• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python backend.zeros函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sympy.core.backend.zeros函数的典型用法代码示例。如果您正苦于以下问题:Python zeros函数的具体用法?Python zeros怎么用?Python zeros使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了zeros函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_n_link_pendulum_on_cart_inputs

def test_n_link_pendulum_on_cart_inputs():
    l0, m0 = symbols("l0 m0")
    m1 = symbols("m1")
    g = symbols("g")
    q0, q1, F, T1 = dynamicsymbols("q0 q1 F T1")
    u0, u1 = dynamicsymbols("u0 u1")

    kane1 = models.n_link_pendulum_on_cart(1)
    massmatrix1 = Matrix([[m0 + m1, -l0*m1*cos(q1)],
                          [-l0*m1*cos(q1), l0**2*m1]])
    forcing1 = Matrix([[-l0*m1*u1**2*sin(q1) + F], [g*l0*m1*sin(q1)]])
    assert simplify(massmatrix1 - kane1.mass_matrix) == zeros(2)
    assert simplify(forcing1 - kane1.forcing) == Matrix([0, 0])

    kane2 = models.n_link_pendulum_on_cart(1, False)
    massmatrix2 = Matrix([[m0 + m1, -l0*m1*cos(q1)],
                          [-l0*m1*cos(q1), l0**2*m1]])
    forcing2 = Matrix([[-l0*m1*u1**2*sin(q1)], [g*l0*m1*sin(q1)]])
    assert simplify(massmatrix2 - kane2.mass_matrix) == zeros(2)
    assert simplify(forcing2 - kane2.forcing) == Matrix([0, 0])

    kane3 = models.n_link_pendulum_on_cart(1, False, True)
    massmatrix3 = Matrix([[m0 + m1, -l0*m1*cos(q1)],
                          [-l0*m1*cos(q1), l0**2*m1]])
    forcing3 = Matrix([[-l0*m1*u1**2*sin(q1)], [g*l0*m1*sin(q1) + T1]])
    assert simplify(massmatrix3 - kane3.mass_matrix) == zeros(2)
    assert simplify(forcing3 - kane3.forcing) == Matrix([0, 0])

    kane4 = models.n_link_pendulum_on_cart(1, True, False)
    massmatrix4 = Matrix([[m0 + m1, -l0*m1*cos(q1)],
                          [-l0*m1*cos(q1), l0**2*m1]])
    forcing4 = Matrix([[-l0*m1*u1**2*sin(q1) + F], [g*l0*m1*sin(q1)]])
    assert simplify(massmatrix4 - kane4.mass_matrix) == zeros(2)
    assert simplify(forcing4 - kane4.forcing) == Matrix([0, 0])
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:34,代码来源:test_models.py


示例2: _form_coefficient_matrices

    def _form_coefficient_matrices(self):
        """Form the coefficient matrices C_0, C_1, and C_2."""

        # Extract dimension variables
        l, m, n, o, s, k = self._dims
        # Build up the coefficient matrices C_0, C_1, and C_2
        # If there are configuration constraints (l > 0), form C_0 as normal.
        # If not, C_0 is I_(nxn). Note that this works even if n=0
        if l > 0:
            f_c_jac_q = self.f_c.jacobian(self.q)
            self._C_0 = (eye(n) - self._Pqd * (f_c_jac_q *
                    self._Pqd).LUsolve(f_c_jac_q)) * self._Pqi
        else:
            self._C_0 = eye(n)
        # If there are motion constraints (m > 0), form C_1 and C_2 as normal.
        # If not, C_1 is 0, and C_2 is I_(oxo). Note that this works even if
        # o = 0.
        if m > 0:
            f_v_jac_u = self.f_v.jacobian(self.u)
            temp = f_v_jac_u * self._Pud
            if n != 0:
                f_v_jac_q = self.f_v.jacobian(self.q)
                self._C_1 = -self._Pud * temp.LUsolve(f_v_jac_q)
            else:
                self._C_1 = zeros(o, n)
            self._C_2 = (eye(o) - self._Pud *
                    temp.LUsolve(f_v_jac_u)) * self._Pui
        else:
            self._C_1 = zeros(o, n)
            self._C_2 = eye(o)
开发者ID:Lenqth,项目名称:sympy,代码行数:30,代码来源:linearize.py


示例3: _form_permutation_matrices

    def _form_permutation_matrices(self):
        """Form the permutation matrices Pq and Pu."""

        # Extract dimension variables
        l, m, n, o, s, k = self._dims
        # Compute permutation matrices
        if n != 0:
            self._Pq = permutation_matrix(self.q, Matrix([self.q_i, self.q_d]))
            if l > 0:
                self._Pqi = self._Pq[:, :-l]
                self._Pqd = self._Pq[:, -l:]
            else:
                self._Pqi = self._Pq
                self._Pqd = Matrix()
        if o != 0:
            self._Pu = permutation_matrix(self.u, Matrix([self.u_i, self.u_d]))
            if m > 0:
                self._Pui = self._Pu[:, :-m]
                self._Pud = self._Pu[:, -m:]
            else:
                self._Pui = self._Pu
                self._Pud = Matrix()
        # Compute combination permutation matrix for computing A and B
        P_col1 = Matrix([self._Pqi, zeros(o + k, n - l)])
        P_col2 = Matrix([zeros(n, o - m), self._Pui, zeros(k, o - m)])
        if P_col1:
            if P_col2:
                self.perm_mat = P_col1.row_join(P_col2)
            else:
                self.perm_mat = P_col1
        else:
            self.perm_mat = P_col2
开发者ID:Lenqth,项目名称:sympy,代码行数:32,代码来源:linearize.py


示例4: mass_matrix_full

 def mass_matrix_full(self):
     """The mass matrix of the system, augmented by the kinematic
     differential equations."""
     if not self._fr or not self._frstar:
         raise ValueError('Need to compute Fr, Fr* first.')
     o = len(self.u)
     n = len(self.q)
     return ((self._k_kqdot).row_join(zeros(n, o))).col_join((zeros(o,
             n)).row_join(self.mass_matrix))
开发者ID:Lenqth,项目名称:sympy,代码行数:9,代码来源:kane.py


示例5: form_lagranges_equations

    def form_lagranges_equations(self):
        """Method to form Lagrange's equations of motion.

        Returns a vector of equations of motion using Lagrange's equations of
        the second kind.
        """

        qds = self._qdots
        qdd_zero = dict((i, 0) for i in self._qdoubledots)
        n = len(self.q)

        # Internally we represent the EOM as four terms:
        # EOM = term1 - term2 - term3 - term4 = 0

        # First term
        self._term1 = self._L.jacobian(qds)
        self._term1 = self._term1.diff(dynamicsymbols._t).T

        # Second term
        self._term2 = self._L.jacobian(self.q).T

        # Third term
        if self.coneqs:
            coneqs = self.coneqs
            m = len(coneqs)
            # Creating the multipliers
            self.lam_vec = Matrix(dynamicsymbols('lam1:' + str(m + 1)))
            self.lam_coeffs = -coneqs.jacobian(qds)
            self._term3 = self.lam_coeffs.T * self.lam_vec
            # Extracting the coeffecients of the qdds from the diff coneqs
            diffconeqs = coneqs.diff(dynamicsymbols._t)
            self._m_cd = diffconeqs.jacobian(self._qdoubledots)
            # The remaining terms i.e. the 'forcing' terms in diff coneqs
            self._f_cd = -diffconeqs.subs(qdd_zero)
        else:
            self._term3 = zeros(n, 1)

        # Fourth term
        if self.forcelist:
            N = self.inertial
            self._term4 = zeros(n, 1)
            for i, qd in enumerate(qds):
                flist = zip(*_f_list_parser(self.forcelist, N))
                self._term4[i] = sum(v.diff(qd, N) & f for (v, f) in flist)
        else:
            self._term4 = zeros(n, 1)

        # Form the dynamic mass and forcing matrices
        without_lam = self._term1 - self._term2 - self._term4
        self._m_d = without_lam.jacobian(self._qdoubledots)
        self._f_d = -without_lam.subs(qdd_zero)

        # Form the EOM
        self.eom = without_lam - self._term3
        return self.eom
开发者ID:abhi98khandelwal,项目名称:sympy,代码行数:55,代码来源:lagrange.py


示例6: mass_matrix_full

    def mass_matrix_full(self):
        """Augments the coefficients of qdots to the mass_matrix."""

        if self.eom is None:
            raise ValueError('Need to compute the equations of motion first')
        n = len(self.q)
        m = len(self.coneqs)
        row1 = eye(n).row_join(zeros(n, n + m))
        row2 = zeros(n, n).row_join(self.mass_matrix)
        if self.coneqs:
            row3 = zeros(m, n).row_join(self._m_cd).row_join(zeros(m, m))
            return row1.col_join(row2).col_join(row3)
        else:
            return row1.col_join(row2)
开发者ID:abhi98khandelwal,项目名称:sympy,代码行数:14,代码来源:lagrange.py


示例7: test_n_link_pendulum_on_cart_higher_order

def test_n_link_pendulum_on_cart_higher_order():
    l0, m0 = symbols("l0 m0")
    l1, m1 = symbols("l1 m1")
    m2 = symbols("m2")
    g = symbols("g")
    q0, q1, q2 = dynamicsymbols("q0 q1 q2")
    u0, u1, u2 = dynamicsymbols("u0 u1 u2")
    F, T1 = dynamicsymbols("F T1")

    kane1 = models.n_link_pendulum_on_cart(2)
    massmatrix1 = Matrix([[m0 + m1 + m2, -l0*m1*cos(q1) - l0*m2*cos(q1),
                           -l1*m2*cos(q2)],
                          [-l0*m1*cos(q1) - l0*m2*cos(q1), l0**2*m1 + l0**2*m2,
                           l0*l1*m2*(sin(q1)*sin(q2) + cos(q1)*cos(q2))],
                          [-l1*m2*cos(q2),
                           l0*l1*m2*(sin(q1)*sin(q2) + cos(q1)*cos(q2)),
                           l1**2*m2]])
    forcing1 = Matrix([[-l0*m1*u1**2*sin(q1) - l0*m2*u1**2*sin(q1) -
                        l1*m2*u2**2*sin(q2) + F],
                       [g*l0*m1*sin(q1) + g*l0*m2*sin(q1) -
                        l0*l1*m2*(sin(q1)*cos(q2) - sin(q2)*cos(q1))*u2**2],
                       [g*l1*m2*sin(q2) - l0*l1*m2*(-sin(q1)*cos(q2) +
                                                    sin(q2)*cos(q1))*u1**2]])
    assert simplify(massmatrix1 - kane1.mass_matrix) == zeros(3)
    assert simplify(forcing1 - kane1.forcing) == Matrix([0, 0, 0])
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:25,代码来源:test_models.py


示例8: test_one_dof

def test_one_dof():
    # This is for a 1 dof spring-mass-damper case.
    # It is described in more detail in the KanesMethod docstring.
    q, u = dynamicsymbols('q u')
    qd, ud = dynamicsymbols('q u', 1)
    m, c, k = symbols('m c k')
    N = ReferenceFrame('N')
    P = Point('P')
    P.set_vel(N, u * N.x)

    kd = [qd - u]
    FL = [(P, (-k * q - c * u) * N.x)]
    pa = Particle('pa', P, m)
    BL = [pa]

    KM = KanesMethod(N, [q], [u], kd)
    # The old input format raises a deprecation warning, so catch it here so
    # it doesn't cause py.test to fail.
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
        KM.kanes_equations(FL, BL)

    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    assert expand(rhs[0]) == expand(-(q * k + u * c) / m)

    assert simplify(KM.rhs() -
                    KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(2, 1)

    assert (KM.linearize(A_and_B=True, )[0] == Matrix([[0, 1], [-k/m, -c/m]]))
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:31,代码来源:test_kane.py


示例9: rhs

    def rhs(self, inv_method=None):
        """Returns the system's equations of motion in first order form. The
        output is the right hand side of::

           x' = |q'| =: f(q, u, r, p, t)
                |u'|

        The right hand side is what is needed by most numerical ODE
        integrators.

        Parameters
        ==========
        inv_method : str
            The specific sympy inverse matrix calculation method to use. For a
            list of valid methods, see
            :meth:`~sympy.matrices.matrices.MatrixBase.inv`

        """
        rhs = zeros(len(self.q) + len(self.u), 1)
        kdes = self.kindiffdict()
        for i, q_i in enumerate(self.q):
            rhs[i] = kdes[q_i.diff()]

        if inv_method is None:
            rhs[len(self.q):, 0] = self.mass_matrix.LUsolve(self.forcing)
        else:
            rhs[len(self.q):, 0] = (self.mass_matrix.inv(inv_method,
                                                         try_block_diag=True) *
                                    self.forcing)

        return rhs
开发者ID:Lenqth,项目名称:sympy,代码行数:31,代码来源:kane.py


示例10: permutation_matrix

def permutation_matrix(orig_vec, per_vec):
    """Compute the permutation matrix to change order of
    orig_vec into order of per_vec.

    Parameters
    ----------
    orig_vec : array_like
        Symbols in original ordering.
    per_vec : array_like
        Symbols in new ordering.

    Returns
    -------
    p_matrix : Matrix
        Permutation matrix such that orig_vec == (p_matrix * per_vec).
    """
    if not isinstance(orig_vec, (list, tuple)):
        orig_vec = flatten(orig_vec)
    if not isinstance(per_vec, (list, tuple)):
        per_vec = flatten(per_vec)
    if set(orig_vec) != set(per_vec):
        raise ValueError("orig_vec and per_vec must be the same length, " +
                "and contain the same symbols.")
    ind_list = [orig_vec.index(i) for i in per_vec]
    p_matrix = zeros(len(orig_vec))
    for i, j in enumerate(ind_list):
        p_matrix[i, j] = 1
    return p_matrix
开发者ID:Lenqth,项目名称:sympy,代码行数:28,代码来源:linearize.py


示例11: _form_fr

    def _form_fr(self, fl):
        """Form the generalized active force."""
        if fl != None and (len(fl) == 0 or not iterable(fl)):
            raise ValueError('Force pairs must be supplied in an '
                'non-empty iterable or None.')

        N = self._inertial
        # pull out relevant velocities for constructing partial velocities
        vel_list, f_list = _f_list_parser(fl, N)
        vel_list = [msubs(i, self._qdot_u_map) for i in vel_list]

        # Fill Fr with dot product of partial velocities and forces
        o = len(self.u)
        b = len(f_list)
        FR = zeros(o, 1)
        partials = partial_velocity(vel_list, self.u, N)
        for i in range(o):
            FR[i] = sum(partials[j][i] & f_list[j] for j in range(b))

        # In case there are dependent speeds
        if self._udep:
            p = o - len(self._udep)
            FRtilde = FR[:p, 0]
            FRold = FR[p:o, 0]
            FRtilde += self._Ars.T * FRold
            FR = FRtilde

        self._forcelist = fl
        self._fr = FR
        return FR
开发者ID:Lenqth,项目名称:sympy,代码行数:30,代码来源:kane.py


示例12: comb_implicit_mat

 def comb_implicit_mat(self):
     """Returns the matrix, M, corresponding to the equations of motion in
     implicit form (form [2]), M x' = F, where the kinematical equations are
     included"""
     if self._comb_implicit_mat is None:
         if self._dyn_implicit_mat is not None:
             num_kin_eqns = len(self._kin_explicit_rhs)
             num_dyn_eqns = len(self._dyn_implicit_rhs)
             zeros1 = zeros(num_kin_eqns, num_dyn_eqns)
             zeros2 = zeros(num_dyn_eqns, num_kin_eqns)
             inter1 = eye(num_kin_eqns).row_join(zeros1)
             inter2 = zeros2.row_join(self._dyn_implicit_mat)
             self._comb_implicit_mat = inter1.col_join(inter2)
             return self._comb_implicit_mat
         else:
             raise AttributeError("comb_implicit_mat is not specified for "
                                  "equations of motion form [1].")
     else:
         return self._comb_implicit_mat
开发者ID:alexako,项目名称:sympy,代码行数:19,代码来源:system.py


示例13: solve_multipliers

    def solve_multipliers(self, op_point=None, sol_type='dict'):
        """Solves for the values of the lagrange multipliers symbolically at
        the specified operating point

        Parameters
        ==========
        op_point : dict or iterable of dicts, optional
            Point at which to solve at. The operating point is specified as
            a dictionary or iterable of dictionaries of {symbol: value}. The
            value may be numeric or symbolic itself.

        sol_type : str, optional
            Solution return type. Valid options are:
            - 'dict': A dict of {symbol : value} (default)
            - 'Matrix': An ordered column matrix of the solution
        """

        # Determine number of multipliers
        k = len(self.lam_vec)
        if k == 0:
            raise ValueError("System has no lagrange multipliers to solve for.")
        # Compose dict of operating conditions
        if isinstance(op_point, dict):
            op_point_dict = op_point
        elif iterable(op_point):
            op_point_dict = {}
            for op in op_point:
                op_point_dict.update(op)
        elif op_point is None:
            op_point_dict = {}
        else:
            raise TypeError("op_point must be either a dictionary or an "
                            "iterable of dictionaries.")
        # Compose the system to be solved
        mass_matrix = self.mass_matrix.col_join((-self.lam_coeffs.row_join(
                zeros(k, k))))
        force_matrix = self.forcing.col_join(self._f_cd)
        # Sub in the operating point
        mass_matrix = msubs(mass_matrix, op_point_dict)
        force_matrix = msubs(force_matrix, op_point_dict)
        # Solve for the multipliers
        sol_list = mass_matrix.LUsolve(-force_matrix)[-k:]
        if sol_type == 'dict':
            return dict(zip(self.lam_vec, sol_list))
        elif sol_type == 'Matrix':
            return Matrix(sol_list)
        else:
            raise ValueError("Unknown sol_type {:}.".format(sol_type))
开发者ID:abhi98khandelwal,项目名称:sympy,代码行数:48,代码来源:lagrange.py


示例14: test_multi_mass_spring_damper_higher_order

def test_multi_mass_spring_damper_higher_order():
    c0, k0, m0 = symbols("c0 k0 m0")
    c1, k1, m1 = symbols("c1 k1 m1")
    c2, k2, m2 = symbols("c2 k2 m2")
    v0, x0 = dynamicsymbols("v0 x0")
    v1, x1 = dynamicsymbols("v1 x1")
    v2, x2 = dynamicsymbols("v2 x2")

    kane1 = models.multi_mass_spring_damper(3)
    massmatrix1 = Matrix([[m0 + m1 + m2, m1 + m2, m2],
                          [m1 + m2, m1 + m2, m2],
                          [m2, m2, m2]])
    forcing1 = Matrix([[-c0*v0 - k0*x0],
                       [-c1*v1 - k1*x1],
                       [-c2*v2 - k2*x2]])
    assert simplify(massmatrix1 - kane1.mass_matrix) == zeros(3)
    assert simplify(forcing1 - kane1.forcing) == Matrix([0, 0, 0])
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:17,代码来源:test_models.py


示例15: test_two_dof

def test_two_dof():
    # This is for a 2 d.o.f., 2 particle spring-mass-damper.
    # The first coordinate is the displacement of the first particle, and the
    # second is the relative displacement between the first and second
    # particles. Speeds are defined as the time derivatives of the particles.
    q1, q2, u1, u2 = dynamicsymbols('q1 q2 u1 u2')
    q1d, q2d, u1d, u2d = dynamicsymbols('q1 q2 u1 u2', 1)
    m, c1, c2, k1, k2 = symbols('m c1 c2 k1 k2')
    N = ReferenceFrame('N')
    P1 = Point('P1')
    P2 = Point('P2')
    P1.set_vel(N, u1 * N.x)
    P2.set_vel(N, (u1 + u2) * N.x)
    kd = [q1d - u1, q2d - u2]

    # Now we create the list of forces, then assign properties to each
    # particle, then create a list of all particles.
    FL = [(P1, (-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2) * N.x), (P2, (-k2 *
        q2 - c2 * u2) * N.x)]
    pa1 = Particle('pa1', P1, m)
    pa2 = Particle('pa2', P2, m)
    BL = [pa1, pa2]

    # Finally we create the KanesMethod object, specify the inertial frame,
    # pass relevant information, and form Fr & Fr*. Then we calculate the mass
    # matrix and forcing terms, and finally solve for the udots.
    KM = KanesMethod(N, q_ind=[q1, q2], u_ind=[u1, u2], kd_eqs=kd)
    # The old input format raises a deprecation warning, so catch it here so
    # it doesn't cause py.test to fail.
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
        KM.kanes_equations(FL, BL)
    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    assert expand(rhs[0]) == expand((-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2)/m)
    assert expand(rhs[1]) == expand((k1 * q1 + c1 * u1 - 2 * k2 * q2 - 2 *
                                    c2 * u2) / m)

    assert simplify(KM.rhs() -
                    KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(4, 1)
开发者ID:alexako,项目名称:sympy,代码行数:41,代码来源:test_kane.py


示例16: test_pend

def test_pend():
    q, u = dynamicsymbols('q u')
    qd, ud = dynamicsymbols('q u', 1)
    m, l, g = symbols('m l g')
    N = ReferenceFrame('N')
    P = Point('P')
    P.set_vel(N, -l * u * sin(q) * N.x + l * u * cos(q) * N.y)
    kd = [qd - u]

    FL = [(P, m * g * N.x)]
    pa = Particle('pa', P, m)
    BL = [pa]

    KM = KanesMethod(N, [q], [u], kd)
    with warns_deprecated_sympy():
        KM.kanes_equations(FL, BL)
    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    rhs.simplify()
    assert expand(rhs[0]) == expand(-g / l * sin(q))
    assert simplify(KM.rhs() -
                    KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(2, 1)
开发者ID:asmeurer,项目名称:sympy,代码行数:23,代码来源:test_kane.py


示例17: to_linearizer

    def to_linearizer(self):
        """Returns an instance of the Linearizer class, initiated from the
        data in the KanesMethod class. This may be more desirable than using
        the linearize class method, as the Linearizer object will allow more
        efficient recalculation (i.e. about varying operating points)."""

        if (self._fr is None) or (self._frstar is None):
            raise ValueError('Need to compute Fr, Fr* first.')

        # Get required equation components. The Kane's method class breaks
        # these into pieces. Need to reassemble
        f_c = self._f_h
        if self._f_nh and self._k_nh:
            f_v = self._f_nh + self._k_nh*Matrix(self.u)
        else:
            f_v = Matrix()
        if self._f_dnh and self._k_dnh:
            f_a = self._f_dnh + self._k_dnh*Matrix(self._udot)
        else:
            f_a = Matrix()
        # Dicts to sub to zero, for splitting up expressions
        u_zero = dict((i, 0) for i in self.u)
        ud_zero = dict((i, 0) for i in self._udot)
        qd_zero = dict((i, 0) for i in self._qdot)
        qd_u_zero = dict((i, 0) for i in Matrix([self._qdot, self.u]))
        # Break the kinematic differential eqs apart into f_0 and f_1
        f_0 = msubs(self._f_k, u_zero) + self._k_kqdot*Matrix(self._qdot)
        f_1 = msubs(self._f_k, qd_zero) + self._k_ku*Matrix(self.u)
        # Break the dynamic differential eqs into f_2 and f_3
        f_2 = msubs(self._frstar, qd_u_zero)
        f_3 = msubs(self._frstar, ud_zero) + self._fr
        f_4 = zeros(len(f_2), 1)

        # Get the required vector components
        q = self.q
        u = self.u
        if self._qdep:
            q_i = q[:-len(self._qdep)]
        else:
            q_i = q
        q_d = self._qdep
        if self._udep:
            u_i = u[:-len(self._udep)]
        else:
            u_i = u
        u_d = self._udep

        # Form dictionary to set auxiliary speeds & their derivatives to 0.
        uaux = self._uaux
        uauxdot = uaux.diff(dynamicsymbols._t)
        uaux_zero = dict((i, 0) for i in Matrix([uaux, uauxdot]))

        # Checking for dynamic symbols outside the dynamic differential
        # equations; throws error if there is.
        sym_list = set(Matrix([q, self._qdot, u, self._udot, uaux, uauxdot]))
        if any(find_dynamicsymbols(i, sym_list) for i in [self._k_kqdot,
                self._k_ku, self._f_k, self._k_dnh, self._f_dnh, self._k_d]):
            raise ValueError('Cannot have dynamicsymbols outside dynamic \
                             forcing vector.')

        # Find all other dynamic symbols, forming the forcing vector r.
        # Sort r to make it canonical.
        r = list(find_dynamicsymbols(msubs(self._f_d, uaux_zero), sym_list))
        r.sort(key=default_sort_key)

        # Check for any derivatives of variables in r that are also found in r.
        for i in r:
            if diff(i, dynamicsymbols._t) in r:
                raise ValueError('Cannot have derivatives of specified \
                                 quantities when linearizing forcing terms.')
        return Linearizer(f_0, f_1, f_2, f_3, f_4, f_c, f_v, f_a, q, u, q_i,
                q_d, u_i, u_d, r)
开发者ID:Lenqth,项目名称:sympy,代码行数:72,代码来源:kane.py


示例18: _form_frstar

    def _form_frstar(self, bl):
        """Form the generalized inertia force."""

        if not iterable(bl):
            raise TypeError('Bodies must be supplied in an iterable.')

        t = dynamicsymbols._t
        N = self._inertial
        # Dicts setting things to zero
        udot_zero = dict((i, 0) for i in self._udot)
        uaux_zero = dict((i, 0) for i in self._uaux)
        uauxdot = [diff(i, t) for i in self._uaux]
        uauxdot_zero = dict((i, 0) for i in uauxdot)
        # Dictionary of q' and q'' to u and u'
        q_ddot_u_map = dict((k.diff(t), v.diff(t)) for (k, v) in
                self._qdot_u_map.items())
        q_ddot_u_map.update(self._qdot_u_map)

        # Fill up the list of partials: format is a list with num elements
        # equal to number of entries in body list. Each of these elements is a
        # list - either of length 1 for the translational components of
        # particles or of length 2 for the translational and rotational
        # components of rigid bodies. The inner most list is the list of
        # partial velocities.
        def get_partial_velocity(body):
            if isinstance(body, RigidBody):
                vlist = [body.masscenter.vel(N), body.frame.ang_vel_in(N)]
            elif isinstance(body, Particle):
                vlist = [body.point.vel(N),]
            else:
                raise TypeError('The body list may only contain either '
                                'RigidBody or Particle as list elements.')
            v = [msubs(vel, self._qdot_u_map) for vel in vlist]
            return partial_velocity(v, self.u, N)
        partials = [get_partial_velocity(body) for body in bl]

        # Compute fr_star in two components:
        # fr_star = -(MM*u' + nonMM)
        o = len(self.u)
        MM = zeros(o, o)
        nonMM = zeros(o, 1)
        zero_uaux = lambda expr: msubs(expr, uaux_zero)
        zero_udot_uaux = lambda expr: msubs(msubs(expr, udot_zero), uaux_zero)
        for i, body in enumerate(bl):
            if isinstance(body, RigidBody):
                M = zero_uaux(body.mass)
                I = zero_uaux(body.central_inertia)
                vel = zero_uaux(body.masscenter.vel(N))
                omega = zero_uaux(body.frame.ang_vel_in(N))
                acc = zero_udot_uaux(body.masscenter.acc(N))
                inertial_force = (M.diff(t) * vel + M * acc)
                inertial_torque = zero_uaux((I.dt(body.frame) & omega) +
                    msubs(I & body.frame.ang_acc_in(N), udot_zero) +
                    (omega ^ (I & omega)))
                for j in range(o):
                    tmp_vel = zero_uaux(partials[i][0][j])
                    tmp_ang = zero_uaux(I & partials[i][1][j])
                    for k in range(o):
                        # translational
                        MM[j, k] += M * (tmp_vel & partials[i][0][k])
                        # rotational
                        MM[j, k] += (tmp_ang & partials[i][1][k])
                    nonMM[j] += inertial_force & partials[i][0][j]
                    nonMM[j] += inertial_torque & partials[i][1][j]
            else:
                M = zero_uaux(body.mass)
                vel = zero_uaux(body.point.vel(N))
                acc = zero_udot_uaux(body.point.acc(N))
                inertial_force = (M.diff(t) * vel + M * acc)
                for j in range(o):
                    temp = zero_uaux(partials[i][0][j])
                    for k in range(o):
                        MM[j, k] += M * (temp & partials[i][0][k])
                    nonMM[j] += inertial_force & partials[i][0][j]
        # Compose fr_star out of MM and nonMM
        MM = zero_uaux(msubs(MM, q_ddot_u_map))
        nonMM = msubs(msubs(nonMM, q_ddot_u_map),
                udot_zero, uauxdot_zero, uaux_zero)
        fr_star = -(MM * msubs(Matrix(self._udot), uauxdot_zero) + nonMM)

        # If there are dependent speeds, we need to find fr_star_tilde
        if self._udep:
            p = o - len(self._udep)
            fr_star_ind = fr_star[:p, 0]
            fr_star_dep = fr_star[p:o, 0]
            fr_star = fr_star_ind + (self._Ars.T * fr_star_dep)
            # Apply the same to MM
            MMi = MM[:p, :]
            MMd = MM[p:o, :]
            MM = MMi + (self._Ars.T * MMd)

        self._bodylist = bl
        self._frstar = fr_star
        self._k_d = MM
        self._f_d = -msubs(self._fr + self._frstar, udot_zero)
        return fr_star
开发者ID:Lenqth,项目名称:sympy,代码行数:96,代码来源:kane.py


示例19: test_non_central_inertia

def test_non_central_inertia():
    # This tests that the calculation of Fr* does not depend the point
    # about which the inertia of a rigid body is defined. This test solves
    # exercises 8.12, 8.17 from Kane 1985.

    # Declare symbols
    q1, q2, q3 = dynamicsymbols('q1:4')
    q1d, q2d, q3d = dynamicsymbols('q1:4', level=1)
    u1, u2, u3, u4, u5 = dynamicsymbols('u1:6')
    u_prime, R, M, g, e, f, theta = symbols('u\' R, M, g, e, f, theta')
    a, b, mA, mB, IA, J, K, t = symbols('a b mA mB IA J K t')
    Q1, Q2, Q3 = symbols('Q1, Q2 Q3')
    IA22, IA23, IA33 = symbols('IA22 IA23 IA33')

    # Reference Frames
    F = ReferenceFrame('F')
    P = F.orientnew('P', 'axis', [-theta, F.y])
    A = P.orientnew('A', 'axis', [q1, P.x])
    A.set_ang_vel(F, u1*A.x + u3*A.z)
    # define frames for wheels
    B = A.orientnew('B', 'axis', [q2, A.z])
    C = A.orientnew('C', 'axis', [q3, A.z])
    B.set_ang_vel(A, u4 * A.z)
    C.set_ang_vel(A, u5 * A.z)

    # define points D, S*, Q on frame A and their velocities
    pD = Point('D')
    pD.set_vel(A, 0)
    # u3 will not change v_D_F since wheels are still assumed to roll without slip.
    pD.set_vel(F, u2 * A.y)

    pS_star = pD.locatenew('S*', e*A.y)
    pQ = pD.locatenew('Q', f*A.y - R*A.x)
    for p in [pS_star, pQ]:
        p.v2pt_theory(pD, F, A)

    # masscenters of bodies A, B, C
    pA_star = pD.locatenew('A*', a*A.y)
    pB_star = pD.locatenew('B*', b*A.z)
    pC_star = pD.locatenew('C*', -b*A.z)
    for p in [pA_star, pB_star, pC_star]:
        p.v2pt_theory(pD, F, A)

    # points of B, C touching the plane P
    pB_hat = pB_star.locatenew('B^', -R*A.x)
    pC_hat = pC_star.locatenew('C^', -R*A.x)
    pB_hat.v2pt_theory(pB_star, F, B)
    pC_hat.v2pt_theory(pC_star, F, C)

    # the velocities of B^, C^ are zero since B, C are assumed to roll without slip
    kde = [q1d - u1, q2d - u4, q3d - u5]
    vc = [dot(p.vel(F), A.y) for p in [pB_hat, pC_hat]]

    # inertias of bodies A, B, C
    # IA22, IA23, IA33 are not specified in the problem statement, but are
    # necessary to define an inertia object. Although the values of
    # IA22, IA23, IA33 are not known in terms of the variables given in the
    # problem statement, they do not appear in the general inertia terms.
    inertia_A = inertia(A, IA, IA22, IA33, 0, IA23, 0)
    inertia_B = inertia(B, K, K, J)
    inertia_C = inertia(C, K, K, J)

    # define the rigid bodies A, B, C
    rbA = RigidBody('rbA', pA_star, A, mA, (inertia_A, pA_star))
    rbB = RigidBody('rbB', pB_star, B, mB, (inertia_B, pB_star))
    rbC = RigidBody('rbC', pC_star, C, mB, (inertia_C, pC_star))

    km = KanesMethod(F, q_ind=[q1, q2, q3], u_ind=[u1, u2], kd_eqs=kde,
                     u_dependent=[u4, u5], velocity_constraints=vc,
                     u_auxiliary=[u3])

    forces = [(pS_star, -M*g*F.x), (pQ, Q1*A.x + Q2*A.y + Q3*A.z)]
    bodies = [rbA, rbB, rbC]
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
        fr, fr_star = km.kanes_equations(forces, bodies)
    vc_map = solve(vc, [u4, u5])

    # KanesMethod returns the negative of Fr, Fr* as defined in Kane1985.
    fr_star_expected = Matrix([
            -(IA + 2*J*b**2/R**2 + 2*K +
              mA*a**2 + 2*mB*b**2) * u1.diff(t) - mA*a*u1*u2,
            -(mA + 2*mB +2*J/R**2) * u2.diff(t) + mA*a*u1**2,
            0])
    t = trigsimp(fr_star.subs(vc_map).subs({u3: 0})).doit().expand()
    assert ((fr_star_expected - t).expand() == zeros(3, 1))

    # define inertias of rigid bodies A, B, C about point D
    # I_S/O = I_S/S* + I_S*/O
    bodies2 = []
    for rb, I_star in zip([rbA, rbB, rbC], [inertia_A, inertia_B, inertia_C]):
        I = I_star + inertia_of_point_mass(rb.mass,
                                           rb.masscenter.pos_from(pD),
                                           rb.frame)
        bodies2.append(RigidBody('', rb.masscenter, rb.frame, rb.mass,
                                 (I, pD)))
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
        fr2, fr_star2 = km.kanes_equations(forces, bodies2)

#.........这里部分代码省略.........
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:101,代码来源:test_kane2.py


示例20: linearize

    def linearize(self, op_point=None, A_and_B=False, simplify=False):
        """Linearize the system about the operating point. Note that
        q_op, u_op, qd_op, ud_op must satisfy the equations of motion.
        These may be either symbolic or numeric.

        Parameters
        ----------
        op_point : dict or iterable of dicts, optional
            Dictionary or iterable of dictionaries containing the operating
            point conditions. These will be substituted in to the linearized
            system before the linearization is complete. Leave blank if you
            want a completely symbolic form. Note that any reduction in
            symbols (whether substituted for numbers or expressions with a
            common parameter) will result in faster runtime.

        A_and_B : bool, optional
            If A_and_B=False (default), (M, A, B) is returned for forming
            [M]*[q, u]^T = [A]*[q_ind, u_ind]^T + [B]r. If A_and_B=True,
            (A, B) is returned for forming dx = [A]x + [B]r, where
            x = [q_ind, u_ind]^T.

        simplify : bool, optional
            Determines if returned values are simplified before return.
            For large expressions this may be time consuming. Default is False.

        Potential Issues
        ----------------
            Note that the process of solving with A_and_B=True is
            computationally intensive if there are many symbolic parameters.
            For this reason, it may be more desirable to use the default
            A_and_B=False, returning M, A, and B. More values may then be
            substituted in to these matrices later on. The state space form can
            then be found as A = P.T*M.LUsolve(A), B = P.T*M.LUsolve(B), where
            P = Linearizer.perm_mat.
        """

        # Run the setup if needed:
        if not self._setup_done:
            self._setup()

        # Compose dict of operating conditions
        if isinstance(op_point, dict):
            op_point_dict = op_point
        elif isinstance(op_point, Iterable):
            op_point_dict = {}
            for op in op_point:
                op_point_dict.update(op)
        else:
            op_point_dict = {}

        # Extract dimension variables
        l, m, n, o, s, k = self._dims

        # Rename terms to shorten expressions
        M_qq = self._M_qq
        M_uqc = self._M_uqc
        M_uqd = self._M_uqd
        M_uuc = self._M_uuc
        M_uud = self._M_uud
        M_uld = self._M_uld
        A_qq = self._A_qq
        A_uqc = self._A_uqc
        A_uqd = self._A_uqd
        A_qu = self._A_qu
        A_uuc = self._A_uuc
        A_uud = self._A_uud
        B_u = self._B_u
        C_0 = self._C_0
        C_1 = self._C_1
        C_2 = self._C_2

        # Build up Mass Matrix
        #     |M_qq    0_nxo   0_nxk|
        # M = |M_uqc   M_uuc   0_mxk|
        #     |M_uqd   M_uud   M_uld|
        if o != 0:
            col2 = Matrix([zeros(n, o), M_uuc, M_uud])
        if k != 0:
            col3 = Matrix([zeros(n + m, k), M_uld])
        if n != 0:
            col1 = Matrix([M_qq, M_uqc, M_uqd])
            if o != 0 and k != 0:
                M = col1.row_join(col2).row_join(col3)
            elif o != 0:
                M = col1.row_join(col2)
            else:
                M = col1
        elif k != 0:
            M = col2.row_join(col3)
        else:
            M = col2
        M_eq = msubs(M, op_point_dict)

        # Build up state coefficient matrix A
        #     |(A_qq + A_qu*C_1)*C_0       A_qu*C_2|
        # A = |(A_uqc + A_uuc*C_1)*C_0    A_uuc*C_2|
        #     |(A_uqd + A_uud*C_1)*C_0    A_uud*C_2|
        # Col 1 is only defined if n != 0
        if n != 0:
            r1c1 = A_qq
#.........这里部分代码省略.........
开发者ID:Lenqth,项目名称:sympy,代码行数:101,代码来源:linearize.py



注:本文中的sympy.core.backend.zeros函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python basic._aresame函数代码示例发布时间:2022-05-27
下一篇:
Python backend.symbols函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap