• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python compatibility.reduce函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sympy.core.compatibility.reduce函数的典型用法代码示例。如果您正苦于以下问题:Python reduce函数的具体用法?Python reduce怎么用?Python reduce使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了reduce函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: _rebuild

        def _rebuild(expr):
            generator = mapping.get(expr)

            if generator is not None:
                return generator
            elif expr.is_Add:
                return reduce(add, list(map(_rebuild, expr.args)))
            elif expr.is_Mul:
                return reduce(mul, list(map(_rebuild, expr.args)))
            elif expr.is_Pow or isinstance(expr, (ExpBase, Exp1)):
                b, e = expr.as_base_exp()
                # look for bg**eg whose integer power may be b**e
                for gen, (bg, eg) in powers:
                    if bg == b and Mod(e, eg) == 0:
                        return mapping.get(gen)**int(e/eg)
                if e.is_Integer and e is not S.One:
                    return _rebuild(b)**int(e)

            try:
                return domain.convert(expr)
            except CoercionFailed:
                if not domain.is_Field and domain.has_assoc_Field:
                    return domain.get_field().convert(expr)
                else:
                    raise
开发者ID:asmeurer,项目名称:sympy,代码行数:25,代码来源:fields.py


示例2: dynamicsymbols

def dynamicsymbols(names, level=0):
    """Uses symbols and Function for functions of time.

    Creates a SymPy UndefinedFunction, which is then initialized as a function
    of a variable, the default being Symbol('t').

    Parameters
    ==========

    names : str
        Names of the dynamic symbols you want to create; works the same way as
        inputs to symbols
    level : int
        Level of differentiation of the returned function; d/dt once of t,
        twice of t, etc.

    Examples
    ========

    >>> from sympy.physics.vector import dynamicsymbols
    >>> from sympy import diff, Symbol
    >>> q1 = dynamicsymbols('q1')
    >>> q1
    q1(t)
    >>> diff(q1, Symbol('t'))
    Derivative(q1(t), t)

    """
    esses = symbols(names, cls=Function)
    t = dynamicsymbols._t
    if iterable(esses):
        esses = [reduce(diff, [t] * level, e(t)) for e in esses]
        return esses
    else:
        return reduce(diff, [t] * level, esses(t))
开发者ID:abhi98khandelwal,项目名称:sympy,代码行数:35,代码来源:functions.py


示例3: eval

    def eval(cls, x, k):
        x = sympify(x)
        k = sympify(k)

        if x is S.NaN:
            return S.NaN
        elif k.is_Integer:
            if k is S.NaN:
                return S.NaN
            elif k is S.Zero:
                return S.One
            else:
                if k.is_positive:
                    if x is S.Infinity:
                        return S.Infinity
                    elif x is S.NegativeInfinity:
                        if k.is_odd:
                            return S.NegativeInfinity
                        else:
                            return S.Infinity
                    else:
                        return reduce(lambda r, i: r*(x - i), xrange(0, int(k)), 1)
                else:
                    if x is S.Infinity:
                        return S.Infinity
                    elif x is S.NegativeInfinity:
                        return S.Infinity
                    else:
                        return 1/reduce(lambda r, i: r*(x + i), xrange(1, abs(int(k)) + 1), 1)
开发者ID:abhishekkumawat23,项目名称:sympy,代码行数:29,代码来源:factorials.py


示例4: dim_simplify

def dim_simplify(expr):
    """
    Simplify expression by recursively evaluating the dimension arguments.

    This function proceeds to a very rough dimensional analysis. It tries to
    simplify expression with dimensions, and it deletes all what multiplies a
    dimension without being a dimension. This is necessary to avoid strange
    behavior when Add(L, L) be transformed into Mul(2, L).
    """

    args = []
    for arg in expr.args:
        if isinstance(arg, (Mul, Pow, Add)):
            arg = dim_simplify(arg)
        args.append(arg)

    if isinstance(expr, Pow):
        return args[0].pow(args[1])
    elif isinstance(expr, Add):
        args = [arg for arg in args if isinstance(arg, Dimension)]
        return reduce(lambda x, y: x.add(y), args)
    elif isinstance(expr, Mul):
        args = [arg for arg in args if isinstance(arg, Dimension)]
        return reduce(lambda x, y: x.mul(y), args)
    else:
        return expr
开发者ID:AdrianPotter,项目名称:sympy,代码行数:26,代码来源:simplifiers.py


示例5: qsimplify

    def qsimplify(cls, expr):
        """
        Simplify expression by recursively evaluating the quantity arguments.

        If units are encountered, as it can be when using Constant, they are
        converted to quantity.
        """

        def redmul(x, y):
            """
            Function used to combine args in multiplications.

            This is necessary because the previous computation was not commutative,
            and Mul(3, u) was not simplified; but Mul(u, 3) was.
            """
            if isinstance(x, Quantity):
                return x.mul(y)
            elif isinstance(y, Quantity):
                return y.mul(x)
            else:
                return x*y

        args = []
        for arg in expr.args:
            arg = arg.evalf()
            if isinstance(arg, (Mul, Pow, Add)):
                arg = cls.qsimplify(arg)
            args.append(arg)

        q_args, o_args = [], []

        for arg in args:
            if isinstance(arg, Quantity):
                q_args.append(arg)
            elif isinstance(arg, Unit):
                # replace unit by a quantity to make the simplification
                q_args.append(arg.as_quantity)
            else:
                o_args.append(arg)
            

        if isinstance(expr, Pow):
            return args[0].pow(args[1])
        elif isinstance(expr, Add):
            if q_args != []:
                quantities = reduce(lambda x, y: x.add(y), q_args)
            else:
                quantities = []
            return reduce(lambda x, y: x+y, o_args, quantities)
        elif isinstance(expr, Mul):
            if q_args != []:
                quantities = reduce(lambda x, y: x.mul(y), q_args)
            else:
                quantities = []
            return reduce(redmul, o_args, quantities)
        else:
            return expr
开发者ID:chaffra,项目名称:sympy,代码行数:57,代码来源:quantities.py


示例6: eval

    def eval(cls, x, k):
        x = sympify(x)
        k = sympify(k)

        if x is S.NaN or k is S.NaN:
            return S.NaN
        elif x is S.One:
            return factorial(k)
        elif k.is_Integer:
            if k is S.Zero:
                return S.One
            else:
                if k.is_positive:
                    if x is S.Infinity:
                        return S.Infinity
                    elif x is S.NegativeInfinity:
                        if k.is_odd:
                            return S.NegativeInfinity
                        else:
                            return S.Infinity
                    else:
                        if isinstance(x, Poly):
                            gens = x.gens
                            if len(gens)!= 1:
                                raise ValueError("rf only defined for "
                                            "polynomials on one generator")
                            else:
                                return reduce(lambda r, i:
                                              r*(x.shift(i).expand()),
                                              range(0, int(k)), 1)
                        else:
                            return reduce(lambda r, i: r*(x + i),
                                        range(0, int(k)), 1)

                else:
                    if x is S.Infinity:
                        return S.Infinity
                    elif x is S.NegativeInfinity:
                        return S.Infinity
                    else:
                        if isinstance(x, Poly):
                            gens = x.gens
                            if len(gens)!= 1:
                                raise ValueError("rf only defined for "
                                            "polynomials on one generator")
                            else:
                                return 1/reduce(lambda r, i:
                                                r*(x.shift(-i).expand()),
                                                range(1, abs(int(k)) + 1), 1)
                        else:
                            return 1/reduce(lambda r, i:
                                            r*(x - i),
                                            range(1, abs(int(k)) + 1), 1)
开发者ID:asmeurer,项目名称:sympy,代码行数:53,代码来源:factorials.py


示例7: dim_simplify

def dim_simplify(expr):
    """
    NOTE: this function could be deprecated in the future.

    Simplify expression by recursively evaluating the dimension arguments.

    This function proceeds to a very rough dimensional analysis. It tries to
    simplify expression with dimensions, and it deletes all what multiplies a
    dimension without being a dimension. This is necessary to avoid strange
    behavior when Add(L, L) be transformed into Mul(2, L).
    """

    if isinstance(expr, Dimension):
        return expr

    if isinstance(expr, Pow):
        return dim_simplify(expr.base)**dim_simplify(expr.exp)
    elif isinstance(expr, Function):
        return dim_simplify(expr.args[0])
    elif isinstance(expr, Add):
        if (all(isinstance(arg, Dimension) for arg in expr.args) or
            all(arg.is_dimensionless for arg in expr.args if isinstance(arg, Dimension))):
            return reduce(lambda x, y: x.add(y), expr.args)
        else:
            raise ValueError("Dimensions cannot be added: %s" % expr)
    elif isinstance(expr, Mul):
        return Dimension(Mul(*[dim_simplify(i).name for i in expr.args if isinstance(i, Dimension)]))

    raise ValueError("Cannot be simplifed: %s", expr)
开发者ID:abhi98khandelwal,项目名称:sympy,代码行数:29,代码来源:util.py


示例8: merge_explicit

def merge_explicit(matadd):
    """ Merge explicit MatrixBase arguments

    Examples
    ========

    >>> from sympy import MatrixSymbol, eye, Matrix, MatAdd, pprint
    >>> from sympy.matrices.expressions.matadd import merge_explicit
    >>> A = MatrixSymbol('A', 2, 2)
    >>> B = eye(2)
    >>> C = Matrix([[1, 2], [3, 4]])
    >>> X = MatAdd(A, B, C)
    >>> pprint(X)
        [1  0]   [1  2]
    A + [    ] + [    ]
        [0  1]   [3  4]
    >>> pprint(merge_explicit(X))
        [2  2]
    A + [    ]
        [3  5]
    """
    groups = sift(matadd.args, lambda arg: isinstance(arg, MatrixBase))
    if len(groups[True]) > 1:
        return MatAdd(*(groups[False] + [reduce(add, groups[True])]))
    else:
        return matadd
开发者ID:asmeurer,项目名称:sympy,代码行数:26,代码来源:matadd.py


示例9: test_treeapply

def test_treeapply():
    tree = ([3, 3], [4, 1], 2)
    assert treeapply(tree, {list: min, tuple: max}) == 3

    add = lambda *args: sum(args)
    mul = lambda *args: reduce(lambda a, b: a*b, args, 1)
    assert treeapply(tree, {list: add, tuple: mul}) == 60
开发者ID:A-turing-machine,项目名称:sympy,代码行数:7,代码来源:test_tree.py


示例10: _module_quotient

 def _module_quotient(self, other, relations=False):
     # See: [SCA, section 2.8.4]
     if relations and len(other.gens) != 1:
         raise NotImplementedError
     if len(other.gens) == 0:
         return self.ring.ideal(1)
     elif len(other.gens) == 1:
         # We do some trickery. Let f be the (vector!) generating ``other``
         # and f1, .., fn be the (vectors) generating self.
         # Consider the submodule of R^{r+1} generated by (f, 1) and
         # {(fi, 0) | i}. Then the intersection with the last module
         # component yields the quotient.
         g1 = list(other.gens[0]) + [1]
         gi = [list(x) + [0] for x in self.gens]
         # NOTE: We *need* to use an elimination order
         M = self.ring.free_module(self.rank + 1).submodule(*([g1] + gi),
                                         order='ilex', TOP=False)
         if not relations:
             return self.ring.ideal(*[x[-1] for x in M._groebner_vec() if
                                      all(y == self.ring.zero for y in x[:-1])])
         else:
             G, R = M._groebner_vec(extended=True)
             indices = [i for i, x in enumerate(G) if
                        all(y == self.ring.zero for y in x[:-1])]
             return (self.ring.ideal(*[G[i][-1] for i in indices]),
                     [[-x for x in R[i][1:]] for i in indices])
     # For more generators, we use I : <h1, .., hn> = intersection of
     #                                    {I : <hi> | i}
     # TODO this can be done more efficiently
     return reduce(lambda x, y: x.intersect(y),
         (self._module_quotient(self.container.submodule(x)) for x in other.gens))
开发者ID:abhi98khandelwal,项目名称:sympy,代码行数:31,代码来源:modules.py


示例11: prde_linear_constraints

def prde_linear_constraints(a, b, G, DE):
    """
    Parametric Risch Differential Equation - Generate linear constraints on the constants.

    Given a derivation D on k[t], a, b, in k[t] with gcd(a, b) == 1, and
    G = [g1, ..., gm] in k(t)^m, return Q = [q1, ..., qm] in k[t]^m and a
    matrix M with entries in k(t) such that for any solution c1, ..., cm in
    Const(k) and p in k[t] of a*Dp + b*p == Sum(ci*gi, (i, 1, m)),
    (c1, ..., cm) is a solution of Mx == 0, and p and the ci satisfy
    a*Dp + b*p == Sum(ci*qi, (i, 1, m)).

    Because M has entries in k(t), and because Matrix doesn't play well with
    Poly, M will be a Matrix of Basic expressions.
    """
    m = len(G)

    Gns, Gds = list(zip(*G))
    d = reduce(lambda i, j: i.lcm(j), Gds)
    d = Poly(d, field=True)
    Q = [(ga*(d).quo(gd)).div(d) for ga, gd in G]

    if not all([ri.is_zero for _, ri in Q]):
        N = max([ri.degree(DE.t) for _, ri in Q])
        M = Matrix(N + 1, m, lambda i, j: Q[j][1].nth(i))
    else:
        M = Matrix()  # No constraints, return the empty matrix.

    qs, _ = list(zip(*Q))
    return (qs, M)
开发者ID:Tkizzy,项目名称:PythonistaAppTemplate,代码行数:29,代码来源:prde.py


示例12: pull_out_u_rl

 def pull_out_u_rl(integrand):
     if any([integrand.has(f) for f in functions]):
         args = [arg for arg in integrand.args if any(isinstance(arg, cls) for cls in functions)]
         if args:
             u = reduce(lambda a, b: a * b, args)
             dv = integrand / u
             return u, dv
开发者ID:latot,项目名称:sympy,代码行数:7,代码来源:manualintegrate.py


示例13: _eval_matrix_mul

    def _eval_matrix_mul(self, other):
        from sympy import Add
        # cache attributes for faster access
        self_rows, self_cols = self.rows, self.cols
        other_rows, other_cols = other.rows, other.cols
        other_len = other_rows * other_cols
        new_mat_rows = self.rows
        new_mat_cols = other.cols

        # preallocate the array
        new_mat = [S.Zero]*new_mat_rows*new_mat_cols

        # if we multiply an n x 0 with a 0 x m, the
        # expected behavior is to produce an n x m matrix of zeros
        if self.cols != 0 and other.rows != 0:
            # cache self._mat and other._mat for performance
            mat = self._mat
            other_mat = other._mat
            for i in range(len(new_mat)):
                row, col = i // new_mat_cols, i % new_mat_cols
                row_indices = range(self_cols*row, self_cols*(row+1))
                col_indices = range(col, other_len, other_cols)
                vec = (mat[a]*other_mat[b] for a,b in zip(row_indices, col_indices))
                try:
                    new_mat[i] = Add(*vec)
                except (TypeError, SympifyError):
                    # Block matrices don't work with `sum` or `Add` (ISSUE #11599)
                    # They don't work with `sum` because `sum` tries to add `0`
                    # initially, and for a matrix, that is a mix of a scalar and
                    # a matrix, which raises a TypeError. Fall back to a
                    # block-matrix-safe way to multiply if the `sum` fails.
                    vec = (mat[a]*other_mat[b] for a,b in zip(row_indices, col_indices))
                    new_mat[i] = reduce(lambda a,b: a + b, vec)
        return classof(self, other)._new(new_mat_rows, new_mat_cols, new_mat, copy=False)
开发者ID:cmarqu,项目名称:sympy,代码行数:34,代码来源:dense.py


示例14: _get_indices_Mul

def _get_indices_Mul(expr, return_dummies=False):
    """Determine the outer indices of a Mul object.

    >>> from sympy.tensor.index_methods import _get_indices_Mul
    >>> from sympy.tensor.indexed import IndexedBase, Idx
    >>> i, j, k = map(Idx, ['i', 'j', 'k'])
    >>> x = IndexedBase('x')
    >>> y = IndexedBase('y')
    >>> _get_indices_Mul(x[i, k]*y[j, k])
    (set([i, j]), {})
    >>> _get_indices_Mul(x[i, k]*y[j, k], return_dummies=True)
    (set([i, j]), {}, (k,))

    """

    inds = list(map(get_indices, expr.args))
    inds, syms = list(zip(*inds))

    inds = list(map(list, inds))
    inds = list(reduce(lambda x, y: x + y, inds))
    inds, dummies = _remove_repeated(inds)

    symmetry = {}
    for s in syms:
        for pair in s:
            if pair in symmetry:
                symmetry[pair] *= s[pair]
            else:
                symmetry[pair] = s[pair]

    if return_dummies:
        return inds, symmetry, dummies
    else:
        return inds, symmetry
开发者ID:Tkizzy,项目名称:PythonistaAppTemplate,代码行数:34,代码来源:index_methods.py


示例15: prde_normal_denom

def prde_normal_denom(fa, fd, G, DE):
    """
    Parametric Risch Differential Equation - Normal part of the denominator.

    Given a derivation D on k[t] and f, g1, ..., gm in k(t) with f weakly
    normalized with respect to t, return the tuple (a, b, G, h) such that
    a, h in k[t], b in k<t>, G = [g1, ..., gm] in k(t)^m, and for any solution
    c1, ..., cm in Const(k) and y in k(t) of Dy + f*y == Sum(ci*gi, (i, 1, m)),
    q == y*h in k<t> satisfies a*Dq + b*q == Sum(ci*Gi, (i, 1, m)).
    """
    dn, ds = splitfactor(fd, DE)
    Gas, Gds = list(zip(*G))
    gd = reduce(lambda i, j: i.lcm(j), Gds, Poly(1, DE.t))
    en, es = splitfactor(gd, DE)

    p = dn.gcd(en)
    h = en.gcd(en.diff(DE.t)).quo(p.gcd(p.diff(DE.t)))

    a = dn*h
    c = a*h

    ba = a*fa - dn*derivation(h, DE)*fd
    ba, bd = ba.cancel(fd, include=True)

    G = [(c*A).cancel(D, include=True) for A, D in G]

    return (a, (ba, bd), G, h)
开发者ID:Tkizzy,项目名称:PythonistaAppTemplate,代码行数:27,代码来源:prde.py


示例16: get_total_scale_factor

 def get_total_scale_factor(expr):
     if isinstance(expr, Mul):
         return reduce(lambda x, y: x * y, [get_total_scale_factor(i) for i in expr.args])
     elif isinstance(expr, Pow):
         return get_total_scale_factor(expr.base) ** expr.exp
     elif isinstance(expr, Quantity):
         return expr.scale_factor
     return expr
开发者ID:sixpearls,项目名称:sympy,代码行数:8,代码来源:util.py


示例17: _separate

def _separate(eq, dep, others):
    """Separate expression into two parts based on dependencies of variables."""

    # FIRST PASS
    # Extract derivatives depending our separable variable...
    terms = set()
    for term in eq.args:
        if term.is_Mul:
            for i in term.args:
                if i.is_Derivative and not i.has(*others):
                    terms.add(term)
                    continue
        elif term.is_Derivative and not term.has(*others):
            terms.add(term)
    # Find the factor that we need to divide by
    div = set()
    for term in terms:
        ext, sep = term.expand().as_independent(dep)
        # Failed?
        if sep.has(*others):
            return None
        div.add(ext)
    # FIXME: Find lcm() of all the divisors and divide with it, instead of
    # current hack :(
    # http://code.google.com/p/sympy/issues/detail?id=1498
    if len(div) > 0:
        final = 0
        for term in eq.args:
            eqn = 0
            for i in div:
                eqn += term / i
            final += simplify(eqn)
        eq = final

    # SECOND PASS - separate the derivatives
    div = set()
    lhs = rhs = 0
    for term in eq.args:
        # Check, whether we have already term with independent variable...
        if not term.has(*others):
            lhs += term
            continue
        # ...otherwise, try to separate
        temp, sep = term.expand().as_independent(dep)
        # Failed?
        if sep.has(*others):
            return None
        # Extract the divisors
        div.add(sep)
        rhs -= term.expand()
    # Do the division
    fulldiv = reduce(operator.add, div)
    lhs = simplify(lhs/fulldiv).expand()
    rhs = simplify(rhs/fulldiv).expand()
    # ...and check whether we were successful :)
    if lhs.has(*others) or rhs.has(dep):
        return None
    return [lhs, rhs]
开发者ID:AALEKH,项目名称:sympy,代码行数:58,代码来源:pde.py


示例18: limited_integrate_reduce

def limited_integrate_reduce(fa, fd, G, DE):
    """
    Simpler version of step 1 & 2 for the limited integration problem.

    Given a derivation D on k(t) and f, g1, ..., gn in k(t), return
    (a, b, h, N, g, V) such that a, b, h in k[t], N is a non-negative integer,
    g in k(t), V == [v1, ..., vm] in k(t)^m, and for any solution v in k(t),
    c1, ..., cm in C of f == Dv + Sum(ci*wi, (i, 1, m)), p = v*h is in k<t>, and
    p and the ci satisfy a*Dp + b*p == g + Sum(ci*vi, (i, 1, m)).  Furthermore,
    if S1irr == Sirr, then p is in k[t], and if t is nonlinear or Liouvillian
    over k, then deg(p) <= N.

    So that the special part is always computed, this function calls the more
    general prde_special_denom() automatically if it cannot determine that
    S1irr == Sirr.  Furthermore, it will automatically call bound_degree() when
    t is linear and non-Liouvillian, which for the transcendental case, implies
    that Dt == a*t + b with for some a, b in k*.
    """
    dn, ds = splitfactor(fd, DE)
    E = [splitfactor(gd, DE) for _, gd in G]
    En, Es = list(zip(*E))
    c = reduce(lambda i, j: i.lcm(j), (dn,) + En)  # lcm(dn, en1, ..., enm)
    hn = c.gcd(c.diff(DE.t))
    a = hn
    b = -derivation(hn, DE)
    N = 0

    # These are the cases where we know that S1irr = Sirr, but there could be
    # others, and this algorithm will need to be extended to handle them.
    if DE.case in ['base', 'primitive', 'exp', 'tan']:
        hs = reduce(lambda i, j: i.lcm(j), (ds,) + Es)  # lcm(ds, es1, ..., esm)
        a = hn*hs
        b = -derivation(hn, DE) - (hn*derivation(hs, DE)).quo(hs)
        mu = min(order_at_oo(fa, fd, DE.t), min([order_at_oo(ga, gd, DE.t) for
            ga, gd in G]))
        # So far, all the above are also nonlinear or Liouvillian, but if this
        # changes, then this will need to be updated to call bound_degree()
        # as per the docstring of this function (DE.case == 'other_linear').
        N = hn.degree(DE.t) + hs.degree(DE.t) + max(0, 1 - DE.d.degree(DE.t) - mu)
    else:
        # TODO: implement this
        raise NotImplementedError

    V = [(-a*hn*ga).cancel(gd, include=True) for ga, gd in G]
    return (a, b, a, N, (a*hn*fa).cancel(fd, include=True), V)
开发者ID:Tkizzy,项目名称:PythonistaAppTemplate,代码行数:45,代码来源:prde.py


示例19: compute

 def compute(l):
     # first check that no two differ by an integer
     for i, b in enumerate(l):
         if not b.is_Rational:
             return oo
         for j in range(i + 1, len(l)):
             if not Mod((b - l[j]).simplify(), 1):
                 return oo
     return reduce(ilcm, (x.q for x in l), 1)
开发者ID:moorepants,项目名称:sympy,代码行数:9,代码来源:hyper.py


示例20: test_PolyRing_mul

def test_PolyRing_mul():
    R, x = ring("x", ZZ)
    F = [ x**2 + 2*i + 3 for i in range(4) ]

    assert R.mul(F) == reduce(mul, F) == x**8 + 24*x**6 + 206*x**4 + 744*x**2 + 945

    R, = ring("", ZZ)

    assert R.mul([2, 3, 5]) == 30
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:9,代码来源:test_rings.py



注:本文中的sympy.core.compatibility.reduce函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python compatibility.u函数代码示例发布时间:2022-05-27
下一篇:
Python compatibility.range函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap