本文整理汇总了Python中sympy.core.basic.C类的典型用法代码示例。如果您正苦于以下问题:Python C类的具体用法?Python C怎么用?Python C使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了C类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: eval
def eval(cls, arg):
arg = sympify(arg)
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Infinity
elif arg is S.NegativeInfinity:
return S.NegativeInfinity
elif arg is S.Zero:
return S.Zero
elif arg is S.One:
return C.log(2 ** S.Half + 1)
elif arg is S.NegativeOne:
return C.log(2 ** S.Half - 1)
elif arg.is_negative:
return -cls(-arg)
else:
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return S.ImaginaryUnit * C.asin(i_coeff)
else:
coeff, terms = arg.as_coeff_terms()
if coeff.is_negative:
return -cls(-arg)
开发者ID:nkinar,项目名称:sympy,代码行数:28,代码来源:hyperbolic.py
示例2: monomial_count
def monomial_count(V, N):
r"""
Computes the number of monomials.
The number of monomials is given by the following formula:
.. math::
\frac{(\#V + N)!}{\#V! N!}
where `N` is a total degree and `V` is a set of variables.
**Examples**
>>> from sympy import monomials, monomial_count
>>> from sympy.abc import x, y
>>> monomial_count(2, 2)
6
>>> M = monomials([x, y], 2)
>>> sorted(M)
[1, x, y, x**2, y**2, x*y]
>>> len(M)
6
"""
return C.factorial(V + N) / C.factorial(V) / C.factorial(N)
开发者ID:TeddyBoomer,项目名称:wxgeometrie,代码行数:29,代码来源:monomialtools.py
示例3: _eval_expand_trig
def _eval_expand_trig(self, **hints):
from sympy import expand_mul
arg = self.args[0]
x = None
if arg.is_Add: # TODO, implement more if deep stuff here
# TODO: Do this more efficiently for more than two terms
x, y = arg.as_two_terms()
sx = sin(x, evaluate=False)._eval_expand_trig()
sy = sin(y, evaluate=False)._eval_expand_trig()
cx = cos(x, evaluate=False)._eval_expand_trig()
cy = cos(y, evaluate=False)._eval_expand_trig()
return sx*cy + sy*cx
else:
n, x = arg.as_coeff_Mul(rational=True)
if n.is_Integer: # n will be positive because of .eval
# canonicalization
# See http://mathworld.wolfram.com/Multiple-AngleFormulas.html
if n.is_odd:
return (-1)**((n - 1)/2)*C.chebyshevt(n, sin(x))
else:
return expand_mul((-1)**(n/2 - 1)*cos(x)*C.chebyshevu(n -
1, sin(x)), deep=False)
pi_coeff = _pi_coeff(arg)
if pi_coeff is not None:
if pi_coeff.is_Rational:
return self.rewrite(sqrt)
return sin(arg)
开发者ID:bhlegm,项目名称:sympy,代码行数:28,代码来源:trigonometric.py
示例4: vertices
def vertices(self):
points = []
c, r, n = self
v = 2*S.Pi/n
for k in xrange(0, n):
points.append( Point(c[0] + r*C.cos(k*v), c[1] + r*C.sin(k*v)) )
return points
开发者ID:Praveen-Ramanujam,项目名称:MobRAVE,代码行数:7,代码来源:polygon.py
示例5: _eval_expand_complex
def _eval_expand_complex(self, *args):
if self.args[0].is_real:
return self
re, im = self.args[0].as_real_imag()
denom = sin(re)**2 + C.sinh(im)**2
return (sin(re)*cos(re) - \
S.ImaginaryUnit*C.sinh(im)*C.cosh(im))/denom
开发者ID:jcockayne,项目名称:sympy-rkern,代码行数:7,代码来源:trigonometric.py
示例6: solve_ODE_first_order
def solve_ODE_first_order(eq, f):
"""
solves many kinds of first order odes, different methods are used
depending on the form of the given equation. Now the linear
and Bernoulli cases are implemented.
"""
from sympy.integrals.integrals import integrate
x = f.args[0]
f = f.func
#linear case: a(x)*f'(x)+b(x)*f(x)+c(x) = 0
a = Wild('a', exclude=[f(x)])
b = Wild('b', exclude=[f(x)])
c = Wild('c', exclude=[f(x)])
r = eq.match(a*diff(f(x),x) + b*f(x) + c)
if r:
t = C.exp(integrate(r[b]/r[a], x))
tt = integrate(t*(-r[c]/r[a]), x)
return (tt + Symbol("C1"))/t
#Bernoulli case: a(x)*f'(x)+b(x)*f(x)+c(x)*f(x)^n = 0
n = Wild('n', exclude=[f(x)])
r = eq.match(a*diff(f(x),x) + b*f(x) + c*f(x)**n)
if r:
t = C.exp((1-r[n])*integrate(r[b]/r[a],x))
tt = (r[n]-1)*integrate(t*r[c]/r[a],x)
return ((tt + Symbol("C1"))/t)**(1/(1-r[n]))
#other cases of first order odes will be implemented here
raise NotImplementedError("solve_ODE_first_order: Cannot solve " + str(eq))
开发者ID:gnulinooks,项目名称:sympy,代码行数:33,代码来源:solvers.py
示例7: _eval_expand_complex
def _eval_expand_complex(self, deep=True, **hints):
re, im = self.args[0].as_real_imag()
if deep:
re = re.expand(deep, **hints)
im = im.expand(deep, **hints)
cos, sin = C.cos(im), C.sin(im)
return exp(re) * cos + S.ImaginaryUnit * exp(re) * sin
开发者ID:Praveen-Ramanujam,项目名称:MobRAVE,代码行数:7,代码来源:exponential.py
示例8: _eval_expand_trig
def _eval_expand_trig(self, **hints):
arg = self.args[0]
x = None
if arg.is_Add:
from sympy import symmetric_poly
n = len(arg.args)
CX = []
for x in arg.args:
cx = cot(x, evaluate=False)._eval_expand_trig()
CX.append(cx)
Yg = numbered_symbols("Y")
Y = [Yg.next() for i in xrange(n)]
p = [0, 0]
for i in xrange(n, -1, -1):
p[(n - i) % 2] += symmetric_poly(i, Y) * (-1) ** (((n - i) % 4) // 2)
return (p[0] / p[1]).subs(zip(Y, CX))
else:
coeff, terms = arg.as_coeff_Mul(rational=True)
if coeff.is_Integer and coeff > 1:
I = S.ImaginaryUnit
z = C.Symbol("dummy", real=True)
P = ((z + I) ** coeff).expand()
return (C.re(P) / C.im(P)).subs([(z, cot(terms))])
return cot(arg)
开发者ID:amitjamadagni,项目名称:sympy,代码行数:27,代码来源:trigonometric.py
示例9: _eval_rewrite_as_polynomial
def _eval_rewrite_as_polynomial(self, n, m, x):
k = C.Dummy("k")
kern = (
C.factorial(2 * n - 2 * k)
/ (2 ** n * C.factorial(n - k) * C.factorial(k) * C.factorial(n - 2 * k - m))
* (-1) ** k
* x ** (n - m - 2 * k)
)
return (1 - x ** 2) ** (m / 2) * C.Sum(kern, (k, 0, C.floor((n - m) * S.Half)))
开发者ID:B-Rich,项目名称:sympy,代码行数:9,代码来源:polynomials.py
示例10: _eval_expand_func
def _eval_expand_func(self, **hints):
n, m, theta, phi = self.args
rv = (
sqrt((2 * n + 1) / (4 * pi) * C.factorial(n - m) / C.factorial(n + m))
* C.exp(I * m * phi)
* assoc_legendre(n, m, C.cos(theta))
)
# We can do this because of the range of theta
return rv.subs(sqrt(-cos(theta) ** 2 + 1), sin(theta))
开发者ID:vramana,项目名称:sympy,代码行数:9,代码来源:spherical_harmonics.py
示例11: solve_ODE_second_order
def solve_ODE_second_order(eq, f):
"""
solves many kinds of second order odes, different methods are used
depending on the form of the given equation. So far the constants
coefficients case and a special case are implemented.
"""
x = f.args[0]
f = f.func
#constant coefficients case: af''(x)+bf'(x)+cf(x)=0
a = Wild('a', exclude=[x])
b = Wild('b', exclude=[x])
c = Wild('c', exclude=[x])
r = eq.match(a*f(x).diff(x,x) + c*f(x))
if r:
return Symbol("C1")*C.sin(sqrt(r[c]/r[a])*x)+Symbol("C2")*C.cos(sqrt(r[c]/r[a])*x)
r = eq.match(a*f(x).diff(x,x) + b*diff(f(x),x) + c*f(x))
if r:
r1 = solve(r[a]*x**2 + r[b]*x + r[c], x)
if r1[0].is_real:
if len(r1) == 1:
return (Symbol("C1") + Symbol("C2")*x)*exp(r1[0]*x)
else:
return Symbol("C1")*exp(r1[0]*x) + Symbol("C2")*exp(r1[1]*x)
else:
r2 = abs((r1[0] - r1[1])/(2*S.ImaginaryUnit))
return (Symbol("C2")*C.cos(r2*x) + Symbol("C1")*C.sin(r2*x))*exp((r1[0] + r1[1])*x/2)
#other cases of the second order odes will be implemented here
#special equations, that we know how to solve
a = Wild('a')
t = x*exp(f(x))
tt = a*t.diff(x, x)/t
r = eq.match(tt.expand())
if r:
return -solve_ODE_1(f(x), x)
t = x*exp(-f(x))
tt = a*t.diff(x, x)/t
r = eq.match(tt.expand())
if r:
#check, that we've rewritten the equation correctly:
#assert ( r[a]*t.diff(x,2)/t ) == eq.subs(f, t)
return solve_ODE_1(f(x), x)
neq = eq*exp(f(x))/exp(-f(x))
r = neq.match(tt.expand())
if r:
#check, that we've rewritten the equation correctly:
#assert ( t.diff(x,2)*r[a]/t ).expand() == eq
return solve_ODE_1(f(x), x)
raise NotImplementedError("solve_ODE_second_order: cannot solve " + str(eq))
开发者ID:cran,项目名称:rSymPy,代码行数:56,代码来源:solvers.py
示例12: eval
def eval(cls, r, k):
r, k = map(sympify, (r, k))
if k.is_Number:
if k is S.Zero:
return S.One
elif k.is_Integer:
if k.is_negative:
return S.Zero
else:
if r.is_Integer and r.is_nonnegative:
r, k = int(r), int(k)
if k > r:
return S.Zero
elif k > r // 2:
k = r - k
M, result = int(sqrt(r)), 1
for prime in sieve.primerange(2, r+1):
if prime > r - k:
result *= prime
elif prime > r // 2:
continue
elif prime > M:
if r % prime < k % prime:
result *= prime
else:
R, K = r, k
exp = a = 0
while R > 0:
a = int((R % prime) < (K % prime + a))
R, K = R // prime, K // prime
exp = a + exp
if exp > 0:
result *= prime**exp
return C.Integer(result)
else:
result = r - k + 1
for i in xrange(2, k+1):
result *= r-k+i
result /= i
return result
if k.is_integer:
if k.is_negative:
return S.Zero
else:
return C.gamma(r+1)/(C.gamma(r-k+1)*C.gamma(k+1))
开发者ID:bibile,项目名称:sympy,代码行数:55,代码来源:factorials.py
示例13: _eval_expand_complex
def _eval_expand_complex(self, deep=True, **hints):
if self.args[0].is_real:
if deep:
hints['complex'] = False
return self.expand(deep, **hints)
else:
return self
if deep:
re, im = self.args[0].expand(deep, **hints).as_real_imag()
else:
re, im = self.args[0].as_real_imag()
return sin(re)*C.cosh(im) + S.ImaginaryUnit*cos(re)*C.sinh(im)
开发者ID:Praveen-Ramanujam,项目名称:MobRAVE,代码行数:12,代码来源:trigonometric.py
示例14: taylor_term
def taylor_term(n, x, *previous_terms):
if n == 0:
return 1 / sympify(x)
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
B = C.bernoulli(n+1)
F = C.factorial(n+1)
return (-1)**((n+1)//2) * 2**(n+1) * B/F * x**n
开发者ID:jcreus,项目名称:sympy,代码行数:12,代码来源:trigonometric.py
示例15: as_real_imag
def as_real_imag(self, deep=True, **hints):
if self.args[0].is_real:
if deep:
return (self.expand(deep, **hints), S.Zero)
else:
return (self, S.Zero)
if deep:
re, im = self.args[0].expand(deep, **hints).as_real_imag()
else:
re, im = self.args[0].as_real_imag()
denom = sinh(re) ** 2 + C.sin(im) ** 2
return (sinh(re) * cosh(re) / denom, -C.sin(im) * C.cos(im) / denom)
开发者ID:nkinar,项目名称:sympy,代码行数:12,代码来源:hyperbolic.py
示例16: as_real_imag
def as_real_imag(self, deep=True, **hints):
if self.args[0].is_real:
if deep:
hints['complex'] = False
return (self.expand(deep, **hints), S.Zero)
else:
return (self, S.Zero)
if deep:
re, im = self.args[0].expand(deep, **hints).as_real_imag()
else:
re, im = self.args[0].as_real_imag()
return (cos(re)*C.cosh(im), -sin(re)*C.sinh(im))
开发者ID:jcreus,项目名称:sympy,代码行数:12,代码来源:trigonometric.py
示例17: eval
def eval(cls, n, m, theta, phi):
n, m, theta, phi = [sympify(x) for x in (n, m, theta, phi)]
# Handle negative index m and arguments theta, phi
if m.could_extract_minus_sign():
m = -m
return S.NegativeOne**m * C.exp(-2*I*m*phi) * Ynm(n, m, theta, phi)
if theta.could_extract_minus_sign():
theta = -theta
return Ynm(n, m, theta, phi)
if phi.could_extract_minus_sign():
phi = -phi
return C.exp(-2*I*m*phi) * Ynm(n, m, theta, phi)
开发者ID:Amo10,项目名称:Computer-Science-2014-2015,代码行数:13,代码来源:spherical_harmonics.py
示例18: _eval_expand_complex
def _eval_expand_complex(self, deep=True, **hints):
if self.args[0].is_real:
if deep:
return self.expand(deep, **hints)
else:
return self
if deep:
re, im = self.args[0].expand(deep, **hints).as_real_imag()
else:
re, im = self.args[0].as_real_imag()
denom = sinh(re)**2 + C.sin(im)**2
return (sinh(re)*cosh(re) - \
S.ImaginaryUnit*C.sin(im)*C.cos(im))/denom
开发者ID:tovrstra,项目名称:sympy,代码行数:13,代码来源:hyperbolic.py
示例19: as_real_imag
def as_real_imag(self, deep=True, **hints):
other = []
coeff = S(1)
for a in self.args:
if a.is_real:
coeff *= a
else:
other.append(a)
m = Mul(*other)
if hints.get('ignore') == m:
return None
else:
return (coeff*C.re(m), coeff*C.im(m))
开发者ID:FireJade,项目名称:sympy,代码行数:13,代码来源:mul.py
示例20: eval
def eval(cls, arg):
if arg.is_integer:
return arg
if arg.is_imaginary or (S.ImaginaryUnit*arg).is_real:
i = C.im(arg)
if not i.has(S.ImaginaryUnit):
return cls(i)*S.ImaginaryUnit
return cls(arg, evaluate=False)
v = cls._eval_number(arg)
if v is not None:
return v
# Integral, numerical, symbolic part
ipart = npart = spart = S.Zero
# Extract integral (or complex integral) terms
terms = Add.make_args(arg)
for t in terms:
if t.is_integer or (t.is_imaginary and C.im(t).is_integer):
ipart += t
elif t.has(C.Symbol):
spart += t
else:
npart += t
if not (npart or spart):
return ipart
# Evaluate npart numerically if independent of spart
if npart and (
not spart or
npart.is_real and (spart.is_imaginary or (S.ImaginaryUnit*spart).is_real) or
npart.is_imaginary and spart.is_real):
try:
re, im = get_integer_part(
npart, cls._dir, {}, return_ints=True)
ipart += C.Integer(re) + C.Integer(im)*S.ImaginaryUnit
npart = S.Zero
except (PrecisionExhausted, NotImplementedError):
pass
spart += npart
if not spart:
return ipart
elif spart.is_imaginary or (S.ImaginaryUnit*spart).is_real:
return ipart + cls(C.im(spart), evaluate=False)*S.ImaginaryUnit
else:
return ipart + cls(spart, evaluate=False)
开发者ID:Bercio,项目名称:sympy,代码行数:50,代码来源:integers.py
注:本文中的sympy.core.basic.C类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论