本文整理汇总了Python中sympy.core.exprtools.gcd_terms函数的典型用法代码示例。如果您正苦于以下问题:Python gcd_terms函数的具体用法?Python gcd_terms怎么用?Python gcd_terms使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了gcd_terms函数的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_factor_terms
def test_factor_terms():
A = Symbol('A', commutative=False)
assert factor_terms(9*(x + x*y + 1) + (3*x + 3)**(2 + 2*x)) == \
9*x*y + 9*x + _keep_coeff(S(3), x + 1)**_keep_coeff(S(2), x + 1) + 9
assert factor_terms(9*(x + x*y + 1) + (3)**(2 + 2*x)) == \
_keep_coeff(S(9), 3**(2*x) + x*y + x + 1)
assert factor_terms(3**(2 + 2*x) + a*3**(2 + 2*x)) == \
9*3**(2*x)*(a + 1)
assert factor_terms(x + x*A) == \
x*(1 + A)
assert factor_terms(sin(x + x*A)) == \
sin(x*(1 + A))
assert factor_terms((3*x + 3)**((2 + 2*x)/3)) == \
_keep_coeff(S(3), x + 1)**_keep_coeff(S(2)/3, x + 1)
assert factor_terms(x + (x*y + x)**(3*x + 3)) == \
x + (x*(y + 1))**_keep_coeff(S(3), x + 1)
assert factor_terms(a*(x + x*y) + b*(x*2 + y*x*2)) == \
x*(a + 2*b)*(y + 1)
i = Integral(x, (x, 0, oo))
assert factor_terms(i) == i
# check radical extraction
eq = sqrt(2) + sqrt(10)
assert factor_terms(eq) == eq
assert factor_terms(eq, radical=True) == sqrt(2)*(1 + sqrt(5))
eq = root(-6, 3) + root(6, 3)
assert factor_terms(eq, radical=True) == 6**(S(1)/3)*(1 + (-1)**(S(1)/3))
eq = [x + x*y]
ans = [x*(y + 1)]
for c in [list, tuple, set]:
assert factor_terms(c(eq)) == c(ans)
assert factor_terms(Tuple(x + x*y)) == Tuple(x*(y + 1))
assert factor_terms(Interval(0, 1)) == Interval(0, 1)
e = 1/sqrt(a/2 + 1)
assert factor_terms(e, clear=False) == 1/sqrt(a/2 + 1)
assert factor_terms(e, clear=True) == sqrt(2)/sqrt(a + 2)
eq = x/(x + 1/x) + 1/(x**2 + 1)
assert factor_terms(eq, fraction=False) == eq
assert factor_terms(eq, fraction=True) == 1
assert factor_terms((1/(x**3 + x**2) + 2/x**2)*y) == \
y*(2 + 1/(x + 1))/x**2
# if not True, then processesing for this in factor_terms is not necessary
assert gcd_terms(-x - y) == -x - y
assert factor_terms(-x - y) == Mul(-1, x + y, evaluate=False)
# if not True, then "special" processesing in factor_terms is not necessary
assert gcd_terms(exp(Mul(-1, x + 1))) == exp(-x - 1)
e = exp(-x - 2) + x
assert factor_terms(e) == exp(Mul(-1, x + 2, evaluate=False)) + x
assert factor_terms(e, sign=False) == e
assert factor_terms(exp(-4*x - 2) - x) == -x + exp(Mul(-2, 2*x + 1, evaluate=False))
开发者ID:JustinL42,项目名称:sympy,代码行数:55,代码来源:test_exprtools.py
示例2: test_gcd_terms
def test_gcd_terms():
f = 2*(x + 1)*(x + 4)/(5*x**2 + 5) + (2*x + 2)*(x + 5)/(x**2 + 1)/5 + (2*x + 2)*(x + 6)/(5*x**2 + 5)
assert _gcd_terms(f) == ((S(6)/5)*((1 + x)/(1 + x**2)), 5 + x, 1)
assert _gcd_terms(Add.make_args(f)) == ((S(6)/5)*((1 + x)/(1 + x**2)), 5 + x, 1)
assert gcd_terms(f) == (S(6)/5)*((1 + x)*(5 + x)/(1 + x**2))
assert gcd_terms(Add.make_args(f)) == (S(6)/5)*((1 + x)*(5 + x)/(1 + x**2))
assert gcd_terms((2*x + 2)**3 + (2*x + 2)**2) == 4*(x + 1)**2*(2*x + 3)
assert gcd_terms(0) == 0
assert gcd_terms(1) == 1
assert gcd_terms(x) == x
assert gcd_terms(2 + 2*x) == Mul(2, 1 + x, evaluate=False)
arg = x*(2*x + 4*y)
garg = 2*x*(x + 2*y)
assert gcd_terms(arg) == garg
assert gcd_terms(sin(arg)) == sin(garg)
# issue 3040-like
alpha, alpha1, alpha2, alpha3 = symbols('alpha:4')
a = alpha**2 - alpha*x**2 + alpha + x**3 - x*(alpha + 1)
rep = (alpha, (1 + sqrt(5))/2 + alpha1*x + alpha2*x**2 + alpha3*x**3)
s = (a/(x - alpha)).subs(*rep).series(x, 0, 1)
assert simplify(collect(s, x)) == -sqrt(5)/2 - S(3)/2 + O(x)
# issue 2818
assert _gcd_terms([S.Zero, S.Zero]) == (0, 0, 1)
assert _gcd_terms([2*x + 4]) == (2, x + 2, 1)
开发者ID:Enchanter12,项目名称:sympy,代码行数:30,代码来源:test_exprtools.py
示例3: test_gcd_terms
def test_gcd_terms():
f = 2*(x + 1)*(x + 4)/(5*x**2 + 5) + (2*x + 2)*(x + 5)/(x**2 + 1)/5 + (2*x + 2)*(x + 6)/(5*x**2 + 5)
assert _gcd_terms(f) == ((S(6)/5)*((1 + x)/(1 + x**2)), 5 + x, 1)
assert _gcd_terms(Add.make_args(f)) == ((S(6)/5)*((1 + x)/(1 + x**2)), 5 + x, 1)
assert gcd_terms(f) == (S(6)/5)*((1 + x)*(5 + x)/(1 + x**2))
assert gcd_terms(Add.make_args(f)) == (S(6)/5)*((1 + x)*(5 + x)/(1 + x**2))
assert gcd_terms(0) == 0
assert gcd_terms(1) == 1
assert gcd_terms(x) == x
开发者ID:addisonc,项目名称:sympy,代码行数:12,代码来源:test_exprtools.py
示例4: test_gcd_terms
def test_gcd_terms():
f = 2*(x + 1)*(x + 4)/(5*x**2 + 5) + (2*x + 2)*(x + 5)/(x**2 + 1)/5 + (2*x + 2)*(x + 6)/(5*x**2 + 5)
assert _gcd_terms(f) == ((S(6)/5)*((1 + x)/(1 + x**2)), 5 + x, 1)
assert _gcd_terms(Add.make_args(f)) == ((S(6)/5)*((1 + x)/(1 + x**2)), 5 + x, 1)
assert gcd_terms(f) == (S(6)/5)*((1 + x)*(5 + x)/(1 + x**2))
assert gcd_terms(Add.make_args(f)) == (S(6)/5)*((1 + x)*(5 + x)/(1 + x**2))
assert gcd_terms((2*x + 2)**3 + (2*x + 2)**2) == 4*(x + 1)**2*(2*x + 3)
assert gcd_terms(0) == 0
assert gcd_terms(1) == 1
assert gcd_terms(x) == x
assert gcd_terms(2 + 2*x) == Mul(2, 1 + x, evaluate=False)
arg = x*(2*x + 4*y)
garg = 2*x*(x + 2*y)
assert gcd_terms(arg) == garg
assert gcd_terms(sin(arg)) == sin(garg)
开发者ID:101man,项目名称:sympy,代码行数:19,代码来源:test_exprtools.py
示例5: _together
def _together(expr):
if isinstance(expr, Basic):
if expr.is_Atom or (expr.is_Function and not deep):
return expr
elif expr.is_Add:
return gcd_terms(map(_together, Add.make_args(expr)))
elif expr.is_Pow:
base = _together(expr.base)
if deep:
exp = _together(expr.exp)
else:
exp = expr.exp
return expr.__class__(base, exp)
else:
return expr.__class__(*[ _together(arg) for arg in expr.args ])
elif hasattr(expr, '__iter__'):
return expr.__class__([ _together(ex) for ex in expr ])
return expr
开发者ID:alhirzel,项目名称:sympy,代码行数:21,代码来源:rationaltools.py
示例6: eval
def eval(cls, p, q):
from sympy.core.add import Add
from sympy.core.mul import Mul
from sympy.core.singleton import S
from sympy.core.exprtools import gcd_terms
from sympy.polys.polytools import gcd
def doit(p, q):
"""Try to return p % q if both are numbers or +/-p is known
to be less than q.
"""
if p == q or p == -q or p.is_Pow and p.exp.is_Integer and p.base == q:
return S.Zero
if p.is_Number and q.is_Number:
return (p % q)
# by ratio
r = p/q
try:
d = int(r)
except TypeError:
pass
else:
if type(d) is int:
rv = p - d*q
if (rv*q < 0) is True:
rv += q
return rv
# by differencec
d = p - q
if d.is_negative:
if q.is_negative:
return d
elif q.is_positive:
return p
rv = doit(p, q)
if rv is not None:
return rv
# denest
if p.func is cls:
# easy
qinner = p.args[1]
if qinner == q:
return p
# XXX other possibilities?
# extract gcd; any further simplification should be done by the user
G = gcd(p, q)
if G is not S.One:
p, q = [
gcd_terms(i/G, clear=False, fraction=False) for i in (p, q)]
pwas, qwas = p, q
# simplify terms
# (x + y + 2) % x -> Mod(y + 2, x)
if p.is_Add:
args = []
for i in p.args:
a = cls(i, q)
if a.count(cls) > i.count(cls):
args.append(i)
else:
args.append(a)
if args != list(p.args):
p = Add(*args)
else:
# handle coefficients if they are not Rational
# since those are not handled by factor_terms
# e.g. Mod(.6*x, .3*y) -> 0.3*Mod(2*x, y)
cp, p = p.as_coeff_Mul()
cq, q = q.as_coeff_Mul()
ok = False
if not cp.is_Rational or not cq.is_Rational:
r = cp % cq
if r == 0:
G *= cq
p *= int(cp/cq)
ok = True
if not ok:
p = cp*p
q = cq*q
# simple -1 extraction
if p.could_extract_minus_sign() and q.could_extract_minus_sign():
G, p, q = [-i for i in (G, p, q)]
# check again to see if p and q can now be handled as numbers
rv = doit(p, q)
if rv is not None:
return rv*G
# put 1.0 from G on inside
if G.is_Float and G == 1:
p *= G
#.........这里部分代码省略.........
开发者ID:Amo10,项目名称:Computer-Science-2014-2015,代码行数:101,代码来源:mod.py
示例7: test_gcd_terms
def test_gcd_terms():
f = 2*(x + 1)*(x + 4)/(5*x**2 + 5) + (2*x + 2)*(x + 5)/(x**2 + 1)/5 + \
(2*x + 2)*(x + 6)/(5*x**2 + 5)
assert _gcd_terms(f) == ((S(6)/5)*((1 + x)/(1 + x**2)), 5 + x, 1)
assert _gcd_terms(Add.make_args(f)) == \
((S(6)/5)*((1 + x)/(1 + x**2)), 5 + x, 1)
newf = (S(6)/5)*((1 + x)*(5 + x)/(1 + x**2))
assert gcd_terms(f) == newf
args = Add.make_args(f)
# non-Basic sequences of terms treated as terms of Add
assert gcd_terms(list(args)) == newf
assert gcd_terms(tuple(args)) == newf
assert gcd_terms(set(args)) == newf
# but a Basic sequence is treated as a container
assert gcd_terms(Tuple(*args)) != newf
assert gcd_terms(Basic(Tuple(1, 3*y + 3*x*y), Tuple(1, 3))) == \
Basic((1, 3*y*(x + 1)), (1, 3))
# but we shouldn't change keys of a dictionary or some may be lost
assert gcd_terms(Dict((x*(1 + y), 2), (x + x*y, y + x*y))) == \
Dict({x*(y + 1): 2, x + x*y: y*(1 + x)})
assert gcd_terms((2*x + 2)**3 + (2*x + 2)**2) == 4*(x + 1)**2*(2*x + 3)
assert gcd_terms(0) == 0
assert gcd_terms(1) == 1
assert gcd_terms(x) == x
assert gcd_terms(2 + 2*x) == Mul(2, 1 + x, evaluate=False)
arg = x*(2*x + 4*y)
garg = 2*x*(x + 2*y)
assert gcd_terms(arg) == garg
assert gcd_terms(sin(arg)) == sin(garg)
# issue 3040-like
alpha, alpha1, alpha2, alpha3 = symbols('alpha:4')
a = alpha**2 - alpha*x**2 + alpha + x**3 - x*(alpha + 1)
rep = (alpha, (1 + sqrt(5))/2 + alpha1*x + alpha2*x**2 + alpha3*x**3)
s = (a/(x - alpha)).subs(*rep).series(x, 0, 1)
assert simplify(collect(s, x)) == -sqrt(5)/2 - S(3)/2 + O(x)
# issue 2818
assert _gcd_terms([S.Zero, S.Zero]) == (0, 0, 1)
assert _gcd_terms([2*x + 4]) == (2, x + 2, 1)
eq = x/(x + 1/x)
assert gcd_terms(eq, fraction=False) == eq
开发者ID:Abhityagi16,项目名称:sympy,代码行数:47,代码来源:test_exprtools.py
示例8: eval
def eval(cls, p, q):
from sympy.core.add import Add
from sympy.core.mul import Mul
from sympy.core.singleton import S
from sympy.core.exprtools import gcd_terms
from sympy.polys.polytools import gcd
def doit(p, q):
"""Try to return p % q if both are numbers or +/-p is known
to be less than or equal q.
"""
if q == S.Zero:
raise ZeroDivisionError("Modulo by zero")
if p.is_infinite or q.is_infinite or p is nan or q is nan:
return nan
if p == S.Zero or p == q or p == -q or (p.is_integer and q == 1):
return S.Zero
if q.is_Number:
if p.is_Number:
return p%q
if q == 2:
if p.is_even:
return S.Zero
elif p.is_odd:
return S.One
if hasattr(p, '_eval_Mod'):
rv = getattr(p, '_eval_Mod')(q)
if rv is not None:
return rv
# by ratio
r = p/q
try:
d = int(r)
except TypeError:
pass
else:
if isinstance(d, integer_types):
rv = p - d*q
if (rv*q < 0) == True:
rv += q
return rv
# by difference
# -2|q| < p < 2|q|
d = abs(p)
for _ in range(2):
d -= abs(q)
if d.is_negative:
if q.is_positive:
if p.is_positive:
return d + q
elif p.is_negative:
return -d
elif q.is_negative:
if p.is_positive:
return d
elif p.is_negative:
return -d + q
break
rv = doit(p, q)
if rv is not None:
return rv
# denest
if isinstance(p, cls):
qinner = p.args[1]
if qinner % q == 0:
return cls(p.args[0], q)
elif (qinner*(q - qinner)).is_nonnegative:
# |qinner| < |q| and have same sign
return p
elif isinstance(-p, cls):
qinner = (-p).args[1]
if qinner % q == 0:
return cls(-(-p).args[0], q)
elif (qinner*(q + qinner)).is_nonpositive:
# |qinner| < |q| and have different sign
return p
elif isinstance(p, Add):
# separating into modulus and non modulus
both_l = non_mod_l, mod_l = [], []
for arg in p.args:
both_l[isinstance(arg, cls)].append(arg)
# if q same for all
if mod_l and all(inner.args[1] == q for inner in mod_l):
net = Add(*non_mod_l) + Add(*[i.args[0] for i in mod_l])
return cls(net, q)
elif isinstance(p, Mul):
# separating into modulus and non modulus
both_l = non_mod_l, mod_l = [], []
for arg in p.args:
both_l[isinstance(arg, cls)].append(arg)
if mod_l and all(inner.args[1] == q for inner in mod_l):
#.........这里部分代码省略.........
开发者ID:bjodah,项目名称:sympy,代码行数:101,代码来源:mod.py
示例9: radsimp
#.........这里部分代码省略.........
elif d.is_Pow and (d.exp.is_integer or d.base.is_positive):
# (1/d**i) = (1/d)**i
return handle(1/d.base)**d.exp
if not (d.is_Add or ispow2(d)):
return 1/d.func(*[handle(a) for a in d.args])
# handle 1/d treating d as an Add (though it may not be)
keep = True # keep changes that are made
# flatten it and collect radicals after checking for special
# conditions
d = _mexpand(d)
# did it change?
if d.is_Atom:
return 1/d
# is it a number that might be handled easily?
if d.is_number:
_d = nsimplify(d)
if _d.is_Number and _d.equals(d):
return 1/_d
while True:
# collect similar terms
collected = defaultdict(list)
for m in Add.make_args(d): # d might have become non-Add
p2 = []
other = []
for i in Mul.make_args(m):
if ispow2(i, log2=True):
p2.append(i.base if i.exp is S.Half else i.base**(2*i.exp))
elif i is S.ImaginaryUnit:
p2.append(S.NegativeOne)
else:
other.append(i)
collected[tuple(ordered(p2))].append(Mul(*other))
rterms = list(ordered(list(collected.items())))
rterms = [(Mul(*i), Add(*j)) for i, j in rterms]
nrad = len(rterms) - (1 if rterms[0][0] is S.One else 0)
if nrad < 1:
break
elif nrad > max_terms:
# there may have been invalid operations leading to this point
# so don't keep changes, e.g. this expression is troublesome
# in collecting terms so as not to raise the issue of 2834:
# r = sqrt(sqrt(5) + 5)
# eq = 1/(sqrt(5)*r + 2*sqrt(5)*sqrt(-sqrt(5) + 5) + 5*r)
keep = False
break
if len(rterms) > 4:
# in general, only 4 terms can be removed with repeated squaring
# but other considerations can guide selection of radical terms
# so that radicals are removed
if all([x.is_Integer and (y**2).is_Rational for x, y in rterms]):
nd, d = rad_rationalize(S.One, Add._from_args(
[sqrt(x)*y for x, y in rterms]))
n *= nd
else:
# is there anything else that might be attempted?
keep = False
break
from sympy.simplify.powsimp import powsimp, powdenest
num = powsimp(_num(rterms))
n *= num
d *= num
d = powdenest(_mexpand(d), force=symbolic)
if d.is_Atom:
break
if not keep:
return expr
return _unevaluated_Mul(n, 1/d)
coeff, expr = expr.as_coeff_Add()
expr = expr.normal()
old = fraction(expr)
n, d = fraction(handle(expr))
if old != (n, d):
if not d.is_Atom:
was = (n, d)
n = signsimp(n, evaluate=False)
d = signsimp(d, evaluate=False)
u = Factors(_unevaluated_Mul(n, 1/d))
u = _unevaluated_Mul(*[k**v for k, v in u.factors.items()])
n, d = fraction(u)
if old == (n, d):
n, d = was
n = expand_mul(n)
if d.is_Number or d.is_Add:
n2, d2 = fraction(gcd_terms(_unevaluated_Mul(n, 1/d)))
if d2.is_Number or (d2.count_ops() <= d.count_ops()):
n, d = [signsimp(i) for i in (n2, d2)]
if n.is_Mul and n.args[0].is_Number:
n = n.func(*n.args)
return coeff + _unevaluated_Mul(n, 1/d)
开发者ID:tachycline,项目名称:sympy,代码行数:101,代码来源:radsimp.py
注:本文中的sympy.core.exprtools.gcd_terms函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论