本文整理汇总了Python中sympy.core.backend.zeros函数的典型用法代码示例。如果您正苦于以下问题:Python zeros函数的具体用法?Python zeros怎么用?Python zeros使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了zeros函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_n_link_pendulum_on_cart_inputs
def test_n_link_pendulum_on_cart_inputs():
l0, m0 = symbols("l0 m0")
m1 = symbols("m1")
g = symbols("g")
q0, q1, F, T1 = dynamicsymbols("q0 q1 F T1")
u0, u1 = dynamicsymbols("u0 u1")
kane1 = models.n_link_pendulum_on_cart(1)
massmatrix1 = Matrix([[m0 + m1, -l0*m1*cos(q1)],
[-l0*m1*cos(q1), l0**2*m1]])
forcing1 = Matrix([[-l0*m1*u1**2*sin(q1) + F], [g*l0*m1*sin(q1)]])
assert simplify(massmatrix1 - kane1.mass_matrix) == zeros(2)
assert simplify(forcing1 - kane1.forcing) == Matrix([0, 0])
kane2 = models.n_link_pendulum_on_cart(1, False)
massmatrix2 = Matrix([[m0 + m1, -l0*m1*cos(q1)],
[-l0*m1*cos(q1), l0**2*m1]])
forcing2 = Matrix([[-l0*m1*u1**2*sin(q1)], [g*l0*m1*sin(q1)]])
assert simplify(massmatrix2 - kane2.mass_matrix) == zeros(2)
assert simplify(forcing2 - kane2.forcing) == Matrix([0, 0])
kane3 = models.n_link_pendulum_on_cart(1, False, True)
massmatrix3 = Matrix([[m0 + m1, -l0*m1*cos(q1)],
[-l0*m1*cos(q1), l0**2*m1]])
forcing3 = Matrix([[-l0*m1*u1**2*sin(q1)], [g*l0*m1*sin(q1) + T1]])
assert simplify(massmatrix3 - kane3.mass_matrix) == zeros(2)
assert simplify(forcing3 - kane3.forcing) == Matrix([0, 0])
kane4 = models.n_link_pendulum_on_cart(1, True, False)
massmatrix4 = Matrix([[m0 + m1, -l0*m1*cos(q1)],
[-l0*m1*cos(q1), l0**2*m1]])
forcing4 = Matrix([[-l0*m1*u1**2*sin(q1) + F], [g*l0*m1*sin(q1)]])
assert simplify(massmatrix4 - kane4.mass_matrix) == zeros(2)
assert simplify(forcing4 - kane4.forcing) == Matrix([0, 0])
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:34,代码来源:test_models.py
示例2: _form_coefficient_matrices
def _form_coefficient_matrices(self):
"""Form the coefficient matrices C_0, C_1, and C_2."""
# Extract dimension variables
l, m, n, o, s, k = self._dims
# Build up the coefficient matrices C_0, C_1, and C_2
# If there are configuration constraints (l > 0), form C_0 as normal.
# If not, C_0 is I_(nxn). Note that this works even if n=0
if l > 0:
f_c_jac_q = self.f_c.jacobian(self.q)
self._C_0 = (eye(n) - self._Pqd * (f_c_jac_q *
self._Pqd).LUsolve(f_c_jac_q)) * self._Pqi
else:
self._C_0 = eye(n)
# If there are motion constraints (m > 0), form C_1 and C_2 as normal.
# If not, C_1 is 0, and C_2 is I_(oxo). Note that this works even if
# o = 0.
if m > 0:
f_v_jac_u = self.f_v.jacobian(self.u)
temp = f_v_jac_u * self._Pud
if n != 0:
f_v_jac_q = self.f_v.jacobian(self.q)
self._C_1 = -self._Pud * temp.LUsolve(f_v_jac_q)
else:
self._C_1 = zeros(o, n)
self._C_2 = (eye(o) - self._Pud *
temp.LUsolve(f_v_jac_u)) * self._Pui
else:
self._C_1 = zeros(o, n)
self._C_2 = eye(o)
开发者ID:Lenqth,项目名称:sympy,代码行数:30,代码来源:linearize.py
示例3: _form_permutation_matrices
def _form_permutation_matrices(self):
"""Form the permutation matrices Pq and Pu."""
# Extract dimension variables
l, m, n, o, s, k = self._dims
# Compute permutation matrices
if n != 0:
self._Pq = permutation_matrix(self.q, Matrix([self.q_i, self.q_d]))
if l > 0:
self._Pqi = self._Pq[:, :-l]
self._Pqd = self._Pq[:, -l:]
else:
self._Pqi = self._Pq
self._Pqd = Matrix()
if o != 0:
self._Pu = permutation_matrix(self.u, Matrix([self.u_i, self.u_d]))
if m > 0:
self._Pui = self._Pu[:, :-m]
self._Pud = self._Pu[:, -m:]
else:
self._Pui = self._Pu
self._Pud = Matrix()
# Compute combination permutation matrix for computing A and B
P_col1 = Matrix([self._Pqi, zeros(o + k, n - l)])
P_col2 = Matrix([zeros(n, o - m), self._Pui, zeros(k, o - m)])
if P_col1:
if P_col2:
self.perm_mat = P_col1.row_join(P_col2)
else:
self.perm_mat = P_col1
else:
self.perm_mat = P_col2
开发者ID:Lenqth,项目名称:sympy,代码行数:32,代码来源:linearize.py
示例4: mass_matrix_full
def mass_matrix_full(self):
"""The mass matrix of the system, augmented by the kinematic
differential equations."""
if not self._fr or not self._frstar:
raise ValueError('Need to compute Fr, Fr* first.')
o = len(self.u)
n = len(self.q)
return ((self._k_kqdot).row_join(zeros(n, o))).col_join((zeros(o,
n)).row_join(self.mass_matrix))
开发者ID:Lenqth,项目名称:sympy,代码行数:9,代码来源:kane.py
示例5: form_lagranges_equations
def form_lagranges_equations(self):
"""Method to form Lagrange's equations of motion.
Returns a vector of equations of motion using Lagrange's equations of
the second kind.
"""
qds = self._qdots
qdd_zero = dict((i, 0) for i in self._qdoubledots)
n = len(self.q)
# Internally we represent the EOM as four terms:
# EOM = term1 - term2 - term3 - term4 = 0
# First term
self._term1 = self._L.jacobian(qds)
self._term1 = self._term1.diff(dynamicsymbols._t).T
# Second term
self._term2 = self._L.jacobian(self.q).T
# Third term
if self.coneqs:
coneqs = self.coneqs
m = len(coneqs)
# Creating the multipliers
self.lam_vec = Matrix(dynamicsymbols('lam1:' + str(m + 1)))
self.lam_coeffs = -coneqs.jacobian(qds)
self._term3 = self.lam_coeffs.T * self.lam_vec
# Extracting the coeffecients of the qdds from the diff coneqs
diffconeqs = coneqs.diff(dynamicsymbols._t)
self._m_cd = diffconeqs.jacobian(self._qdoubledots)
# The remaining terms i.e. the 'forcing' terms in diff coneqs
self._f_cd = -diffconeqs.subs(qdd_zero)
else:
self._term3 = zeros(n, 1)
# Fourth term
if self.forcelist:
N = self.inertial
self._term4 = zeros(n, 1)
for i, qd in enumerate(qds):
flist = zip(*_f_list_parser(self.forcelist, N))
self._term4[i] = sum(v.diff(qd, N) & f for (v, f) in flist)
else:
self._term4 = zeros(n, 1)
# Form the dynamic mass and forcing matrices
without_lam = self._term1 - self._term2 - self._term4
self._m_d = without_lam.jacobian(self._qdoubledots)
self._f_d = -without_lam.subs(qdd_zero)
# Form the EOM
self.eom = without_lam - self._term3
return self.eom
开发者ID:abhi98khandelwal,项目名称:sympy,代码行数:55,代码来源:lagrange.py
示例6: mass_matrix_full
def mass_matrix_full(self):
"""Augments the coefficients of qdots to the mass_matrix."""
if self.eom is None:
raise ValueError('Need to compute the equations of motion first')
n = len(self.q)
m = len(self.coneqs)
row1 = eye(n).row_join(zeros(n, n + m))
row2 = zeros(n, n).row_join(self.mass_matrix)
if self.coneqs:
row3 = zeros(m, n).row_join(self._m_cd).row_join(zeros(m, m))
return row1.col_join(row2).col_join(row3)
else:
return row1.col_join(row2)
开发者ID:abhi98khandelwal,项目名称:sympy,代码行数:14,代码来源:lagrange.py
示例7: test_n_link_pendulum_on_cart_higher_order
def test_n_link_pendulum_on_cart_higher_order():
l0, m0 = symbols("l0 m0")
l1, m1 = symbols("l1 m1")
m2 = symbols("m2")
g = symbols("g")
q0, q1, q2 = dynamicsymbols("q0 q1 q2")
u0, u1, u2 = dynamicsymbols("u0 u1 u2")
F, T1 = dynamicsymbols("F T1")
kane1 = models.n_link_pendulum_on_cart(2)
massmatrix1 = Matrix([[m0 + m1 + m2, -l0*m1*cos(q1) - l0*m2*cos(q1),
-l1*m2*cos(q2)],
[-l0*m1*cos(q1) - l0*m2*cos(q1), l0**2*m1 + l0**2*m2,
l0*l1*m2*(sin(q1)*sin(q2) + cos(q1)*cos(q2))],
[-l1*m2*cos(q2),
l0*l1*m2*(sin(q1)*sin(q2) + cos(q1)*cos(q2)),
l1**2*m2]])
forcing1 = Matrix([[-l0*m1*u1**2*sin(q1) - l0*m2*u1**2*sin(q1) -
l1*m2*u2**2*sin(q2) + F],
[g*l0*m1*sin(q1) + g*l0*m2*sin(q1) -
l0*l1*m2*(sin(q1)*cos(q2) - sin(q2)*cos(q1))*u2**2],
[g*l1*m2*sin(q2) - l0*l1*m2*(-sin(q1)*cos(q2) +
sin(q2)*cos(q1))*u1**2]])
assert simplify(massmatrix1 - kane1.mass_matrix) == zeros(3)
assert simplify(forcing1 - kane1.forcing) == Matrix([0, 0, 0])
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:25,代码来源:test_models.py
示例8: test_one_dof
def test_one_dof():
# This is for a 1 dof spring-mass-damper case.
# It is described in more detail in the KanesMethod docstring.
q, u = dynamicsymbols('q u')
qd, ud = dynamicsymbols('q u', 1)
m, c, k = symbols('m c k')
N = ReferenceFrame('N')
P = Point('P')
P.set_vel(N, u * N.x)
kd = [qd - u]
FL = [(P, (-k * q - c * u) * N.x)]
pa = Particle('pa', P, m)
BL = [pa]
KM = KanesMethod(N, [q], [u], kd)
# The old input format raises a deprecation warning, so catch it here so
# it doesn't cause py.test to fail.
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
KM.kanes_equations(FL, BL)
MM = KM.mass_matrix
forcing = KM.forcing
rhs = MM.inv() * forcing
assert expand(rhs[0]) == expand(-(q * k + u * c) / m)
assert simplify(KM.rhs() -
KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(2, 1)
assert (KM.linearize(A_and_B=True, )[0] == Matrix([[0, 1], [-k/m, -c/m]]))
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:31,代码来源:test_kane.py
示例9: rhs
def rhs(self, inv_method=None):
"""Returns the system's equations of motion in first order form. The
output is the right hand side of::
x' = |q'| =: f(q, u, r, p, t)
|u'|
The right hand side is what is needed by most numerical ODE
integrators.
Parameters
==========
inv_method : str
The specific sympy inverse matrix calculation method to use. For a
list of valid methods, see
:meth:`~sympy.matrices.matrices.MatrixBase.inv`
"""
rhs = zeros(len(self.q) + len(self.u), 1)
kdes = self.kindiffdict()
for i, q_i in enumerate(self.q):
rhs[i] = kdes[q_i.diff()]
if inv_method is None:
rhs[len(self.q):, 0] = self.mass_matrix.LUsolve(self.forcing)
else:
rhs[len(self.q):, 0] = (self.mass_matrix.inv(inv_method,
try_block_diag=True) *
self.forcing)
return rhs
开发者ID:Lenqth,项目名称:sympy,代码行数:31,代码来源:kane.py
示例10: permutation_matrix
def permutation_matrix(orig_vec, per_vec):
"""Compute the permutation matrix to change order of
orig_vec into order of per_vec.
Parameters
----------
orig_vec : array_like
Symbols in original ordering.
per_vec : array_like
Symbols in new ordering.
Returns
-------
p_matrix : Matrix
Permutation matrix such that orig_vec == (p_matrix * per_vec).
"""
if not isinstance(orig_vec, (list, tuple)):
orig_vec = flatten(orig_vec)
if not isinstance(per_vec, (list, tuple)):
per_vec = flatten(per_vec)
if set(orig_vec) != set(per_vec):
raise ValueError("orig_vec and per_vec must be the same length, " +
"and contain the same symbols.")
ind_list = [orig_vec.index(i) for i in per_vec]
p_matrix = zeros(len(orig_vec))
for i, j in enumerate(ind_list):
p_matrix[i, j] = 1
return p_matrix
开发者ID:Lenqth,项目名称:sympy,代码行数:28,代码来源:linearize.py
示例11: _form_fr
def _form_fr(self, fl):
"""Form the generalized active force."""
if fl != None and (len(fl) == 0 or not iterable(fl)):
raise ValueError('Force pairs must be supplied in an '
'non-empty iterable or None.')
N = self._inertial
# pull out relevant velocities for constructing partial velocities
vel_list, f_list = _f_list_parser(fl, N)
vel_list = [msubs(i, self._qdot_u_map) for i in vel_list]
# Fill Fr with dot product of partial velocities and forces
o = len(self.u)
b = len(f_list)
FR = zeros(o, 1)
partials = partial_velocity(vel_list, self.u, N)
for i in range(o):
FR[i] = sum(partials[j][i] & f_list[j] for j in range(b))
# In case there are dependent speeds
if self._udep:
p = o - len(self._udep)
FRtilde = FR[:p, 0]
FRold = FR[p:o, 0]
FRtilde += self._Ars.T * FRold
FR = FRtilde
self._forcelist = fl
self._fr = FR
return FR
开发者ID:Lenqth,项目名称:sympy,代码行数:30,代码来源:kane.py
示例12: comb_implicit_mat
def comb_implicit_mat(self):
"""Returns the matrix, M, corresponding to the equations of motion in
implicit form (form [2]), M x' = F, where the kinematical equations are
included"""
if self._comb_implicit_mat is None:
if self._dyn_implicit_mat is not None:
num_kin_eqns = len(self._kin_explicit_rhs)
num_dyn_eqns = len(self._dyn_implicit_rhs)
zeros1 = zeros(num_kin_eqns, num_dyn_eqns)
zeros2 = zeros(num_dyn_eqns, num_kin_eqns)
inter1 = eye(num_kin_eqns).row_join(zeros1)
inter2 = zeros2.row_join(self._dyn_implicit_mat)
self._comb_implicit_mat = inter1.col_join(inter2)
return self._comb_implicit_mat
else:
raise AttributeError("comb_implicit_mat is not specified for "
"equations of motion form [1].")
else:
return self._comb_implicit_mat
开发者ID:alexako,项目名称:sympy,代码行数:19,代码来源:system.py
示例13: solve_multipliers
def solve_multipliers(self, op_point=None, sol_type='dict'):
"""Solves for the values of the lagrange multipliers symbolically at
the specified operating point
Parameters
==========
op_point : dict or iterable of dicts, optional
Point at which to solve at. The operating point is specified as
a dictionary or iterable of dictionaries of {symbol: value}. The
value may be numeric or symbolic itself.
sol_type : str, optional
Solution return type. Valid options are:
- 'dict': A dict of {symbol : value} (default)
- 'Matrix': An ordered column matrix of the solution
"""
# Determine number of multipliers
k = len(self.lam_vec)
if k == 0:
raise ValueError("System has no lagrange multipliers to solve for.")
# Compose dict of operating conditions
if isinstance(op_point, dict):
op_point_dict = op_point
elif iterable(op_point):
op_point_dict = {}
for op in op_point:
op_point_dict.update(op)
elif op_point is None:
op_point_dict = {}
else:
raise TypeError("op_point must be either a dictionary or an "
"iterable of dictionaries.")
# Compose the system to be solved
mass_matrix = self.mass_matrix.col_join((-self.lam_coeffs.row_join(
zeros(k, k))))
force_matrix = self.forcing.col_join(self._f_cd)
# Sub in the operating point
mass_matrix = msubs(mass_matrix, op_point_dict)
force_matrix = msubs(force_matrix, op_point_dict)
# Solve for the multipliers
sol_list = mass_matrix.LUsolve(-force_matrix)[-k:]
if sol_type == 'dict':
return dict(zip(self.lam_vec, sol_list))
elif sol_type == 'Matrix':
return Matrix(sol_list)
else:
raise ValueError("Unknown sol_type {:}.".format(sol_type))
开发者ID:abhi98khandelwal,项目名称:sympy,代码行数:48,代码来源:lagrange.py
示例14: test_multi_mass_spring_damper_higher_order
def test_multi_mass_spring_damper_higher_order():
c0, k0, m0 = symbols("c0 k0 m0")
c1, k1, m1 = symbols("c1 k1 m1")
c2, k2, m2 = symbols("c2 k2 m2")
v0, x0 = dynamicsymbols("v0 x0")
v1, x1 = dynamicsymbols("v1 x1")
v2, x2 = dynamicsymbols("v2 x2")
kane1 = models.multi_mass_spring_damper(3)
massmatrix1 = Matrix([[m0 + m1 + m2, m1 + m2, m2],
[m1 + m2, m1 + m2, m2],
[m2, m2, m2]])
forcing1 = Matrix([[-c0*v0 - k0*x0],
[-c1*v1 - k1*x1],
[-c2*v2 - k2*x2]])
assert simplify(massmatrix1 - kane1.mass_matrix) == zeros(3)
assert simplify(forcing1 - kane1.forcing) == Matrix([0, 0, 0])
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:17,代码来源:test_models.py
示例15: test_two_dof
def test_two_dof():
# This is for a 2 d.o.f., 2 particle spring-mass-damper.
# The first coordinate is the displacement of the first particle, and the
# second is the relative displacement between the first and second
# particles. Speeds are defined as the time derivatives of the particles.
q1, q2, u1, u2 = dynamicsymbols('q1 q2 u1 u2')
q1d, q2d, u1d, u2d = dynamicsymbols('q1 q2 u1 u2', 1)
m, c1, c2, k1, k2 = symbols('m c1 c2 k1 k2')
N = ReferenceFrame('N')
P1 = Point('P1')
P2 = Point('P2')
P1.set_vel(N, u1 * N.x)
P2.set_vel(N, (u1 + u2) * N.x)
kd = [q1d - u1, q2d - u2]
# Now we create the list of forces, then assign properties to each
# particle, then create a list of all particles.
FL = [(P1, (-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2) * N.x), (P2, (-k2 *
q2 - c2 * u2) * N.x)]
pa1 = Particle('pa1', P1, m)
pa2 = Particle('pa2', P2, m)
BL = [pa1, pa2]
# Finally we create the KanesMethod object, specify the inertial frame,
# pass relevant information, and form Fr & Fr*. Then we calculate the mass
# matrix and forcing terms, and finally solve for the udots.
KM = KanesMethod(N, q_ind=[q1, q2], u_ind=[u1, u2], kd_eqs=kd)
# The old input format raises a deprecation warning, so catch it here so
# it doesn't cause py.test to fail.
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
KM.kanes_equations(FL, BL)
MM = KM.mass_matrix
forcing = KM.forcing
rhs = MM.inv() * forcing
assert expand(rhs[0]) == expand((-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2)/m)
assert expand(rhs[1]) == expand((k1 * q1 + c1 * u1 - 2 * k2 * q2 - 2 *
c2 * u2) / m)
assert simplify(KM.rhs() -
KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(4, 1)
开发者ID:alexako,项目名称:sympy,代码行数:41,代码来源:test_kane.py
示例16: test_pend
def test_pend():
q, u = dynamicsymbols('q u')
qd, ud = dynamicsymbols('q u', 1)
m, l, g = symbols('m l g')
N = ReferenceFrame('N')
P = Point('P')
P.set_vel(N, -l * u * sin(q) * N.x + l * u * cos(q) * N.y)
kd = [qd - u]
FL = [(P, m * g * N.x)]
pa = Particle('pa', P, m)
BL = [pa]
KM = KanesMethod(N, [q], [u], kd)
with warns_deprecated_sympy():
KM.kanes_equations(FL, BL)
MM = KM.mass_matrix
forcing = KM.forcing
rhs = MM.inv() * forcing
rhs.simplify()
assert expand(rhs[0]) == expand(-g / l * sin(q))
assert simplify(KM.rhs() -
KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(2, 1)
开发者ID:asmeurer,项目名称:sympy,代码行数:23,代码来源:test_kane.py
示例17: to_linearizer
def to_linearizer(self):
"""Returns an instance of the Linearizer class, initiated from the
data in the KanesMethod class. This may be more desirable than using
the linearize class method, as the Linearizer object will allow more
efficient recalculation (i.e. about varying operating points)."""
if (self._fr is None) or (self._frstar is None):
raise ValueError('Need to compute Fr, Fr* first.')
# Get required equation components. The Kane's method class breaks
# these into pieces. Need to reassemble
f_c = self._f_h
if self._f_nh and self._k_nh:
f_v = self._f_nh + self._k_nh*Matrix(self.u)
else:
f_v = Matrix()
if self._f_dnh and self._k_dnh:
f_a = self._f_dnh + self._k_dnh*Matrix(self._udot)
else:
f_a = Matrix()
# Dicts to sub to zero, for splitting up expressions
u_zero = dict((i, 0) for i in self.u)
ud_zero = dict((i, 0) for i in self._udot)
qd_zero = dict((i, 0) for i in self._qdot)
qd_u_zero = dict((i, 0) for i in Matrix([self._qdot, self.u]))
# Break the kinematic differential eqs apart into f_0 and f_1
f_0 = msubs(self._f_k, u_zero) + self._k_kqdot*Matrix(self._qdot)
f_1 = msubs(self._f_k, qd_zero) + self._k_ku*Matrix(self.u)
# Break the dynamic differential eqs into f_2 and f_3
f_2 = msubs(self._frstar, qd_u_zero)
f_3 = msubs(self._frstar, ud_zero) + self._fr
f_4 = zeros(len(f_2), 1)
# Get the required vector components
q = self.q
u = self.u
if self._qdep:
q_i = q[:-len(self._qdep)]
else:
q_i = q
q_d = self._qdep
if self._udep:
u_i = u[:-len(self._udep)]
else:
u_i = u
u_d = self._udep
# Form dictionary to set auxiliary speeds & their derivatives to 0.
uaux = self._uaux
uauxdot = uaux.diff(dynamicsymbols._t)
uaux_zero = dict((i, 0) for i in Matrix([uaux, uauxdot]))
# Checking for dynamic symbols outside the dynamic differential
# equations; throws error if there is.
sym_list = set(Matrix([q, self._qdot, u, self._udot, uaux, uauxdot]))
if any(find_dynamicsymbols(i, sym_list) for i in [self._k_kqdot,
self._k_ku, self._f_k, self._k_dnh, self._f_dnh, self._k_d]):
raise ValueError('Cannot have dynamicsymbols outside dynamic \
forcing vector.')
# Find all other dynamic symbols, forming the forcing vector r.
# Sort r to make it canonical.
r = list(find_dynamicsymbols(msubs(self._f_d, uaux_zero), sym_list))
r.sort(key=default_sort_key)
# Check for any derivatives of variables in r that are also found in r.
for i in r:
if diff(i, dynamicsymbols._t) in r:
raise ValueError('Cannot have derivatives of specified \
quantities when linearizing forcing terms.')
return Linearizer(f_0, f_1, f_2, f_3, f_4, f_c, f_v, f_a, q, u, q_i,
q_d, u_i, u_d, r)
开发者ID:Lenqth,项目名称:sympy,代码行数:72,代码来源:kane.py
示例18: _form_frstar
def _form_frstar(self, bl):
"""Form the generalized inertia force."""
if not iterable(bl):
raise TypeError('Bodies must be supplied in an iterable.')
t = dynamicsymbols._t
N = self._inertial
# Dicts setting things to zero
udot_zero = dict((i, 0) for i in self._udot)
uaux_zero = dict((i, 0) for i in self._uaux)
uauxdot = [diff(i, t) for i in self._uaux]
uauxdot_zero = dict((i, 0) for i in uauxdot)
# Dictionary of q' and q'' to u and u'
q_ddot_u_map = dict((k.diff(t), v.diff(t)) for (k, v) in
self._qdot_u_map.items())
q_ddot_u_map.update(self._qdot_u_map)
# Fill up the list of partials: format is a list with num elements
# equal to number of entries in body list. Each of these elements is a
# list - either of length 1 for the translational components of
# particles or of length 2 for the translational and rotational
# components of rigid bodies. The inner most list is the list of
# partial velocities.
def get_partial_velocity(body):
if isinstance(body, RigidBody):
vlist = [body.masscenter.vel(N), body.frame.ang_vel_in(N)]
elif isinstance(body, Particle):
vlist = [body.point.vel(N),]
else:
raise TypeError('The body list may only contain either '
'RigidBody or Particle as list elements.')
v = [msubs(vel, self._qdot_u_map) for vel in vlist]
return partial_velocity(v, self.u, N)
partials = [get_partial_velocity(body) for body in bl]
# Compute fr_star in two components:
# fr_star = -(MM*u' + nonMM)
o = len(self.u)
MM = zeros(o, o)
nonMM = zeros(o, 1)
zero_uaux = lambda expr: msubs(expr, uaux_zero)
zero_udot_uaux = lambda expr: msubs(msubs(expr, udot_zero), uaux_zero)
for i, body in enumerate(bl):
if isinstance(body, RigidBody):
M = zero_uaux(body.mass)
I = zero_uaux(body.central_inertia)
vel = zero_uaux(body.masscenter.vel(N))
omega = zero_uaux(body.frame.ang_vel_in(N))
acc = zero_udot_uaux(body.masscenter.acc(N))
inertial_force = (M.diff(t) * vel + M * acc)
inertial_torque = zero_uaux((I.dt(body.frame) & omega) +
msubs(I & body.frame.ang_acc_in(N), udot_zero) +
(omega ^ (I & omega)))
for j in range(o):
tmp_vel = zero_uaux(partials[i][0][j])
tmp_ang = zero_uaux(I & partials[i][1][j])
for k in range(o):
# translational
MM[j, k] += M * (tmp_vel & partials[i][0][k])
# rotational
MM[j, k] += (tmp_ang & partials[i][1][k])
nonMM[j] += inertial_force & partials[i][0][j]
nonMM[j] += inertial_torque & partials[i][1][j]
else:
M = zero_uaux(body.mass)
vel = zero_uaux(body.point.vel(N))
acc = zero_udot_uaux(body.point.acc(N))
inertial_force = (M.diff(t) * vel + M * acc)
for j in range(o):
temp = zero_uaux(partials[i][0][j])
for k in range(o):
MM[j, k] += M * (temp & partials[i][0][k])
nonMM[j] += inertial_force & partials[i][0][j]
# Compose fr_star out of MM and nonMM
MM = zero_uaux(msubs(MM, q_ddot_u_map))
nonMM = msubs(msubs(nonMM, q_ddot_u_map),
udot_zero, uauxdot_zero, uaux_zero)
fr_star = -(MM * msubs(Matrix(self._udot), uauxdot_zero) + nonMM)
# If there are dependent speeds, we need to find fr_star_tilde
if self._udep:
p = o - len(self._udep)
fr_star_ind = fr_star[:p, 0]
fr_star_dep = fr_star[p:o, 0]
fr_star = fr_star_ind + (self._Ars.T * fr_star_dep)
# Apply the same to MM
MMi = MM[:p, :]
MMd = MM[p:o, :]
MM = MMi + (self._Ars.T * MMd)
self._bodylist = bl
self._frstar = fr_star
self._k_d = MM
self._f_d = -msubs(self._fr + self._frstar, udot_zero)
return fr_star
开发者ID:Lenqth,项目名称:sympy,代码行数:96,代码来源:kane.py
示例19: test_non_central_inertia
def test_non_central_inertia():
# This tests that the calculation of Fr* does not depend the point
# about which the inertia of a rigid body is defined. This test solves
# exercises 8.12, 8.17 from Kane 1985.
# Declare symbols
q1, q2, q3 = dynamicsymbols('q1:4')
q1d, q2d, q3d = dynamicsymbols('q1:4', level=1)
u1, u2, u3, u4, u5 = dynamicsymbols('u1:6')
u_prime, R, M, g, e, f, theta = symbols('u\' R, M, g, e, f, theta')
a, b, mA, mB, IA, J, K, t = symbols('a b mA mB IA J K t')
Q1, Q2, Q3 = symbols('Q1, Q2 Q3')
IA22, IA23, IA33 = symbols('IA22 IA23 IA33')
# Reference Frames
F = ReferenceFrame('F')
P = F.orientnew('P', 'axis', [-theta, F.y])
A = P.orientnew('A', 'axis', [q1, P.x])
A.set_ang_vel(F, u1*A.x + u3*A.z)
# define frames for wheels
B = A.orientnew('B', 'axis', [q2, A.z])
C = A.orientnew('C', 'axis', [q3, A.z])
B.set_ang_vel(A, u4 * A.z)
C.set_ang_vel(A, u5 * A.z)
# define points D, S*, Q on frame A and their velocities
pD = Point('D')
pD.set_vel(A, 0)
# u3 will not change v_D_F since wheels are still assumed to roll without slip.
pD.set_vel(F, u2 * A.y)
pS_star = pD.locatenew('S*', e*A.y)
pQ = pD.locatenew('Q', f*A.y - R*A.x)
for p in [pS_star, pQ]:
p.v2pt_theory(pD, F, A)
# masscenters of bodies A, B, C
pA_star = pD.locatenew('A*', a*A.y)
pB_star = pD.locatenew('B*', b*A.z)
pC_star = pD.locatenew('C*', -b*A.z)
for p in [pA_star, pB_star, pC_star]:
p.v2pt_theory(pD, F, A)
# points of B, C touching the plane P
pB_hat = pB_star.locatenew('B^', -R*A.x)
pC_hat = pC_star.locatenew('C^', -R*A.x)
pB_hat.v2pt_theory(pB_star, F, B)
pC_hat.v2pt_theory(pC_star, F, C)
# the velocities of B^, C^ are zero since B, C are assumed to roll without slip
kde = [q1d - u1, q2d - u4, q3d - u5]
vc = [dot(p.vel(F), A.y) for p in [pB_hat, pC_hat]]
# inertias of bodies A, B, C
# IA22, IA23, IA33 are not specified in the problem statement, but are
# necessary to define an inertia object. Although the values of
# IA22, IA23, IA33 are not known in terms of the variables given in the
# problem statement, they do not appear in the general inertia terms.
inertia_A = inertia(A, IA, IA22, IA33, 0, IA23, 0)
inertia_B = inertia(B, K, K, J)
inertia_C = inertia(C, K, K, J)
# define the rigid bodies A, B, C
rbA = RigidBody('rbA', pA_star, A, mA, (inertia_A, pA_star))
rbB = RigidBody('rbB', pB_star, B, mB, (inertia_B, pB_star))
rbC = RigidBody('rbC', pC_star, C, mB, (inertia_C, pC_star))
km = KanesMethod(F, q_ind=[q1, q2, q3], u_ind=[u1, u2], kd_eqs=kde,
u_dependent=[u4, u5], velocity_constraints=vc,
u_auxiliary=[u3])
forces = [(pS_star, -M*g*F.x), (pQ, Q1*A.x + Q2*A.y + Q3*A.z)]
bodies = [rbA, rbB, rbC]
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
fr, fr_star = km.kanes_equations(forces, bodies)
vc_map = solve(vc, [u4, u5])
# KanesMethod returns the negative of Fr, Fr* as defined in Kane1985.
fr_star_expected = Matrix([
-(IA + 2*J*b**2/R**2 + 2*K +
mA*a**2 + 2*mB*b**2) * u1.diff(t) - mA*a*u1*u2,
-(mA + 2*mB +2*J/R**2) * u2.diff(t) + mA*a*u1**2,
0])
t = trigsimp(fr_star.subs(vc_map).subs({u3: 0})).doit().expand()
assert ((fr_star_expected - t).expand() == zeros(3, 1))
# define inertias of rigid bodies A, B, C about point D
# I_S/O = I_S/S* + I_S*/O
bodies2 = []
for rb, I_star in zip([rbA, rbB, rbC], [inertia_A, inertia_B, inertia_C]):
I = I_star + inertia_of_point_mass(rb.mass,
rb.masscenter.pos_from(pD),
rb.frame)
bodies2.append(RigidBody('', rb.masscenter, rb.frame, rb.mass,
(I, pD)))
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
fr2, fr_star2 = km.kanes_equations(forces, bodies2)
#.........这里部分代码省略.........
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:101,代码来源:test_kane2.py
示例20: linearize
def linearize(self, op_point=None, A_and_B=False, simplify=False):
"""Linearize the system about the operating point. Note that
q_op, u_op, qd_op, ud_op must satisfy the equations of motion.
These may be either symbolic or numeric.
Parameters
----------
op_point : dict or iterable of dicts, optional
Dictionary or iterable of dictionaries containing the operating
point conditions. These will be substituted in to the linearized
system before the linearization is complete. Leave blank if you
want a completely symbolic form. Note that any reduction in
symbols (whether substituted for numbers or expressions with a
common parameter) will result in faster runtime.
A_and_B : bool, optional
If A_and_B=False (default), (M, A, B) is returned for forming
[M]*[q, u]^T = [A]*[q_ind, u_ind]^T + [B]r. If A_and_B=True,
(A, B) is returned for forming dx = [A]x + [B]r, where
x = [q_ind, u_ind]^T.
simplify : bool, optional
Determines if returned values are simplified before return.
For large expressions this may be time consuming. Default is False.
Potential Issues
----------------
Note that the process of solving with A_and_B=True is
computationally intensive if there are many symbolic parameters.
For this reason, it may be more desirable to use the default
A_and_B=False, returning M, A, and B. More values may then be
substituted in to these matrices later on. The state space form can
then be found as A = P.T*M.LUsolve(A), B = P.T*M.LUsolve(B), where
P = Linearizer.perm_mat.
"""
# Run the setup if needed:
if not self._setup_done:
self._setup()
# Compose dict of operating conditions
if isinstance(op_point, dict):
op_point_dict = op_point
elif isinstance(op_point, Iterable):
op_point_dict = {}
for op in op_point:
op_point_dict.update(op)
else:
op_point_dict = {}
# Extract dimension variables
l, m, n, o, s, k = self._dims
# Rename terms to shorten expressions
M_qq = self._M_qq
M_uqc = self._M_uqc
M_uqd = self._M_uqd
M_uuc = self._M_uuc
M_uud = self._M_uud
M_uld = self._M_uld
A_qq = self._A_qq
A_uqc = self._A_uqc
A_uqd = self._A_uqd
A_qu = self._A_qu
A_uuc = self._A_uuc
A_uud = self._A_uud
B_u = self._B_u
C_0 = self._C_0
C_1 = self._C_1
C_2 = self._C_2
# Build up Mass Matrix
# |M_qq 0_nxo 0_nxk|
# M = |M_uqc M_uuc 0_mxk|
# |M_uqd M_uud M_uld|
if o != 0:
col2 = Matrix([zeros(n, o), M_uuc, M_uud])
if k != 0:
col3 = Matrix([zeros(n + m, k), M_uld])
if n != 0:
col1 = Matrix([M_qq, M_uqc, M_uqd])
if o != 0 and k != 0:
M = col1.row_join(col2).row_join(col3)
elif o != 0:
M = col1.row_join(col2)
else:
M = col1
elif k != 0:
M = col2.row_join(col3)
else:
M = col2
M_eq = msubs(M, op_point_dict)
# Build up state coefficient matrix A
# |(A_qq + A_qu*C_1)*C_0 A_qu*C_2|
# A = |(A_uqc + A_uuc*C_1)*C_0 A_uuc*C_2|
# |(A_uqd + A_uud*C_1)*C_0 A_uud*C_2|
# Col 1 is only defined if n != 0
if n != 0:
r1c1 = A_qq
#.........这里部分代码省略.........
开发者ID:Lenqth,项目名称:sympy,代码行数:101,代码来源:linearize.py
注:本文中的sympy.core.backend.zeros函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论