• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python bessel.besselj函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sympy.functions.special.bessel.besselj函数的典型用法代码示例。如果您正苦于以下问题:Python besselj函数的具体用法?Python besselj怎么用?Python besselj使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了besselj函数的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_requires_partial

def test_requires_partial():
    x, y, z, t, nu = symbols('x y z t nu')
    n = symbols('n', integer=True)

    f = x * y
    assert requires_partial(Derivative(f, x)) is True
    assert requires_partial(Derivative(f, y)) is True

    ## integrating out one of the variables
    assert requires_partial(Derivative(Integral(exp(-x * y), (x, 0, oo)), y, evaluate=False)) is False

    ## bessel function with smooth parameter
    f = besselj(nu, x)
    assert requires_partial(Derivative(f, x)) is True
    assert requires_partial(Derivative(f, nu)) is True

    ## bessel function with integer parameter
    f = besselj(n, x)
    assert requires_partial(Derivative(f, x)) is False
    # this is not really valid (differentiating with respect to an integer)
    # but there's no reason to use the partial derivative symbol there. make
    # sure we don't throw an exception here, though
    assert requires_partial(Derivative(f, n)) is False

    ## bell polynomial
    f = bell(n, x)
    assert requires_partial(Derivative(f, x)) is False
    # again, invalid
    assert requires_partial(Derivative(f, n)) is False

    ## legendre polynomial
    f = legendre(0, x)
    assert requires_partial(Derivative(f, x)) is False

    f = legendre(n, x)
    assert requires_partial(Derivative(f, x)) is False
    # again, invalid
    assert requires_partial(Derivative(f, n)) is False

    f = x ** n
    assert requires_partial(Derivative(f, x)) is False

    assert requires_partial(Derivative(Integral((x*y) ** n * exp(-x * y), (x, 0, oo)), y, evaluate=False)) is False

    # parametric equation
    f = (exp(t), cos(t))
    g = sum(f)
    assert requires_partial(Derivative(g, t)) is False

    f = symbols('f', cls=Function)
    assert requires_partial(Derivative(f(x), x)) is False
    assert requires_partial(Derivative(f(x), y)) is False
    assert requires_partial(Derivative(f(x, y), x)) is True
    assert requires_partial(Derivative(f(x, y), y)) is True
    assert requires_partial(Derivative(f(x, y), z)) is True
    assert requires_partial(Derivative(f(x, y), x, y)) is True
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:56,代码来源:test_conventions.py


示例2: test_latex_bessel

def test_latex_bessel():
    from sympy.functions.special.bessel import besselj, bessely, besseli, besselk, hankel1, hankel2, jn, yn
    from sympy.abc import z

    assert latex(besselj(n, z ** 2) ** k) == r"J^{k}_{n}\left(z^{2}\right)"
    assert latex(bessely(n, z)) == r"Y_{n}\left(z\right)"
    assert latex(besseli(n, z)) == r"I_{n}\left(z\right)"
    assert latex(besselk(n, z)) == r"K_{n}\left(z\right)"
    assert latex(hankel1(n, z ** 2) ** 2) == r"\left(H^{(1)}_{n}\left(z^{2}\right)\right)^{2}"
    assert latex(hankel2(n, z)) == r"H^{(2)}_{n}\left(z\right)"
    assert latex(jn(n, z)) == r"j_{n}\left(z\right)"
    assert latex(yn(n, z)) == r"y_{n}\left(z\right)"
开发者ID:kushal124,项目名称:sympy,代码行数:12,代码来源:test_latex.py


示例3: test_latex_bessel

def test_latex_bessel():
    from sympy.functions.special.bessel import (besselj, bessely, besseli,
            besselk, hankel1, hankel2, jn, yn)
    from sympy.abc import z
    assert latex(besselj(n, z**2)**k) == r'J^{k}_{n}\left(z^{2}\right)'
    assert latex(bessely(n, z)) == r'Y_{n}\left(z\right)'
    assert latex(besseli(n, z)) == r'I_{n}\left(z\right)'
    assert latex(besselk(n, z)) == r'K_{n}\left(z\right)'
    assert latex(hankel1(n, z**2)**2) == \
              r'\left(H^{(1)}_{n}\left(z^{2}\right)\right)^{2}'
    assert latex(hankel2(n, z)) == r'H^{(2)}_{n}\left(z\right)'
    assert latex(jn(n, z)) == r'j_{n}\left(z\right)'
    assert latex(yn(n, z)) == r'y_{n}\left(z\right)'
开发者ID:101man,项目名称:sympy,代码行数:13,代码来源:test_latex.py


示例4: test_sympy__functions__special__bessel__besselj

def test_sympy__functions__special__bessel__besselj():
    from sympy.functions.special.bessel import besselj
    assert _test_args(besselj(x, 1))
开发者ID:101man,项目名称:sympy,代码行数:3,代码来源:test_args.py



注:本文中的sympy.functions.special.bessel.besselj函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python bessel.besselk函数代码示例发布时间:2022-05-27
下一篇:
Python trigonometric.sin函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap