本文整理汇总了Python中sympy.Rational类的典型用法代码示例。如果您正苦于以下问题:Python Rational类的具体用法?Python Rational怎么用?Python Rational使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Rational类的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_point3D
def test_point3D():
p1 = Point3D(x1, x2, x3)
p2 = Point3D(y1, y2, y3)
p3 = Point3D(0, 0, 0)
p4 = Point3D(1, 1, 1)
p5 = Point3D(0, 1, 2)
assert p1 in p1
assert p1 not in p2
assert p2.y == y2
assert (p3 + p4) == p4
assert (p2 - p1) == Point3D(y1 - x1, y2 - x2, y3 - x3)
assert p4*5 == Point3D(5, 5, 5)
assert -p2 == Point3D(-y1, -y2, -y3)
assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3))
assert Point3D.midpoint(p3, p4) == Point3D(half, half, half)
assert Point3D.midpoint(p1, p4) == Point3D(half + half*x1, half + half*x2,
half + half*x3)
assert Point3D.midpoint(p2, p2) == p2
assert p2.midpoint(p2) == p2
assert Point3D.distance(p3, p4) == sqrt(3)
assert Point3D.distance(p1, p1) == 0
assert Point3D.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2 + p2.z**2)
p1_1 = Point3D(x1, x1, x1)
p1_2 = Point3D(y2, y2, y2)
p1_3 = Point3D(x1 + 1, x1, x1)
assert Point3D.is_collinear(p3)
assert Point3D.is_collinear(p3, p4)
assert Point3D.is_collinear(p3, p4, p1_1, p1_2)
assert Point3D.is_collinear(p3, p4, p1_1, p1_3) is False
assert Point3D.is_collinear(p3, p3, p4, p5) is False
assert p3.intersection(Point3D(0, 0, 0)) == [p3]
assert p3.intersection(p4) == []
assert p4 * 5 == Point3D(5, 5, 5)
assert p4 / 5 == Point3D(0.2, 0.2, 0.2)
raises(ValueError, lambda: Point3D(0, 0, 0) + 10)
# Point differences should be simplified
assert Point3D(x*(x - 1), y, 2) - Point3D(x**2 - x, y + 1, 1) == \
Point3D(0, -1, 1)
a, b = Rational(1, 2), Rational(1, 3)
assert Point(a, b).evalf(2) == \
Point(a.n(2), b.n(2))
raises(ValueError, lambda: Point(1, 2) + 1)
# test transformations
p = Point3D(1, 1, 1)
assert p.scale(2, 3) == Point3D(2, 3, 1)
assert p.translate(1, 2) == Point3D(2, 3, 1)
assert p.translate(1) == Point3D(2, 1, 1)
assert p.translate(z=1) == Point3D(1, 1, 2)
assert p.translate(*p.args) == Point3D(2, 2, 2)
开发者ID:B-Rich,项目名称:sympy,代码行数:60,代码来源:test_geometry.py
示例2: test_composite_sums
def test_composite_sums():
f = Rational(1, 2)*(7 - 6*n + Rational(1, 7)*n**3)
s = summation(f, (n, a, b))
assert not isinstance(s, Sum)
A = 0
for i in range(-3, 5):
A += f.subs(n, i)
B = s.subs(a, -3).subs(b, 4)
assert A == B
开发者ID:Maihj,项目名称:sympy,代码行数:9,代码来源:test_sums_products.py
示例3: test_behavior2
def test_behavior2():
x = Symbol('x')
p = Wild('p')
e = Rational(6)
assert e.match(2*p) == {p: 3}
e = 3*x + 3 + 6/x
a = Wild('a', exclude = [x])
assert e.expand().match(a*x**2 + a*x + 2*a) == None
assert e.expand().match(p*x**2 + p*x + 2*p) == {p: 3/x}
开发者ID:cran,项目名称:rSymPy,代码行数:11,代码来源:test_match.py
示例4: test_symbol
def test_symbol():
x = Symbol('x')
a,b,c,p,q = map(Wild, 'abcpq')
e = x
assert e.match(x) == {}
assert e.match(a) == {a: x}
e = Rational(5)
assert e.match(c) == {c: 5}
assert e.match(e) == {}
assert e.match(e+1) == None
开发者ID:cran,项目名称:rSymPy,代码行数:12,代码来源:test_match.py
示例5: __new__
def __new__(cls, p, q=None, prec=15):
rat = Rational.__new__(cls, p, q)
if isinstance(rat, (Integer, Infinity)):
return rat
obj = Expr.__new__(cls)
obj.p = rat.p
obj.q = rat.q
obj.prec = prec
return obj
开发者ID:wxgeo,项目名称:geophar,代码行数:9,代码来源:custom_objects.py
示例6: test_pow_im
def test_pow_im():
for m in (-2, -1, 2):
for d in (3, 4, 5):
b = m * I
for i in range(1, 4 * d + 1):
e = Rational(i, d)
assert (b ** e - b.n() ** e.n()).n(2, chop=1e-10) == 0
e = Rational(7, 3)
assert (2 * x * I) ** e == 4 * 2 ** Rational(1, 3) * (I * x) ** e # same as Wolfram Alpha
im = symbols("im", imaginary=True)
assert (2 * im * I) ** e == 4 * 2 ** Rational(1, 3) * (I * im) ** e
args = [I, I, I, I, 2]
e = Rational(1, 3)
ans = 2 ** e
assert Mul(*args, **dict(evaluate=False)) ** e == ans
assert Mul(*args) ** e == ans
args = [I, I, I, 2]
e = Rational(1, 3)
ans = -(-1) ** Rational(5, 6) * 2 ** e
assert Mul(*args, **dict(evaluate=False)) ** e == ans
assert Mul(*args) ** e == ans
args = [I, I, 2]
e = Rational(1, 3)
ans = (-2) ** e
assert Mul(*args, **dict(evaluate=False)) ** e == ans
assert Mul(*args) ** e == ans
开发者ID:jenshnielsen,项目名称:sympy,代码行数:28,代码来源:test_arit.py
示例7: test_pow_im
def test_pow_im():
for m in (-2, -1, 2):
for d in (3, 4, 5):
b = m*I
for i in range(1, 4*d + 1):
e = Rational(i, d)
assert (b**e - b.n()**e.n()).n(2, chop=1e-10) == 0
e = Rational(7, 3)
assert (2*x*I)**e == 4*2**Rational(1, 3)*(I*x)**e # same as Wolfram Alpha
im = symbols('im', imaginary=True)
assert (2*im*I)**e == 4*2**Rational(1, 3)*(I*im)**e
args = [I, I, I, I, 2]
e = Rational(1, 3)
ans = 2**e
assert Mul(*args, evaluate=False)**e == ans
assert Mul(*args)**e == ans
args = [I, I, I, 2]
e = Rational(1, 3)
ans = 2**e*(-I)**e
assert Mul(*args, evaluate=False)**e == ans
assert Mul(*args)**e == ans
args.append(-3)
ans = (6*I)**e
assert Mul(*args, evaluate=False)**e == ans
assert Mul(*args)**e == ans
args.append(-1)
ans = (-6*I)**e
assert Mul(*args, evaluate=False)**e == ans
assert Mul(*args)**e == ans
args = [I, I, 2]
e = Rational(1, 3)
ans = (-2)**e
assert Mul(*args, evaluate=False)**e == ans
assert Mul(*args)**e == ans
args.append(-3)
ans = (6)**e
assert Mul(*args, evaluate=False)**e == ans
assert Mul(*args)**e == ans
args.append(-1)
ans = (-6)**e
assert Mul(*args, evaluate=False)**e == ans
assert Mul(*args)**e == ans
assert Mul(Pow(-1, Rational(3, 2), evaluate=False), I, I) == I
assert Mul(I*Pow(I, S.Half, evaluate=False)) == (-1)**Rational(3, 4)
开发者ID:cbm755,项目名称:sympy,代码行数:47,代码来源:test_arit.py
示例8: test_point
def test_point():
p1 = Point(x1, x2)
p2 = Point(y1, y2)
p3 = Point(0, 0)
p4 = Point(1, 1)
assert p1 in p1
assert p1 not in p2
assert p2.y == y2
assert (p3 + p4) == p4
assert (p2 - p1) == Point(y1 - x1, y2 - x2)
assert p4 * 5 == Point(5, 5)
assert -p2 == Point(-y1, -y2)
assert Point.midpoint(p3, p4) == Point(half, half)
assert Point.midpoint(p1, p4) == Point(half + half * x1, half + half * x2)
assert Point.midpoint(p2, p2) == p2
assert p2.midpoint(p2) == p2
assert Point.distance(p3, p4) == sqrt(2)
assert Point.distance(p1, p1) == 0
assert Point.distance(p3, p2) == sqrt(p2.x ** 2 + p2.y ** 2)
p1_1 = Point(x1, x1)
p1_2 = Point(y2, y2)
p1_3 = Point(x1 + 1, x1)
assert Point.is_collinear(p3)
assert Point.is_collinear(p3, p4)
assert Point.is_collinear(p3, p4, p1_1, p1_2)
assert Point.is_collinear(p3, p4, p1_1, p1_3) == False
assert p3.intersection(Point(0, 0)) == [p3]
assert p3.intersection(p4) == []
x_pos = Symbol("x", real=True, positive=True)
p2_1 = Point(x_pos, 0)
p2_2 = Point(0, x_pos)
p2_3 = Point(-x_pos, 0)
p2_4 = Point(0, -x_pos)
p2_5 = Point(x_pos, 5)
assert Point.is_concyclic(p2_1)
assert Point.is_concyclic(p2_1, p2_2)
assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4)
assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_5) == False
assert Point.is_concyclic(p4, p4 * 2, p4 * 3) == False
assert p4.scale(2, 3) == Point(2, 3)
assert p3.scale(2, 3) == p3
assert p4.rotate(pi, Point(0.5, 0.5)) == p3
assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2)
assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2)
assert p4 * 5 == Point(5, 5)
assert p4 / 5 == Point(0.2, 0.2)
raises(ValueError, lambda: Point(0, 0) + 10)
# Point differences should be simplified
assert Point(x * (x - 1), y) - Point(x ** 2 - x, y + 1) == Point(0, -1)
a, b = Rational(1, 2), Rational(1, 3)
assert Point(a, b).evalf(2) == Point(a.n(2), b.n(2))
raises(ValueError, lambda: Point(1, 2) + 1)
# test transformations
p = Point(1, 0)
assert p.rotate(pi / 2) == Point(0, 1)
assert p.rotate(pi / 2, p) == p
p = Point(1, 1)
assert p.scale(2, 3) == Point(2, 3)
assert p.translate(1, 2) == Point(2, 3)
assert p.translate(1) == Point(2, 1)
assert p.translate(y=1) == Point(1, 2)
assert p.translate(*p.args) == Point(2, 2)
开发者ID:flacjacket,项目名称:sympy,代码行数:75,代码来源:test_geometry.py
示例9: test_match_exclude
def test_match_exclude():
x = Symbol('x')
y = Symbol('y')
p = Wild("p")
q = Wild("q")
r = Wild("r")
e = Rational(6)
assert e.match(2*p) == {p: 3}
e = 3/(4*x + 5)
assert e.match(3/(p*x + q)) == {p: 4, q: 5}
e = 3/(4*x + 5)
assert e.match(p/(q*x + r)) == {p: 3, q: 4, r: 5}
e = 2/(x + 1)
assert e.match(p/(q*x + r)) == {p: 2, q: 1, r: 1}
e = 1/(x + 1)
assert e.match(p/(q*x + r)) == {p: 1, q: 1, r: 1}
e = 4*x + 5
assert e.match(p*x + q) == {p: 4, q: 5}
e = 4*x + 5*y + 6
assert e.match(p*x + q*y + r) == {p: 4, q: 5, r: 6}
a = Wild('a', exclude=[x])
e = 3*x
assert e.match(p*x) == {p: 3}
assert e.match(a*x) == {a: 3}
e = 3*x**2
assert e.match(p*x) == {p: 3*x}
assert e.match(a*x) is None
e = 3*x + 3 + 6/x
assert e.match(p*x**2 + p*x + 2*p) == {p: 3/x}
assert e.match(a*x**2 + a*x + 2*a) is None
开发者ID:acrlakshman,项目名称:sympy,代码行数:41,代码来源:test_match.py
示例10: test_point
def test_point():
x = Symbol('x', real=True)
y = Symbol('y', real=True)
x1 = Symbol('x1', real=True)
x2 = Symbol('x2', real=True)
y1 = Symbol('y1', real=True)
y2 = Symbol('y2', real=True)
half = Rational(1, 2)
p1 = Point(x1, x2)
p2 = Point(y1, y2)
p3 = Point(0, 0)
p4 = Point(1, 1)
p5 = Point(0, 1)
assert p1 in p1
assert p1 not in p2
assert p2.y == y2
assert (p3 + p4) == p4
assert (p2 - p1) == Point(y1 - x1, y2 - x2)
assert p4*5 == Point(5, 5)
assert -p2 == Point(-y1, -y2)
raises(ValueError, lambda: Point(3, I))
raises(ValueError, lambda: Point(2*I, I))
raises(ValueError, lambda: Point(3 + I, I))
assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3))
assert Point.midpoint(p3, p4) == Point(half, half)
assert Point.midpoint(p1, p4) == Point(half + half*x1, half + half*x2)
assert Point.midpoint(p2, p2) == p2
assert p2.midpoint(p2) == p2
assert Point.distance(p3, p4) == sqrt(2)
assert Point.distance(p1, p1) == 0
assert Point.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2)
assert Point.taxicab_distance(p4, p3) == 2
p1_1 = Point(x1, x1)
p1_2 = Point(y2, y2)
p1_3 = Point(x1 + 1, x1)
assert Point.is_collinear(p3)
assert Point.is_collinear(p3, p4)
assert Point.is_collinear(p3, p4, p1_1, p1_2)
assert Point.is_collinear(p3, p4, p1_1, p1_3) is False
assert Point.is_collinear(p3, p3, p4, p5) is False
line = Line(Point(1,0), slope = 1)
raises(TypeError, lambda: Point.is_collinear(line))
raises(TypeError, lambda: p1_1.is_collinear(line))
assert p3.intersection(Point(0, 0)) == [p3]
assert p3.intersection(p4) == []
assert p1.dot(p4) == x1 + x2
assert p3.dot(p4) == 0
assert p4.dot(p5) == 1
x_pos = Symbol('x', real=True, positive=True)
p2_1 = Point(x_pos, 0)
p2_2 = Point(0, x_pos)
p2_3 = Point(-x_pos, 0)
p2_4 = Point(0, -x_pos)
p2_5 = Point(x_pos, 5)
assert Point.is_concyclic(p2_1)
assert Point.is_concyclic(p2_1, p2_2)
assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4)
assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_5) is False
assert Point.is_concyclic(p4, p4 * 2, p4 * 3) is False
assert p4.scale(2, 3) == Point(2, 3)
assert p3.scale(2, 3) == p3
assert p4.rotate(pi, Point(0.5, 0.5)) == p3
assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2)
assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2)
assert p4 * 5 == Point(5, 5)
assert p4 / 5 == Point(0.2, 0.2)
raises(ValueError, lambda: Point(0, 0) + 10)
# Point differences should be simplified
assert Point(x*(x - 1), y) - Point(x**2 - x, y + 1) == Point(0, -1)
a, b = Rational(1, 2), Rational(1, 3)
assert Point(a, b).evalf(2) == \
Point(a.n(2), b.n(2))
raises(ValueError, lambda: Point(1, 2) + 1)
# test transformations
p = Point(1, 0)
assert p.rotate(pi/2) == Point(0, 1)
assert p.rotate(pi/2, p) == p
p = Point(1, 1)
assert p.scale(2, 3) == Point(2, 3)
assert p.translate(1, 2) == Point(2, 3)
assert p.translate(1) == Point(2, 1)
assert p.translate(y=1) == Point(1, 2)
assert p.translate(*p.args) == Point(2, 2)
# Check invalid input for transform
#.........这里部分代码省略.........
开发者ID:kpsychas,项目名称:sympy,代码行数:101,代码来源:test_point.py
示例11: test_point3D
def test_point3D():
x = Symbol('x', real=True)
y = Symbol('y', real=True)
x1 = Symbol('x1', real=True)
x2 = Symbol('x2', real=True)
x3 = Symbol('x3', real=True)
y1 = Symbol('y1', real=True)
y2 = Symbol('y2', real=True)
y3 = Symbol('y3', real=True)
half = Rational(1, 2)
p1 = Point3D(x1, x2, x3)
p2 = Point3D(y1, y2, y3)
p3 = Point3D(0, 0, 0)
p4 = Point3D(1, 1, 1)
p5 = Point3D(0, 1, 2)
assert p1 in p1
assert p1 not in p2
assert p2.y == y2
assert (p3 + p4) == p4
assert (p2 - p1) == Point3D(y1 - x1, y2 - x2, y3 - x3)
assert p4*5 == Point3D(5, 5, 5)
assert -p2 == Point3D(-y1, -y2, -y3)
assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3))
assert Point3D.midpoint(p3, p4) == Point3D(half, half, half)
assert Point3D.midpoint(p1, p4) == Point3D(half + half*x1, half + half*x2,
half + half*x3)
assert Point3D.midpoint(p2, p2) == p2
assert p2.midpoint(p2) == p2
assert Point3D.distance(p3, p4) == sqrt(3)
assert Point3D.distance(p1, p1) == 0
assert Point3D.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2 + p2.z**2)
p1_1 = Point3D(x1, x1, x1)
p1_2 = Point3D(y2, y2, y2)
p1_3 = Point3D(x1 + 1, x1, x1)
# according to the description in the docs, points are collinear
# if they like on a single line. Thus a single point should always
# be collinear
assert Point3D.are_collinear(p3)
assert Point3D.are_collinear(p3, p4)
assert Point3D.are_collinear(p3, p4, p1_1, p1_2)
assert Point3D.are_collinear(p3, p4, p1_1, p1_3) is False
assert Point3D.are_collinear(p3, p3, p4, p5) is False
assert p3.intersection(Point3D(0, 0, 0)) == [p3]
assert p3.intersection(p4) == []
assert p4 * 5 == Point3D(5, 5, 5)
assert p4 / 5 == Point3D(0.2, 0.2, 0.2)
raises(ValueError, lambda: Point3D(0, 0, 0) + 10)
# Point differences should be simplified
assert Point3D(x*(x - 1), y, 2) - Point3D(x**2 - x, y + 1, 1) == \
Point3D(0, -1, 1)
a, b = Rational(1, 2), Rational(1, 3)
assert Point(a, b).evalf(2) == \
Point(a.n(2), b.n(2))
raises(ValueError, lambda: Point(1, 2) + 1)
# test transformations
p = Point3D(1, 1, 1)
assert p.scale(2, 3) == Point3D(2, 3, 1)
assert p.translate(1, 2) == Point3D(2, 3, 1)
assert p.translate(1) == Point3D(2, 1, 1)
assert p.translate(z=1) == Point3D(1, 1, 2)
assert p.translate(*p.args) == Point3D(2, 2, 2)
# Test __new__
assert Point3D(Point3D(1, 2, 3), 4, 5, evaluate=False) == Point3D(1, 2, 3)
# Test length property returns correctly
assert p.length == 0
assert p1_1.length == 0
assert p1_2.length == 0
# Test are_colinear type error
raises(TypeError, lambda: Point3D.are_collinear(p, x))
# Test are_coplanar
planar2 = Point3D(1, -1, 1)
planar3 = Point3D(-1, 1, 1)
assert Point3D.are_coplanar(p, planar2, planar3) == True
assert Point3D.are_coplanar(p, planar2, planar3, p3) == False
raises(ValueError, lambda: Point3D.are_coplanar(p, planar2))
planar2 = Point3D(1, 1, 2)
planar3 = Point3D(1, 1, 3)
raises(ValueError, lambda: Point3D.are_coplanar(p, planar2, planar3))
# Test Intersection
assert planar2.intersection(Line3D(p, planar3)) == [Point3D(1, 1, 2)]
# Test Scale
assert planar2.scale(1, 1, 1) == planar2
#.........这里部分代码省略.........
开发者ID:kpsychas,项目名称:sympy,代码行数:101,代码来源:test_point.py
示例12: test_point3D
def test_point3D():
x = Symbol('x', real=True)
y = Symbol('y', real=True)
x1 = Symbol('x1', real=True)
x2 = Symbol('x2', real=True)
x3 = Symbol('x3', real=True)
y1 = Symbol('y1', real=True)
y2 = Symbol('y2', real=True)
y3 = Symbol('y3', real=True)
half = Rational(1, 2)
p1 = Point3D(x1, x2, x3)
p2 = Point3D(y1, y2, y3)
p3 = Point3D(0, 0, 0)
p4 = Point3D(1, 1, 1)
p5 = Point3D(0, 1, 2)
assert p1 in p1
assert p1 not in p2
assert p2.y == y2
assert (p3 + p4) == p4
assert (p2 - p1) == Point3D(y1 - x1, y2 - x2, y3 - x3)
assert p4*5 == Point3D(5, 5, 5)
assert -p2 == Point3D(-y1, -y2, -y3)
assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3))
assert Point3D.midpoint(p3, p4) == Point3D(half, half, half)
assert Point3D.midpoint(p1, p4) == Point3D(half + half*x1, half + half*x2,
half + half*x3)
assert Point3D.midpoint(p2, p2) == p2
assert p2.midpoint(p2) == p2
assert Point3D.distance(p3, p4) == sqrt(3)
assert Point3D.distance(p1, p1) == 0
assert Point3D.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2 + p2.z**2)
p1_1 = Point3D(x1, x1, x1)
p1_2 = Point3D(y2, y2, y2)
p1_3 = Point3D(x1 + 1, x1, x1)
Point3D.are_collinear(p3)
assert Point3D.are_collinear(p3, p4)
assert Point3D.are_collinear(p3, p4, p1_1, p1_2)
assert Point3D.are_collinear(p3, p4, p1_1, p1_3) is False
assert Point3D.are_collinear(p3, p3, p4, p5) is False
assert p3.intersection(Point3D(0, 0, 0)) == [p3]
assert p3.intersection(p4) == []
assert p4 * 5 == Point3D(5, 5, 5)
assert p4 / 5 == Point3D(0.2, 0.2, 0.2)
raises(ValueError, lambda: Point3D(0, 0, 0) + 10)
# Point differences should be simplified
assert Point3D(x*(x - 1), y, 2) - Point3D(x**2 - x, y + 1, 1) == \
Point3D(0, -1, 1)
a, b = Rational(1, 2), Rational(1, 3)
assert Point(a, b).evalf(2) == \
Point(a.n(2), b.n(2))
raises(ValueError, lambda: Point(1, 2) + 1)
# test transformations
p = Point3D(1, 1, 1)
assert p.scale(2, 3) == Point3D(2, 3, 1)
assert p.translate(1, 2) == Point3D(2, 3, 1)
assert p.translate(1) == Point3D(2, 1, 1)
assert p.translate(z=1) == Point3D(1, 1, 2)
assert p.translate(*p.args) == Point3D(2, 2, 2)
# Test __new__
assert Point3D(0.1, 0.2, evaluate=False, on_morph='ignore').args[0].is_Float
# Test length property returns correctly
assert p.length == 0
assert p1_1.length == 0
assert p1_2.length == 0
# Test are_colinear type error
raises(TypeError, lambda: Point3D.are_collinear(p, x))
# Test are_coplanar
assert Point.are_coplanar()
assert Point.are_coplanar((1, 2, 0), (1, 2, 0), (1, 3, 0))
assert Point.are_coplanar((1, 2, 0), (1, 2, 3))
with warnings.catch_warnings(record=True) as w:
raises(ValueError, lambda: Point2D.are_coplanar((1, 2), (1, 2, 3)))
assert Point3D.are_coplanar((1, 2, 0), (1, 2, 3))
assert Point.are_coplanar((0, 0, 0), (1, 1, 0), (1, 1, 1), (1, 2, 1)) is False
planar2 = Point3D(1, -1, 1)
planar3 = Point3D(-1, 1, 1)
assert Point3D.are_coplanar(p, planar2, planar3) == True
assert Point3D.are_coplanar(p, planar2, planar3, p3) == False
assert Point.are_coplanar(p, planar2)
planar2 = Point3D(1, 1, 2)
planar3 = Point3D(1, 1, 3)
assert Point3D.are_coplanar(p, planar2, planar3) # line, not plane
plane = Plane((1, 2, 1), (2, 1, 0), (3, 1, 2))
assert Point.are_coplanar(*[plane.projection(((-1)**i, i)) for i in range(4)])
#.........这里部分代码省略.........
开发者ID:chaffra,项目名称:sympy,代码行数:101,代码来源:test_point.py
示例13: binomial
LaguerreF = binomial(n + alpha, n - k) * (-x) ** k / factorial(k)
LaguerreP = Sum(LaguerreF, (k, 0, n))
for alphavar in range(4):
for nvar in range(4):
print alphavar, nvar, LaguerreP.subs(n, nvar).subs(alpha, alphavar).doit(), LaguerreP.subs(n, nvar).subs(
alpha, alphavar
).doit() == laguerre_poly(
nvar, x, alpha=alphavar
) # True
(LaguerreF.subs(n, n + 1) / LaguerreF).simplify() # (alpha + n + 1)/(-k + n + 1)
(LaguerreF.subs(k, k + 1) / LaguerreF).simplify() # x*(k - n)/((k + 1)*(alpha + k + 1))
LegendreF = Rat(1) / (Rat(2) ** n) * (binomial(n, k)) ** 2 * (x - Rat(1)) ** k * (x + Rat(1)) ** (n - k)
LegendreP = Sum(LegendreF, (k, 0, n))
for nvar in range(4):
legendre_poly(nvar, x) == LegendreP.subs(n, nvar).doit().expand() # True
(LegendreF.subs(n, n + 1) / LegendreF).simplify() # (n + 1)**2*(x + 1)/(2*(k - n - 1)**2)
(LegendreF.subs(k, k + 1) / LegendreF).simplify() # (k - n)**2*(x - 1)/((k + 1)**2*(x + 1))
JacobiF = (
Rat(1)
/ (Rat(2) ** n)
* binomial(n + alpha, n - k)
* binomial(n + beta, k)
* (x - Rat(1)) ** k
* (x + Rat(1)) ** (n - k)
开发者ID:ernestyalumni,项目名称:qSApoly,代码行数:30,代码来源:hypergeo.py
注:本文中的sympy.Rational类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论