• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python logic.fuzzy_bool函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sympy.core.logic.fuzzy_bool函数的典型用法代码示例。如果您正苦于以下问题:Python fuzzy_bool函数的具体用法?Python fuzzy_bool怎么用?Python fuzzy_bool使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了fuzzy_bool函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: __new__

    def __new__(cls, name, **assumptions):
        """Symbols are identified by name and assumptions::

        >>> from sympy import Symbol
        >>> Symbol("x") == Symbol("x")
        True
        >>> Symbol("x", real=True) == Symbol("x", real=False)
        False

        """

        if 'dummy' in assumptions:
            SymPyDeprecationWarning(
                feature="Symbol('x', dummy=True)",
                useinstead="Dummy() or symbols(..., cls=Dummy)"
                ).warn()
            if assumptions.pop('dummy'):
                return Dummy(name, **assumptions)
        if assumptions.get('zero', False):
            return S.Zero
        is_commutative = fuzzy_bool(assumptions.get('commutative', True))
        if is_commutative is None:
            raise ValueError(
                '''Symbol commutativity must be True or False.''')
        assumptions['commutative'] = is_commutative
        return Symbol.__xnew_cached_(cls, name, **assumptions)
开发者ID:BDGLunde,项目名称:sympy,代码行数:26,代码来源:symbol.py


示例2: __new__

    def __new__(cls, name, **assumptions):
        """Symbols are identified by name and assumptions::

        >>> from sympy import Symbol
        >>> Symbol("x") == Symbol("x")
        True
        >>> Symbol("x", real=True) == Symbol("x", real=False)
        False

        """

        if "dummy" in assumptions:
            SymPyDeprecationWarning(
                feature="Symbol('x', dummy=True)",
                useinstead="Dummy() or symbols(..., cls=Dummy)",
                issue=3378,
                deprecated_since_version="0.7.0",
            ).warn()
            if assumptions.pop("dummy"):
                return Dummy(name, **assumptions)
        if assumptions.get("zero", False):
            return S.Zero
        is_commutative = fuzzy_bool(assumptions.get("commutative", True))
        if is_commutative is None:
            raise ValueError("""Symbol commutativity must be True or False.""")
        assumptions["commutative"] = is_commutative
        return Symbol.__xnew_cached_(cls, name, **assumptions)
开发者ID:nthorne,项目名称:sympy,代码行数:27,代码来源:symbol.py


示例3: _sanitize

    def _sanitize(assumptions, obj=None):
        """Remove None, covert values to bool, check commutativity *in place*.
        """

        # be strict about commutativity: cannot be None
        is_commutative = fuzzy_bool(assumptions.get('commutative', True))
        if is_commutative is None:
            whose = '%s ' % obj.__name__ if obj else ''
            raise ValueError(
                '%scommutativity must be True or False.' % whose)

        # sanitize other assumptions so 1 -> True and 0 -> False
        for key in list(assumptions.keys()):
            from collections import defaultdict
            from sympy.utilities.exceptions import SymPyDeprecationWarning
            keymap = defaultdict(lambda: None)
            keymap.update({'bounded': 'finite', 'unbounded': 'infinite', 'infinitesimal': 'zero'})
            if keymap[key]:
                SymPyDeprecationWarning(
                    feature="%s assumption" % key,
                    useinstead="%s" % keymap[key],
                    issue=8071,
                    deprecated_since_version="0.7.6").warn()
                assumptions[keymap[key]] = assumptions[key]
                assumptions.pop(key)
                key = keymap[key]

            v = assumptions[key]
            if v is None:
                assumptions.pop(key)
                continue
            assumptions[key] = bool(v)
开发者ID:AStorus,项目名称:sympy,代码行数:32,代码来源:symbol.py


示例4: wrapper

    def wrapper(*args, **kw_args):
        """
        Assemble the args and kw_args to compute the hash.
        It is important that kw_args be standardized since if they
        have the same meaning but in different forms (e.g. one
        kw_arg having a value of 1 for an object and another object
        with identical args but a kw_arg of True) then two different
        hashes will be computed and the two objects will not be identical.
        """
        if kw_args:
            keys = kw_args.keys()

            # make keywords all the same
            for k in keys:
                kw_args[k] = fuzzy_bool(kw_args[k])

            keys.sort()
            items = [(k+'=', kw_args[k]) for k in keys]
            k = args + tuple(items)
        else:
            k = args
        k = k + tuple(map(lambda x: type(x), k))
        try:
            return func_cache_it_cache[k]
        except KeyError:
            pass
        func_cache_it_cache[k] = r = func(*args, **kw_args)
        return r
开发者ID:fgrosshans,项目名称:sympy,代码行数:28,代码来源:cache.py


示例5: pred

 def pred(x):
     if x is S.ImaginaryUnit:
         return S.ImaginaryUnit
     polar = x.is_polar
     if polar:
         return True
     if polar is None:
         return fuzzy_bool(x.is_nonnegative)
开发者ID:hrashk,项目名称:sympy,代码行数:8,代码来源:power.py


示例6: __new__

 def __new__(cls, sym, condition, base_set=S.UniversalSet):
     # nonlinsolve uses ConditionSet to return an unsolved system
     # of equations (see _return_conditionset in solveset) so until
     # that is changed we do minimal checking of the args
     if isinstance(sym, (Tuple, tuple)):  # unsolved eqns syntax
         sym = Tuple(*sym)
         condition = FiniteSet(*condition)
         return Basic.__new__(cls, sym, condition, base_set)
     condition = as_Boolean(condition)
     if isinstance(base_set, set):
         base_set = FiniteSet(*base_set)
     elif not isinstance(base_set, Set):
         raise TypeError('expecting set for base_set')
     if condition is S.false:
         return S.EmptySet
     if condition is S.true:
         return base_set
     if isinstance(base_set, EmptySet):
         return base_set
     know = None
     if isinstance(base_set, FiniteSet):
         sifted = sift(
             base_set, lambda _: fuzzy_bool(
                 condition.subs(sym, _)))
         if sifted[None]:
             know = FiniteSet(*sifted[True])
             base_set = FiniteSet(*sifted[None])
         else:
             return FiniteSet(*sifted[True])
     if isinstance(base_set, cls):
         s, c, base_set = base_set.args
         if sym == s:
             condition = And(condition, c)
         elif sym not in c.free_symbols:
             condition = And(condition, c.xreplace({s: sym}))
         elif s not in condition.free_symbols:
             condition = And(condition.xreplace({sym: s}), c)
             sym = s
         else:
             # user will have to use cls.sym to get symbol
             dum = Symbol('lambda')
             if dum in condition.free_symbols or \
                     dum in c.free_symbols:
                 dum = Dummy(str(dum))
             condition = And(
                 condition.xreplace({sym: dum}),
                 c.xreplace({s: dum}))
             sym = dum
     if not isinstance(sym, Symbol):
         s = Dummy('lambda')
         if s not in condition.xreplace({sym: s}).free_symbols:
             raise ValueError(
                 'non-symbol dummy not recognized in condition')
     rv = Basic.__new__(cls, sym, condition, base_set)
     return rv if know is None else Union(know, rv)
开发者ID:asmeurer,项目名称:sympy,代码行数:55,代码来源:conditionset.py


示例7: __new__

    def __new__(cls, name, **assumptions):

        if assumptions.get('zero', False):
            return S.Zero
        check_commutative = fuzzy_bool(assumptions.get('commutative', True))
        if check_commutative is None:
            raise ValueError(
                '''commutativity symbol must take values eighter a  True or False.''')
        assumptions['commutative'] = check_commutative
        for key in assumptions.keys():
            assumptions[key] = bool(assumptions[key])
        return sympy.Symbol.__xnew__(cls, name, uuid=str(int(round(1e16*random.random()))), **assumptions) 
开发者ID:AMAN3003,项目名称:-Optimization_Problem_solver,代码行数:12,代码来源:interface.py


示例8: encloses_point

    def encloses_point(self, p):
        """
        Return True if p is enclosed by (is inside of) self.

        Notes
        -----
        Being on the border of self is considered False.

        Parameters
        ==========

        p : Point

        Returns
        =======

        encloses_point : True, False or None

        See Also
        ========

        sympy.geometry.point.Point

        Examples
        ========

        >>> from sympy import Ellipse, S
        >>> from sympy.abc import t
        >>> e = Ellipse((0, 0), 3, 2)
        >>> e.encloses_point((0, 0))
        True
        >>> e.encloses_point(e.arbitrary_point(t).subs(t, S.Half))
        False
        >>> e.encloses_point((4, 0))
        False

        """
        p = Point(p, dim=2)
        if p in self:
            return False

        if len(self.foci) == 2:
            # if the combined distance from the foci to p (h1 + h2) is less
            # than the combined distance from the foci to the minor axis
            # (which is the same as the major axis length) then p is inside
            # the ellipse
            h1, h2 = [f.distance(p) for f in self.foci]
            test = 2*self.major - (h1 + h2)
        else:
            test = self.radius - self.center.distance(p)

        return fuzzy_bool(test.is_positive)
开发者ID:aprasanna,项目名称:sympy,代码行数:52,代码来源:ellipse.py


示例9: __new__

    def __new__(cls, name, **assumptions):

        if assumptions.get('zero', False):
            return S.Zero
        is_commutative = fuzzy_bool(assumptions.get('commutative', True))
        if is_commutative is None:
            raise ValueError(
                '''Symbol commutativity must be True or False.''')
        assumptions['commutative'] = is_commutative
        for key in assumptions.keys():
            assumptions[key] = bool(assumptions[key])
        return sympy.Symbol.__xnew__(cls, name, uuid=str(int(round(1e16 * random.random()))),
                                     **assumptions)  # uuid.uuid1()
开发者ID:phantomas1234,项目名称:optlang,代码行数:13,代码来源:interface.py


示例10: __new__

 def __new__(cls, sym, condition, base_set):
     if condition == S.false:
         return S.EmptySet
     if condition == S.true:
         return base_set
     if isinstance(base_set, EmptySet):
         return base_set
     if isinstance(base_set, FiniteSet):
         sifted = sift(base_set, lambda _: fuzzy_bool(condition.subs(sym, _)))
         if sifted[None]:
             return Union(FiniteSet(*sifted[True]),
                          Basic.__new__(cls, sym, condition, FiniteSet(*sifted[None])))
         else:
             return FiniteSet(*sifted[True])
     return Basic.__new__(cls, sym, condition, base_set)
开发者ID:A-turing-machine,项目名称:sympy,代码行数:15,代码来源:conditionset.py


示例11: _sanitize

def _sanitize(assumptions):
    """Remove None, covert values to bool, make sure commutativity is T/F"""

    # be strict about commutativity
    is_commutative = fuzzy_bool(assumptions.get('commutative', True))
    if is_commutative is None:
        raise ValueError(
            '%s commutativity must be True or False.' % cls.__name__)
    assumptions['commutative'] = is_commutative

    # sanitize other assumptions so 1 -> True and 0 -> False
    for key in list(assumptions.keys()):
        v = assumptions[key]
        if v is None:
            assumptions.pop(key)
            continue
        assumptions[key] = bool(v)
开发者ID:norah911,项目名称:sympy,代码行数:17,代码来源:symbol.py


示例12: __new__

    def __new__(cls, name, **assumptions):
        """Symbols are identified by name and assumptions::

        >>> from sympy import Symbol
        >>> Symbol("x") == Symbol("x")
        True
        >>> Symbol("x", real=True) == Symbol("x", real=False)
        False

        """

        is_commutative = fuzzy_bool(assumptions.get('commutative', True))
        if is_commutative is None:
            raise ValueError(
                '''Symbol commutativity must be True or False.''')
        assumptions['commutative'] = is_commutative
        for key in assumptions.keys():
            assumptions[key] = bool(assumptions[key])
        return Symbol.__xnew_cached_(cls, name, **assumptions)
开发者ID:aiwku1277,项目名称:sympy,代码行数:19,代码来源:symbol.py


示例13: _sanitize

    def _sanitize(assumptions, obj=None):
        """Remove None, covert values to bool, check commutativity *in place*.
        """

        # be strict about commutativity
        is_commutative = fuzzy_bool(assumptions.get('commutative', True))
        if is_commutative is None:
            whose = '%s ' % obj.__name__ if obj else ''
            raise ValueError(
                '%scommutativity must be True or False.' % whose)
        assumptions['commutative'] = is_commutative

        # sanitize other assumptions so 1 -> True and 0 -> False
        for key in list(assumptions.keys()):
            v = assumptions[key]
            if v is None:
                assumptions.pop(key)
                continue
            assumptions[key] = bool(v)
开发者ID:gitter-badger,项目名称:sympy,代码行数:19,代码来源:symbol.py


示例14: __new_stage2__

    def __new_stage2__(cls, name, **assumptions):
        if not isinstance(name, string_types):
            raise TypeError("name should be a string, not %s" % repr(type(name)))

        obj = Expr.__new__(cls)
        obj.name = name

        # TODO: Issue #8873: Forcing the commutative assumption here means
        # later code such as ``srepr()`` cannot tell whether the user
        # specified ``commutative=True`` or omitted it.  To workaround this,
        # we keep a copy of the assumptions dict, then create the StdFactKB,
        # and finally overwrite its ``._generator`` with the dict copy.  This
        # is a bit of a hack because we assume StdFactKB merely copies the
        # given dict as ``._generator``, but future modification might, e.g.,
        # compute a minimal equivalent assumption set.
        tmp_asm_copy = assumptions.copy()

        # be strict about commutativity
        is_commutative = fuzzy_bool(assumptions.get('commutative', True))
        assumptions['commutative'] = is_commutative
        obj._assumptions = StdFactKB(assumptions)
        obj._assumptions._generator = tmp_asm_copy  # Issue #8873
        return obj
开发者ID:AStorus,项目名称:sympy,代码行数:23,代码来源:symbol.py


示例15: __new__

    def __new__(cls, lhs, rhs=0, **options):
        from sympy.core.add import Add
        from sympy.core.logic import fuzzy_bool
        from sympy.core.expr import _n2
        from sympy.simplify.simplify import clear_coefficients

        lhs = _sympify(lhs)
        rhs = _sympify(rhs)

        evaluate = options.pop('evaluate', global_evaluate[0])

        if evaluate:
            # If one expression has an _eval_Eq, return its results.
            if hasattr(lhs, '_eval_Eq'):
                r = lhs._eval_Eq(rhs)
                if r is not None:
                    return r
            if hasattr(rhs, '_eval_Eq'):
                r = rhs._eval_Eq(lhs)
                if r is not None:
                    return r
            # If expressions have the same structure, they must be equal.
            if lhs == rhs:
                return S.true
            elif all(isinstance(i, BooleanAtom) for i in (rhs, lhs)):
                return S.false

            # check finiteness
            fin = L, R = [i.is_finite for i in (lhs, rhs)]
            if None not in fin:
                if L != R:
                    return S.false
                if L is False:
                    if lhs == -rhs:  # Eq(oo, -oo)
                        return S.false
                    return S.true
            elif None in fin and False in fin:
                return Relational.__new__(cls, lhs, rhs, **options)

            if all(isinstance(i, Expr) for i in (lhs, rhs)):
                # see if the difference evaluates
                dif = lhs - rhs
                z = dif.is_zero
                if z is not None:
                    if z is False and dif.is_commutative:  # issue 10728
                        return S.false
                    if z:
                        return S.true
                # evaluate numerically if possible
                n2 = _n2(lhs, rhs)
                if n2 is not None:
                    return _sympify(n2 == 0)
                # see if the ratio evaluates
                n, d = dif.as_numer_denom()
                rv = None
                if n.is_zero:
                    rv = d.is_nonzero
                elif n.is_finite:
                    if d.is_infinite:
                        rv = S.true
                    elif n.is_zero is False:
                        rv = d.is_infinite
                        if rv is None:
                            # if the condition that makes the denominator infinite does not
                            # make the original expression True then False can be returned
                            l, r = clear_coefficients(d, S.Infinity)
                            args = [_.subs(l, r) for _ in (lhs, rhs)]
                            if args != [lhs, rhs]:
                                rv = fuzzy_bool(Eq(*args))
                                if rv is True:
                                    rv = None
                elif any(a.is_infinite for a in Add.make_args(n)):  # (inf or nan)/x != 0
                    rv = S.false
                if rv is not None:
                    return _sympify(rv)

        return Relational.__new__(cls, lhs, rhs, **options)
开发者ID:baoqchau,项目名称:sympy,代码行数:77,代码来源:relational.py



注:本文中的sympy.core.logic.fuzzy_bool函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python logic.fuzzy_not函数代码示例发布时间:2022-05-27
下一篇:
Python logic.fuzzy_and函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap