本文整理汇总了Python中sympy.Function类的典型用法代码示例。如果您正苦于以下问题:Python Function类的具体用法?Python Function怎么用?Python Function使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Function类的18个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: idiff
def idiff(eq, y, x, n=1):
"""Return ``dy/dx`` assuming that ``eq == 0``.
Parameters
==========
y : the dependent variable or a list of dependent variables (with y first)
x : the variable that the derivative is being taken with respect to
n : the order of the derivative (default is 1)
Examples
========
>>> from sympy.abc import x, y, a
>>> from sympy.geometry.util import idiff
>>> circ = x**2 + y**2 - 4
>>> idiff(circ, y, x)
-x/y
>>> idiff(circ, y, x, 2).simplify()
-(x**2 + y**2)/y**3
Here, ``a`` is assumed to be independent of ``x``:
>>> idiff(x + a + y, y, x)
-1
Now the x-dependence of ``a`` is made explicit by listing ``a`` after
``y`` in a list.
>>> idiff(x + a + y, [y, a], x)
-Derivative(a, x) - 1
See Also
========
sympy.core.function.Derivative: represents unevaluated derivatives
sympy.core.function.diff: explicitly differentiates wrt symbols
"""
if is_sequence(y):
dep = set(y)
y = y[0]
elif isinstance(y, Symbol):
dep = set([y])
else:
raise ValueError("expecting x-dependent symbol(s) but got: %s" % y)
f = dict([(s, Function(
s.name)(x)) for s in eq.atoms(Symbol) if s != x and s in dep])
dydx = Function(y.name)(x).diff(x)
eq = eq.subs(f)
derivs = {}
for i in range(n):
yp = solve(eq.diff(x), dydx)[0].subs(derivs)
if i == n - 1:
return yp.subs([(v, k) for k, v in f.items()])
derivs[dydx] = yp
eq = dydx - yp
dydx = dydx.diff(x)
开发者ID:Krastanov,项目名称:sympy,代码行数:60,代码来源:util.py
示例2: _main
def _main(expr):
_new = []
for a in expr.args:
is_V = False
if isinstance(a, V):
is_V = True
a = a.expr
if a.is_Derivative:
variables = a.atoms()
func = a.expr
variables.add(func)
name = a.expr.__class__.__name__
if ',' in name:
a = Function('%s' % name +
''.join(map(str, a.variables)))(*variables)
else:
a = Function('%s' % name + ',' +
''.join(map(str, a.variables)))(*variables)
#TODO add more, maybe all that have args
elif a.is_Add or a.is_Mul or a.is_Pow:
a = _main(a)
if is_V:
a = V(a)
a.function = func
_new.append( a )
return expr.func(*tuple(_new))
开发者ID:saullocastro,项目名称:programming,代码行数:26,代码来源:voperator.py
示例3: test_latex_printer
def test_latex_printer():
r = Function('r')('t')
assert VectorLatexPrinter().doprint(r ** 2) == "r^{2}"
r2 = Function('r^2')('t')
assert VectorLatexPrinter().doprint(r2.diff()) == r'\dot{r^{2}}'
ra = Function('r__a')('t')
assert VectorLatexPrinter().doprint(ra.diff().diff()) == r'\ddot{r^{a}}'
开发者ID:asmeurer,项目名称:sympy,代码行数:7,代码来源:test_printing.py
示例4: test_noncommutative_issue_15131
def test_noncommutative_issue_15131():
x = Symbol('x', commutative=False)
t = Symbol('t', commutative=False)
fx = Function('Fx', commutative=False)(x)
ft = Function('Ft', commutative=False)(t)
A = Symbol('A', commutative=False)
eq = fx * A * ft
eqdt = eq.diff(t)
assert eqdt.args[-1] == ft.diff(t)
开发者ID:cklb,项目名称:sympy,代码行数:9,代码来源:test_function.py
示例5: test_issue_7687
def test_issue_7687():
from sympy.core.function import Function
from sympy.abc import x
f = Function('f')(x)
ff = Function('f')(x)
match_with_cache = ff.matches(f)
assert isinstance(f, type(ff))
clear_cache()
ff = Function('f')(x)
assert isinstance(f, type(ff))
assert match_with_cache == ff.matches(f)
开发者ID:Lenqth,项目名称:sympy,代码行数:11,代码来源:test_function.py
示例6: test_lambdify_Derivative_arg_issue_16468
def test_lambdify_Derivative_arg_issue_16468():
f = Function('f')(x)
fx = f.diff()
assert lambdify((f, fx), f + fx)(10, 5) == 15
assert eval(lambdastr((f, fx), f/fx))(10, 5) == 2
raises(SyntaxError, lambda:
eval(lambdastr((f, fx), f/fx, dummify=False)))
assert eval(lambdastr((f, fx), f/fx, dummify=True))(10, 5) == 2
assert eval(lambdastr((fx, f), f/fx, dummify=True))(10, 5) == S.Half
assert lambdify(fx, 1 + fx)(41) == 42
assert eval(lambdastr(fx, 1 + fx, dummify=True))(41) == 42
开发者ID:cmarqu,项目名称:sympy,代码行数:11,代码来源:test_lambdify.py
示例7: test_find_simple_recurrence
def test_find_simple_recurrence():
a = Function('a')
n = Symbol('n')
assert find_simple_recurrence([fibonacci(k) for k in range(12)]) == (
-a(n) - a(n + 1) + a(n + 2))
f = Function('a')
i = Symbol('n')
a = [1, 1, 1]
for k in range(15): a.append(5*a[-1]-3*a[-2]+8*a[-3])
assert find_simple_recurrence(a, A=f, N=i) == (
-8*f(i) + 3*f(i + 1) - 5*f(i + 2) + f(i + 3))
assert find_simple_recurrence([0, 2, 15, 74, 12, 3, 0,
1, 2, 85, 4, 5, 63]) == 0
开发者ID:A-turing-machine,项目名称:sympy,代码行数:14,代码来源:test_guess.py
示例8: test_simple
def test_simple():
sympy.var('x, y, r')
u = Function('u')(x, y)
w = Function('w')(x, y)
f = Function('f')(x, y)
e = (u.diff(x) + 1./2*w.diff(x,x)**2)*f.diff(x,y) \
+ w.diff(x,y)*f.diff(x,x)
return Vexpr(e, u, w)
开发者ID:saullocastro,项目名称:programming,代码行数:8,代码来源:voperator.py
示例9: test_solve_for_functions_derivatives
def test_solve_for_functions_derivatives():
t = Symbol('t')
x = Function('x')(t)
y = Function('y')(t)
a11,a12,a21,a22,b1,b2 = symbols('a11,a12,a21,a22,b1,b2')
soln = solve([a11*x + a12*y - b1, a21*x + a22*y - b2], x, y)
assert soln == {
x : (a22*b1 - a12*b2)/(a11*a22 - a12*a21),
y : (a11*b2 - a21*b1)/(a11*a22 - a12*a21),
}
assert solve(x - 1, x) == [1]
assert solve(3*x - 2, x) == [Rational(2, 3)]
soln = solve([a11*x.diff(t) + a12*y.diff(t) - b1, a21*x.diff(t) +
a22*y.diff(t) - b2], x.diff(t), y.diff(t))
assert soln == { y.diff(t) : (a11*b2 - a21*b1)/(a11*a22 - a12*a21),
x.diff(t) : (a22*b1 - a12*b2)/(a11*a22 - a12*a21) }
assert solve(x.diff(t)-1, x.diff(t)) == [1]
assert solve(3*x.diff(t)-2, x.diff(t)) == [Rational(2,3)]
eqns = set((3*x - 1, 2*y-4))
assert solve(eqns, set((x,y))) == { x : Rational(1, 3), y: 2 }
x = Symbol('x')
f = Function('f')
F = x**2 + f(x)**2 - 4*x - 1
assert solve(F.diff(x), diff(f(x), x)) == [-((x - 2)/f(x))]
# Mixed cased with a Symbol and a Function
x = Symbol('x')
y = Function('y')(t)
soln = solve([a11*x + a12*y.diff(t) - b1, a21*x +
a22*y.diff(t) - b2], x, y.diff(t))
assert soln == { y.diff(t) : (a11*b2 - a21*b1)/(a11*a22 - a12*a21),
x : (a22*b1 - a12*b2)/(a11*a22 - a12*a21) }
开发者ID:fxkr,项目名称:sympy,代码行数:38,代码来源:test_solvers.py
示例10: Function
Lagrange formalism
@author: Topher
"""
from __future__ import division
import sympy as sp
from sympy import sin,cos,Function
t = sp.Symbol('t')
params = sp.symbols('M , G , J , J_ball , R')
M , G , J , J_ball , R = params
# ball position r
r_t = Function('r')(t)
d_r_t = r_t.diff(t)
dd_r_t = r_t.diff(t,2)
# beam angle theta
theta_t = Function('theta')(t)
d_theta_t = theta_t.diff(t)
dd_theta_t = theta_t.diff(t,2)
# torque of the beam
tau = Function('tau')
# kinetic energy
T = ((M + J_ball/R**2)*d_r_t**2 + (J + M*r_t**2 + J_ball)*d_theta_t**2)/2
# potential energy
V = M*G*r_t*sin(theta_t)
开发者ID:cklb,项目名称:pymoskito,代码行数:30,代码来源:lagrange.py
示例11: _test_f
def _test_f():
# FIXME: we get infinite recursion here:
f = Function("f")
assert residue(f(x)/x**5, x, 0) == f.diff(x, 4)/24
开发者ID:AALEKH,项目名称:sympy,代码行数:4,代码来源:test_residues.py
示例12: open
import sys
import numpy as np
import sympy as sm
from sympy.solvers import solve
from sympy import Symbol, Function
import GUI as gui
import math
GCodeFile = open('C:\\3D Printer Calculus Project\\docs\\Sample.txt', 'w+')
x = Symbol('x')
f = Function('f')(x)
f = 0.5*x
xVals = []
yVals = []
zVals = []
SideArray = []
TotalVolume = 0
AxisChoice = gui.AxisRevScreen()
if AxisChoice == "X-axis":
Bounds = gui.BoundsScreen()
FirstBound = int(Bounds[0])
FinalBound = int(Bounds[1])
xInitialVal = FirstBound
yInitialVal = f.subs(x, FirstBound)
zInitialVal = 0
xVals.append(xInitialVal)
yVals.append(yInitialVal)
zVals.append(zInitialVal)
FinalBound1 = int(FinalBound * 10)
FirstBound1 = int(FirstBound * 10)
for t in range (FirstBound1, FinalBound1):
### This for loop generates the x coordinates ###
开发者ID:vojha2409,项目名称:CalcPrintProj,代码行数:31,代码来源:Calculations.py
示例13: symbols
from numpy import array, arange
from sympy import symbols, Function, S, solve, simplify, \
collect, Matrix, lambdify
from pydy import ReferenceFrame, cross, dot, dt, express, expression2vector, \
coeff
m, g, r1, r2, t = symbols("m, g r1 r2 t")
au1, au2, au3 = symbols("au1 au2 au3")
cf1, cf2, cf3 = symbols("cf1 cf2 cf3")
I, J = symbols("I J")
u3p, u4p, u5p = symbols("u3p u4p u5p")
q1 = Function("q1")(t)
q2 = Function("q2")(t)
q3 = Function("q3")(t)
q4 = Function("q4")(t)
q5 = Function("q5")(t)
def eval(a):
subs_dict = {
u3.diff(t): u3p,
u4.diff(t): u4p,
u5.diff(t): u5p,
r1:1,
r2:0,
m:1,
g:1,
I:1,
J:1,
}
开发者ID:certik,项目名称:pydy,代码行数:31,代码来源:spherical_pendulum.py
示例14: latex
print "r =", g2
#Propagation constants along the axes are related
g3 = alpha1**2 + beta1**2 + gamma1**2
# Simplifying
g3=g3.subs(sin(phi)**2, 1-cos(phi)**2).expand().simplify()
print r'%\alpha^{2} + \beta^{2} + \gamma^{2} = ', latex(g3)
x_hat = Matrix([
rho * sin(theta) * cos(phi),
rho * sin(theta) * sin(phi),
rho * cos(theta)])
psi = Function("psi")
psi =exp(I*omega*t) * exp(-I*g2)
print "\Psi =", latex(psi)
#Derivatives of the wave function of the coordinates
dpsidx=psi.diff(x)
dpsidx=dpsidx.subs(psi,'Psi').expand().simplify()
print "d \Psi / dx =", latex(dpsidx)
dpsidy=psi.diff(y)
dpsidy=dpsidy.subs(psi,'Psi').expand().simplify()
print "d \Psi / dy =", latex(dpsidy)
dpsidz=psi.diff(z)
dpsidz=dpsidz.subs(psi,'Psi').expand().simplify()
开发者ID:Ignat99,项目名称:physical-formulas,代码行数:31,代码来源:formulas1.py
示例15: test_cylinder_clpt
def test_cylinder_clpt():
'''Test case where the functional corresponds to the internal energy of
a cylinder using the Classical Laminated Plate Theory (CLPT)
'''
from sympy import Matrix
sympy.var('x, y, r')
sympy.var('B11, B12, B16, B21, B22, B26, B61, B62, B66')
sympy.var('D11, D12, D16, D21, D22, D26, D61, D62, D66')
# displacement field
u = Function('u')(x, y)
v = Function('v')(x, y)
w = Function('w')(x, y)
# stress function
f = Function('f')(x, y)
# laminate constitute matrices B represents B*, see Jones (1999)
B = Matrix([[B11, B12, B16],
[B21, B22, B26],
[B61, B62, B66]])
# D represents D*, see Jones (1999)
D = Matrix([[D11, D12, D16],
[D12, D22, D26],
[D16, D26, D66]])
# strain-diplacement equations
e = Matrix([[u.diff(x) + 1./2*w.diff(x)**2],
[v.diff(y) + 1./r*w + 1./2*w.diff(y)**2],
[u.diff(y) + v.diff(x) + w.diff(x)*w.diff(y)]])
k = Matrix([[ -w.diff(x, x)],
[ -w.diff(y, y)],
[-2*w.diff(x, y)]])
# representing the internal forces using the stress function
N = Matrix([[ f.diff(y, y)],
[ f.diff(x, x)],
[ -f.diff(x, y)]])
functional = N.T*V(e) - N.T*B*V(k) + k.T*D.T*V(k)
return Vexpr(functional, u, v, w)
开发者ID:saullocastro,项目名称:programming,代码行数:38,代码来源:voperator.py
示例16: tan
ICD11 ICD22 ICD33 ICD13 IEF11 IEF22 IEF33 IEF13 IF22 g')
# Declare coordinates and their time derivatives
q, qd = N.declare_coords('q', 11)
# Declare speeds and their time derivatives
u, ud = N.declare_speeds('u', 6)
# Unpack the lists
rr, rrt, rf, rft, lr, ls, lf, l1, l2, l3, l4, mcd, mef, IC22, ICD11, ICD22,\
ICD33, ICD13, IEF11, IEF22, IEF33, IEF13, IF22, g = params
q1, q2, q3, q4, q5, q6, q7, q8, q9, q10, q11 = q
q1d, q2d, q3d, q4d, q5d, q6d, q7d, q8d, q9d, q10d, q11d = qd
u1, u2, u3, u4, u5, u6 = u
u1d, u2d, u3d, u4d, u5d, u6d = ud
tan_lean = {sin(q2)/cos(q2): tan(q2)}
# Create variables for to act as place holders in the vector from FO to FN
g31 = Function('g31')(t)
g33 = Function('g33')(t)
g31_s, g33_s = symbols('g31 g33')
g31d_s, g33d_s = symbols('g31d g33d')
"""
# Some simplifying symbols / trig expressions
s1, s2, s3, s4, s5, s6, c1, c2, c3, c4, c5, c6, t2 = symbols('s1 \
s2 s3 s4 s5 s6 c1 c2 c3 c4 c5 c6 t2')
symbol_subs_dict = {sin(q1): s1,
cos(q1): c1,
tan(q2): t2,
cos(q2): c2,
sin(q2): s2,
cos(q3): c3,
开发者ID:certik,项目名称:pydy,代码行数:31,代码来源:bicycle.py
示例17: var
var("x y")
d_u = Symbol("D_u")
d_v = Symbol("D_v")
sigma = Symbol("SIGMA")
lam = Symbol("LAMBDA")
kappa = Symbol("KAPPA")
k = Symbol("K")
def eq1(u, v, f):
return -d_u*d_u*(u.diff(x, 2) + u.diff(y, 2)) - f(u) + sigma*v
def eq2(u, v):
return -d_v*d_v*(v.diff(x, 2) + v.diff(y, 2)) - u + v
u = Function("u")
v = Function("v")
print "Reaction-Diffusion Equations:"
def f(u):
return lam*u-u**3-kappa
pprint(eq1(u(x, y), v(x, y), f))
pprint(eq2(u(x, y), v(x, y)))
print "\nSolution:"
u_hat = 1 - (exp(k*x)+exp(-k*x)) / (exp(k)+exp(-k))
pprint(Eq(Function("u_hat")(x), u_hat))
#test the Boundary Conditions:
assert u_hat.subs(x, -1) == 0
assert u_hat.subs(x, 1) == 0
开发者ID:B-Rich,项目名称:hermes-legacy,代码行数:29,代码来源:generate_equation_data.py
示例18: symbols
from sympy import Function, Symbol, symbols, Derivative, preview, simplify, collect, Wild
from sympy import diff, ln, sin, pprint, sqrt, latex, Integral
import sympy as sym
x, y, z, t = symbols('x y z t')
f = Function('f')
F = Function('F')(x, y, z)
g = Function('g', real=True)(ln(F))
result = diff(sin(x), x)
print(result)
print(f(x * x).diff(x))
print(g.diff(x))
aaa = g.diff(x, 2)
# aaa._args[1] * aaa._args[0]
# init_printing()
pprint(Integral(sqrt(1 / x), x), use_unicode=True)
print(latex(Integral(sqrt(1 / x), x)))
print("\n\n")
pprint(g.diff((x, 1), (y, 0)), use_unicode=True)
# pprint(g.diff((x, 2),(y, 2)), use_unicode=True)
pprint(sym.diff(sym.tan(x), x))
pprint(sym.diff(g, x))
print("xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx")
from sympy import Derivative as D, collect, Function
开发者ID:CFD-GO,项目名称:TCLB_tools,代码行数:31,代码来源:experiments_derivatives.py
注:本文中的sympy.Function类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论