p5) is False
    line = Line(Point(1,0), slope = 1)
    raises(TypeError, lambda: Point.is_collinear(line))
    raises(TypeError, lambda: p1_1.is_collinear(line))

    assert p3.intersection(Point(0, 0)) == [p3]
    assert p3.intersection(p4) == []

    assert p1.dot(p4) == x1 + x2
    assert p3.dot(p4) == 0
    assert p4.dot(p5) == 1

    x_pos = Symbol('x', real=True, positive=True)
    p2_1 = Point(x_pos, 0)
    p2_2 = Point(0, x_pos)
    p2_3 = Point(-x_pos, 0)
    p2_4 = Point(0, -x_pos)
    p2_5 = Point(x_pos, 5)
    assert Point.is_concyclic(p2_1)
    assert Point.is_concyclic(p2_1, p2_2)
    assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4)
    assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_5) is False
    assert Point.is_concyclic(p4, p4 * 2, p4 * 3) is False

    assert p4.scale(2, 3) == Point(2, 3)
    assert p3.scale(2, 3) == p3

    assert p4.rotate(pi, Point(0.5, 0.5)) == p3
    assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2)
    assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2)

    assert p4 * 5 == Point(5, 5)
    assert p4 / 5 == Point(0.2, 0.2)

    raises(ValueError, lambda: Point(0, 0) + 10)

    # Point differences should be simplified
    assert Point(x*(x - 1), y) - Point(x**2 - x, y + 1) == Point(0, -1)

    a, b = Rational(1, 2), Rational(1, 3)
    assert Point(a, b).evalf(2) == \
        Point(a.n(2), b.n(2))
    raises(ValueError, lambda: Point(1, 2) + 1)

    # test transformations
    p = Point(1, 0)
    assert p.rotate(pi/2) == Point(0, 1)
    assert p.rotate(pi/2, p) == p
    p = Point(1, 1)
    assert p.scale(2, 3) == Point(2, 3)
    assert p.translate(1, 2) == Point(2, 3)
    assert p.translate(1) == Point(2, 1)
    assert p.translate(y=1) == Point(1, 2)
    assert p.translate(*p.args) == Point(2, 2)

    # Check invalid input for transform
#.........这里部分代码省略.........
开发者ID:kpsychas,项目名称:sympy,代码行数:101,代码来源:test_point.py


示例19: test_point

def test_point():
    p1 = Point(x1, x2)
    p2 = Point(y1, y2)
    p3 = Point(0, 0)
    p4 = Point(1, 1)

    assert p1 in p1
    assert p1 not in p2
    assert p2.y == y2
    assert (p3 + p4) == p4
    assert (p2 - p1) == Point(y1 - x1, y2 - x2)
    assert p4 * 5 == Point(5, 5)
    assert -p2 == Point(-y1, -y2)

    assert Point.midpoint(p3, p4) == Point(half, half)
    assert Point.midpoint(p1, p4) == Point(half + half * x1, half + half * x2)
    assert Point.midpoint(p2, p2) == p2
    assert p2.midpoint(p2) == p2

    assert Point.distance(p3, p4) == sqrt(2)
    assert Point.distance(p1, p1) == 0
    assert Point.distance(p3, p2) == sqrt(p2.x ** 2 + p2.y ** 2)

    p1_1 = Point(x1, x1)
    p1_2 = Point(y2, y2)
    p1_3 = Point(x1 + 1, x1)
    assert Point.is_collinear(p3)
    assert Point.is_collinear(p3, p4)
    assert Point.is_collinear(p3, p4, p1_1, p1_2)
    assert Point.is_collinear(p3, p4, p1_1, p1_3) == False

    assert p3.intersection(Point(0, 0)) == [p3]
    assert p3.intersection(p4) == []

    x_pos = Symbol("x", real=True, positive=True)
    p2_1 = Point(x_pos, 0)
    p2_2 = Point(0, x_pos)
    p2_3 = Point(-x_pos, 0)
    p2_4 = Point(0, -x_pos)
    p2_5 = Point(x_pos, 5)
    assert Point.is_concyclic(p2_1)
    assert Point.is_concyclic(p2_1, p2_2)
    assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4)
    assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_5) == False
    assert Point.is_concyclic(p4, p4 * 2, p4 * 3) == False

    assert p4.scale(2, 3) == Point(2, 3)
    assert p3.scale(2, 3) == p3

    assert p4.rotate(pi, Point(0.5, 0.5)) == p3
    assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2)
    assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2)

    assert p4 * 5 == Point(5, 5)
    assert p4 / 5 == Point(0.2, 0.2)

    raises(ValueError, lambda: Point(0, 0) + 10)

    # Point differences should be simplified
    assert Point(x * (x - 1), y) - Point(x ** 2 - x, y + 1) == Point(0, -1)

    a, b = Rational(1, 2), Rational(1, 3)
    assert Point(a, b).evalf(2) == Point(a.n(2), b.n(2))
    raises(ValueError, lambda: Point(1, 2) + 1)

    # test transformations
    p = Point(1, 0)
    assert p.rotate(pi / 2) == Point(0, 1)
    assert p.rotate(pi / 2, p) == p
    p = Point(1, 1)
    assert p.scale(2, 3) == Point(2, 3)
    assert p.translate(1, 2) == Point(2, 3)
    assert p.translate(1) == Point(2, 1)
    assert p.translate(y=1) == Point(1, 2)
    assert p.translate(*p.args) == Point(2, 2)
开发者ID:flacjacket,项目名称:sympy,代码行数:75,代码来源:test_geometry.py


示例20: test_point

def test_point():
    p1 = Point(x1, x2)
    p2 = Point(y1, y2)
    p3 = Point(0, 0)
    p4 = Point(1, 1)

    assert len(p1) == 1
    assert p1 in p1
    assert p1 not in p2
    assert p2[1] == y2
    assert (p3+p4) == p4
    assert (p2-p1) == Point(y1-x1, y2-x2)
    assert p4*5 == Point(5, 5)
    assert -p2 == Point(-y1, -y2)

    assert Point.midpoint(p3, p4) == Point(half, half)
    assert Point.midpoint(p1, p4) == Point(half + half*x1, half + half*x2)
    assert Point.midpoint(p2, p2) == p2
    assert p2.midpoint(p2) == p2

    assert Point.distance(p3, p4) == sqrt(2)
    assert Point.distance(p1, p1) == 0
    assert Point.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2)

    p1_1 = Point(x1, x1)
    p1_2 = Point(y2, y2)
    p1_3 = Point(x1 + 1, x1)
    assert Point.is_collinear(p3)
    assert Point.is_collinear(p3, p4)
    assert Point.is_collinear(p3, p4, p1_1, p1_2)
    assert Point.is_collinear(p3, p4, p1_1, p1_3) == False

    assert p3.intersection(Point(0, 0)) == [p3]
    assert p3.intersection(p4) == []

    x_pos = Symbol('x', real=True, positive=True)
    p2_1 = Point(x_pos, 0)
    p2_2 = Point(0, x_pos)
    p2_3 = Point(-x_pos, 0)
    p2_4 = Point(0, -x_pos)
    p2_5 = Point(x_pos, 5)
    assert Point.is_concyclic(p2_1)
    assert Point.is_concyclic(p2_1, p2_2)
    assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4)
    assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_5) == False
    assert Point.is_concyclic(p4, p4 * 2, p4 * 3) == False

    assert p4.scale(2, 3) == Point(2, 3)
    assert p3.scale(2, 3) == p3

    assert p4.rotate(pi, Point(0.5, 0.5)) == p3
    assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2)
    assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2)

    assert p4 * 5 == Point(5, 5)
    assert p4 / 5 == Point(0.2, 0.2)

    raises(ValueError, 'Point(0,0) + 10')
开发者ID:arpitsaan,项目名称:sympy,代码行数:58,代码来源:test_geometry.py



注:本文中的sympy.geometry.Point类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python geometry.Polygon类代码示例发布时间:2022-05-27
下一篇:
Python geometry.Line类代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap