• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python functions.asin函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sympy.functions.asin函数的典型用法代码示例。如果您正苦于以下问题:Python asin函数的具体用法?Python asin怎么用?Python asin使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了asin函数的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_C99CodePrinter__precision

def test_C99CodePrinter__precision():
    n = symbols('n', integer=True)
    f32_printer = C99CodePrinter(dict(type_aliases={real: float32}))
    f64_printer = C99CodePrinter(dict(type_aliases={real: float64}))
    f80_printer = C99CodePrinter(dict(type_aliases={real: float80}))
    assert f32_printer.doprint(sin(x+2.1)) == 'sinf(x + 2.1F)'
    assert f64_printer.doprint(sin(x+2.1)) == 'sin(x + 2.1000000000000001)'
    assert f80_printer.doprint(sin(x+Float('2.0'))) == 'sinl(x + 2.0L)'

    for printer, suffix in zip([f32_printer, f64_printer, f80_printer], ['f', '', 'l']):
        def check(expr, ref):
            assert printer.doprint(expr) == ref.format(s=suffix, S=suffix.upper())
        check(Abs(n), 'abs(n)')
        check(Abs(x + 2.0), 'fabs{s}(x + 2.0{S})')
        check(sin(x + 4.0)**cos(x - 2.0), 'pow{s}(sin{s}(x + 4.0{S}), cos{s}(x - 2.0{S}))')
        check(exp(x*8.0), 'exp{s}(8.0{S}*x)')
        check(exp2(x), 'exp2{s}(x)')
        check(expm1(x*4.0), 'expm1{s}(4.0{S}*x)')
        check(Mod(n, 2), '((n) % (2))')
        check(Mod(2*n + 3, 3*n + 5), '((2*n + 3) % (3*n + 5))')
        check(Mod(x + 2.0, 3.0), 'fmod{s}(1.0{S}*x + 2.0{S}, 3.0{S})')
        check(Mod(x, 2.0*x + 3.0), 'fmod{s}(1.0{S}*x, 2.0{S}*x + 3.0{S})')
        check(log(x/2), 'log{s}((1.0{S}/2.0{S})*x)')
        check(log10(3*x/2), 'log10{s}((3.0{S}/2.0{S})*x)')
        check(log2(x*8.0), 'log2{s}(8.0{S}*x)')
        check(log1p(x), 'log1p{s}(x)')
        check(2**x, 'pow{s}(2, x)')
        check(2.0**x, 'pow{s}(2.0{S}, x)')
        check(x**3, 'pow{s}(x, 3)')
        check(x**4.0, 'pow{s}(x, 4.0{S})')
        check(sqrt(3+x), 'sqrt{s}(x + 3)')
        check(Cbrt(x-2.0), 'cbrt{s}(x - 2.0{S})')
        check(hypot(x, y), 'hypot{s}(x, y)')
        check(sin(3.*x + 2.), 'sin{s}(3.0{S}*x + 2.0{S})')
        check(cos(3.*x - 1.), 'cos{s}(3.0{S}*x - 1.0{S})')
        check(tan(4.*y + 2.), 'tan{s}(4.0{S}*y + 2.0{S})')
        check(asin(3.*x + 2.), 'asin{s}(3.0{S}*x + 2.0{S})')
        check(acos(3.*x + 2.), 'acos{s}(3.0{S}*x + 2.0{S})')
        check(atan(3.*x + 2.), 'atan{s}(3.0{S}*x + 2.0{S})')
        check(atan2(3.*x, 2.*y), 'atan2{s}(3.0{S}*x, 2.0{S}*y)')

        check(sinh(3.*x + 2.), 'sinh{s}(3.0{S}*x + 2.0{S})')
        check(cosh(3.*x - 1.), 'cosh{s}(3.0{S}*x - 1.0{S})')
        check(tanh(4.0*y + 2.), 'tanh{s}(4.0{S}*y + 2.0{S})')
        check(asinh(3.*x + 2.), 'asinh{s}(3.0{S}*x + 2.0{S})')
        check(acosh(3.*x + 2.), 'acosh{s}(3.0{S}*x + 2.0{S})')
        check(atanh(3.*x + 2.), 'atanh{s}(3.0{S}*x + 2.0{S})')
        check(erf(42.*x), 'erf{s}(42.0{S}*x)')
        check(erfc(42.*x), 'erfc{s}(42.0{S}*x)')
        check(gamma(x), 'tgamma{s}(x)')
        check(loggamma(x), 'lgamma{s}(x)')

        check(ceiling(x + 2.), "ceil{s}(x + 2.0{S})")
        check(floor(x + 2.), "floor{s}(x + 2.0{S})")
        check(fma(x, y, -z), 'fma{s}(x, y, -z)')
        check(Max(x, 8.0, x**4.0), 'fmax{s}(8.0{S}, fmax{s}(x, pow{s}(x, 4.0{S})))')
        check(Min(x, 2.0), 'fmin{s}(2.0{S}, x)')
开发者ID:Lenqth,项目名称:sympy,代码行数:57,代码来源:test_ccode.py


示例2: heurisch


#.........这里部分代码省略.........
                    elif g.func is exp:
                        M = g.args[0].match(a*x**2)

                        if M is not None:
                            if M[a].is_positive:
                                terms.add(erfi(sqrt(M[a])*x))
                            else: # M[a].is_negative or unknown
                                terms.add(erf(sqrt(-M[a])*x))

                        M = g.args[0].match(a*x**2 + b*x + c)

                        if M is not None:
                            if M[a].is_positive:
                                terms.add(sqrt(pi/4*(-M[a]))*exp(M[c] - M[b]**2/(4*M[a]))*
                                          erfi(sqrt(M[a])*x + M[b]/(2*sqrt(M[a]))))
                            elif M[a].is_negative:
                                terms.add(sqrt(pi/4*(-M[a]))*exp(M[c] - M[b]**2/(4*M[a]))*
                                          erf(sqrt(-M[a])*x - M[b]/(2*sqrt(-M[a]))))

                        M = g.args[0].match(a*log(x)**2)

                        if M is not None:
                            if M[a].is_positive:
                                terms.add(erfi(sqrt(M[a])*log(x) + 1/(2*sqrt(M[a]))))
                            if M[a].is_negative:
                                terms.add(erf(sqrt(-M[a])*log(x) - 1/(2*sqrt(-M[a]))))

                elif g.is_Pow:
                    if g.exp.is_Rational and g.exp.q == 2:
                        M = g.base.match(a*x**2 + b)

                        if M is not None and M[b].is_positive:
                            if M[a].is_positive:
                                terms.add(asinh(sqrt(M[a]/M[b])*x))
                            elif M[a].is_negative:
                                terms.add(asin(sqrt(-M[a]/M[b])*x))

                        M = g.base.match(a*x**2 - b)

                        if M is not None and M[b].is_positive:
                            if M[a].is_positive:
                                terms.add(acosh(sqrt(M[a]/M[b])*x))
                            elif M[a].is_negative:
                                terms.add((-M[b]/2*sqrt(-M[a])*
                                           atan(sqrt(-M[a])*x/sqrt(M[a]*x**2 - M[b]))))

        else:
            terms |= set(hints)

    for g in set(terms):
        terms |= components(cancel(g.diff(x)), x)

    # TODO: caching is significant factor for why permutations work at all. Change this.
    V = _symbols('x', len(terms))

    mapping = dict(list(zip(terms, V)))

    rev_mapping = {}

    if unnecessary_permutations is None:
        unnecessary_permutations = []
    for k, v in mapping.items():
        rev_mapping[v] = k

    if mappings is None:
        # Pre-sort mapping in order of largest to smallest expressions (last is always x).
开发者ID:AALEKH,项目名称:sympy,代码行数:67,代码来源:heurisch.py


示例3: heurisch


#.........这里部分代码省略.........
            rewrite = True

    terms = components(f, x)

    hints = kwargs.get('hints', None)

    if hints is not None:
        if not hints:
            a = Wild('a', exclude=[x])
            b = Wild('b', exclude=[x])

            for g in set(terms):
                if g.is_Function:
                    if g.func is exp:
                        M = g.args[0].match(a*x**2)

                        if M is not None:
                            terms.add(erf(sqrt(-M[a])*x))

                        M = g.args[0].match(a*log(x)**2)

                        if M is not None:
                            if M[a].is_positive:
                                terms.add(-I*erf(I*(sqrt(M[a])*log(x)+1/(2*sqrt(M[a])))))
                            if M[a].is_negative:
                                terms.add(erf(sqrt(-M[a])*log(x)-1/(2*sqrt(-M[a]))))

                elif g.is_Pow:
                    if g.exp.is_Rational and g.exp.q == 2:
                        M = g.base.match(a*x**2 + b)

                        if M is not None and M[b].is_positive:
                            if M[a].is_positive:
                                terms.add(asinh(sqrt(M[a]/M[b])*x))
                            elif M[a].is_negative:
                                terms.add(asin(sqrt(-M[a]/M[b])*x))

                        M = g.base.match(a*x**2 - b)

                        if M is not None and M[b].is_positive:
                            if M[a].is_positive:
                                terms.add(acosh(sqrt(M[a]/M[b])*x))
                            elif M[a].is_negative:
                                terms.add((-M[b]/2*sqrt(-M[a])*\
                                           atan(sqrt(-M[a])*x/sqrt(M[a]*x**2-M[b]))))

        else:
            terms |= set(hints)

    for g in set(terms):
        terms |= components(cancel(g.diff(x)), x)

    V = _symbols('x', len(terms))

    mapping = dict(zip(terms, V))

    rev_mapping = {}

    for k, v in mapping.iteritems():
        rev_mapping[v] = k

    def substitute(expr):
        return expr.subs(mapping)

    diffs = [ substitute(cancel(g.diff(x))) for g in terms ]
开发者ID:haz,项目名称:sympy,代码行数:66,代码来源:risch.py


示例4: _expr_big

 def _expr_big(cls, z, n):
     if n.is_even:
         return (n - S(1)/2)*pi*I + log(sqrt(z)/2) + I*asin(1/sqrt(z))
     else:
         return (n - S(1)/2)*pi*I + log(sqrt(z)/2) - I*asin(1/sqrt(z))
开发者ID:moorepants,项目名称:sympy,代码行数:5,代码来源:hyper.py


示例5: _expr_small

 def _expr_small(cls, z):
     return asin(sqrt(z))/sqrt(z)
开发者ID:moorepants,项目名称:sympy,代码行数:2,代码来源:hyper.py


示例6: _invert_real

def _invert_real(f, g_ys, symbol):
    """ Helper function for invert_real """

    if not f.has(symbol):
        raise ValueError("Inverse of constant function doesn't exist")

    if f is symbol:
        return (f, g_ys)

    n = Dummy('n')
    if hasattr(f, 'inverse') and not isinstance(f, TrigonometricFunction) and \
            not isinstance(f, HyperbolicFunction):
        if len(f.args) > 1:
            raise ValueError("Only functions with one argument are supported.")
        return _invert_real(f.args[0],
                            imageset(Lambda(n, f.inverse()(n)), g_ys), symbol)

    if isinstance(f, Abs):
        return _invert_real(f.args[0],
                            Union(imageset(Lambda(n, n), g_ys).intersect(Interval(0, oo)),
                                  imageset(Lambda(n, -n), g_ys).intersect(Interval(-oo, 0))),
                            symbol)

    if f.is_Add:
        # f = g + h
        g, h = f.as_independent(symbol)
        if g != S.Zero:
            return _invert_real(h, imageset(Lambda(n, n - g), g_ys), symbol)

    if f.is_Mul:
        # f = g*h
        g, h = f.as_independent(symbol)

        if g != S.One:
            return _invert_real(h, imageset(Lambda(n, n/g), g_ys), symbol)

    if f.is_Pow:
        base, expo = f.args
        base_has_sym = base.has(symbol)
        expo_has_sym = expo.has(symbol)

        if not expo_has_sym:
            res = imageset(Lambda(n, real_root(n, expo)), g_ys)
            if expo.is_rational:
                numer, denom = expo.as_numer_denom()
                if numer == S.One or numer == - S.One:
                    return _invert_real(base, res, symbol)
                else:
                    if numer % 2 == 0:
                        n = Dummy('n')
                        neg_res = imageset(Lambda(n, -n), res)
                        return _invert_real(base, res + neg_res, symbol)
                    else:
                        return _invert_real(base, res, symbol)
            else:
                if not base.is_positive:
                    raise ValueError("x**w where w is irrational is not "
                                     "defined for negative x")
                return _invert_real(base, res, symbol)

        if not base_has_sym:
            return _invert_real(expo, imageset(Lambda(n, log(n)/log(base)),
                                               g_ys), symbol)

    if isinstance(f, sin):
        n = Dummy('n')
        if isinstance(g_ys, FiniteSet):
            sin_invs = Union(*[imageset(Lambda(n, n*pi + (-1)**n*asin(g_y)), \
                                        S.Integers) for g_y in g_ys])
            return _invert_real(f.args[0], sin_invs, symbol)

    if isinstance(f, csc):
        n = Dummy('n')
        if isinstance(g_ys, FiniteSet):
            csc_invs = Union(*[imageset(Lambda(n, n*pi + (-1)**n*acsc(g_y)), \
                                        S.Integers) for g_y in g_ys])
            return _invert_real(f.args[0], csc_invs, symbol)

    if isinstance(f, cos):
        n = Dummy('n')
        if isinstance(g_ys, FiniteSet):
            cos_invs_f1 = Union(*[imageset(Lambda(n, 2*n*pi + acos(g_y)), \
                                        S.Integers) for g_y in g_ys])
            cos_invs_f2 = Union(*[imageset(Lambda(n, 2*n*pi - acos(g_y)), \
                                        S.Integers) for g_y in g_ys])
            cos_invs = Union(cos_invs_f1, cos_invs_f2)
            return _invert_real(f.args[0], cos_invs, symbol)

    if isinstance(f, sec):
        n = Dummy('n')
        if isinstance(g_ys, FiniteSet):
            sec_invs_f1 = Union(*[imageset(Lambda(n, 2*n*pi + asec(g_y)), \
                                        S.Integers) for g_y in g_ys])
            sec_invs_f2 = Union(*[imageset(Lambda(n, 2*n*pi - asec(g_y)), \
                                        S.Integers) for g_y in g_ys])
            sec_invs = Union(sec_invs_f1, sec_invs_f2)
            return _invert_real(f.args[0], sec_invs, symbol)

    if isinstance(f, tan) or isinstance(f, cot):
        n = Dummy('n')
#.........这里部分代码省略.........
开发者ID:Davidjohnwilson,项目名称:sympy,代码行数:101,代码来源:solveset.py


示例7: test_jscode_functions

def test_jscode_functions():
    assert jscode(sin(x) ** cos(x)) == "Math.pow(Math.sin(x), Math.cos(x))"
    assert jscode(sinh(x) * cosh(x)) == "Math.sinh(x)*Math.cosh(x)"
    assert jscode(Max(x, y) + Min(x, y)) == "Math.max(x, y) + Math.min(x, y)"
    assert jscode(tanh(x)*acosh(y)) == "Math.tanh(x)*Math.acosh(y)"
    assert jscode(asin(x)-acos(y)) == "-Math.acos(y) + Math.asin(x)"
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:6,代码来源:test_jscode.py



注:本文中的sympy.functions.asin函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python functions.asinh函数代码示例发布时间:2022-05-27
下一篇:
Python functions.adjoint函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap