• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python sympy.trigsimp函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sympy.trigsimp函数的典型用法代码示例。如果您正苦于以下问题:Python trigsimp函数的具体用法?Python trigsimp怎么用?Python trigsimp使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了trigsimp函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_quaternion_conversions

def test_quaternion_conversions():
    q1 = Quaternion(1, 2, 3, 4)

    assert q1.to_axis_angle() == ((2 * sqrt(29)/29,
                                   3 * sqrt(29)/29,
                                   4 * sqrt(29)/29),
                                   2 * acos(sqrt(30)/30))

    assert q1.to_rotation_matrix() == Matrix([[-S(2)/3, S(2)/15, S(11)/15],
                                     [S(2)/3, -S(1)/3, S(14)/15],
                                     [S(1)/3, S(14)/15, S(2)/15]])

    assert q1.to_rotation_matrix((1, 1, 1)) == Matrix([[-S(2)/3, S(2)/15, S(11)/15, S(4)/5],
                                                  [S(2)/3, -S(1)/3, S(14)/15, -S(4)/15],
                                                  [S(1)/3, S(14)/15, S(2)/15, -S(2)/5],
                                                  [S(0), S(0), S(0), S(1)]])

    theta = symbols("theta", real=True)
    q2 = Quaternion(cos(theta/2), 0, 0, sin(theta/2))

    assert trigsimp(q2.to_rotation_matrix()) == Matrix([
                                               [cos(theta), -sin(theta), 0],
                                               [sin(theta),  cos(theta), 0],
                                               [0,           0,          1]])

    assert q2.to_axis_angle() == ((0, 0, sin(theta/2)/Abs(sin(theta/2))),
                                   2*acos(cos(theta/2)))

    assert trigsimp(q2.to_rotation_matrix((1, 1, 1))) == Matrix([
               [cos(theta), -sin(theta), 0, sin(theta) - cos(theta) + 1],
               [sin(theta),  cos(theta), 0, -sin(theta) - cos(theta) + 1],
               [0,           0,          1,  0],
               [0,           0,          0,  1]])
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:33,代码来源:test_quaternion.py


示例2: _solve_type_2

def _solve_type_2(symo, X, Y, Z, th):
    """Solution for the equation:
    X*S + Y*C = Z
    """
    symo.write_line("# X*sin({0}) + Y*cos({0}) = Z".format(th))
    X = symo.replace(trigsimp(X), 'X', th)
    Y = symo.replace(trigsimp(Y), 'Y', th)
    Z = symo.replace(trigsimp(Z), 'Z', th)
    YPS = var('YPS'+str(th))
    if X == tools.ZERO and Y != tools.ZERO:
        C = symo.replace(Z/Y, 'C', th)
        symo.add_to_dict(YPS, (tools.ONE, - tools.ONE))
        symo.add_to_dict(th, atan2(YPS*sqrt(1-C**2), C))
    elif X != tools.ZERO and Y == tools.ZERO:
        S = symo.replace(Z/X, 'S', th)
        symo.add_to_dict(YPS, (tools.ONE, - tools.ONE))
        symo.add_to_dict(th, atan2(S, YPS*sqrt(1-S**2)))
    elif Z == tools.ZERO:
        symo.add_to_dict(YPS, (tools.ONE, tools.ZERO))
        symo.add_to_dict(th, atan2(-Y, X) + YPS*pi)
    else:
        B = symo.replace(X**2 + Y**2, 'B', th)
        D = symo.replace(B - Z**2, 'D', th)
        symo.add_to_dict(YPS, (tools.ONE, - tools.ONE))
        S = symo.replace((X*Z + YPS * Y * sqrt(D))/B, 'S', th)
        C = symo.replace((Y*Z - YPS * X * sqrt(D))/B, 'C', th)
        symo.add_to_dict(th, atan2(S, C))
开发者ID:symoro,项目名称:symoro-draw,代码行数:27,代码来源:invgeom.py


示例3: test_trigsimp_groebner

def test_trigsimp_groebner():
    from sympy.simplify.trigsimp import trigsimp_groebner

    c = cos(x)
    s = sin(x)
    ex = (4*s*c + 12*s + 5*c**3 + 21*c**2 + 23*c + 15)/(
        -s*c**2 + 2*s*c + 15*s + 7*c**3 + 31*c**2 + 37*c + 21)
    resnum = (5*s - 5*c + 1)
    resdenom = (8*s - 6*c)
    results = [resnum/resdenom, (-resnum)/(-resdenom)]
    assert trigsimp_groebner(ex) in results
    assert trigsimp_groebner(s/c, hints=[tan]) == tan(x)
    assert trigsimp_groebner(c*s) == c*s
    assert trigsimp((-s + 1)/c + c/(-s + 1),
                    method='groebner') == 2/c
    assert trigsimp((-s + 1)/c + c/(-s + 1),
                    method='groebner', polynomial=True) == 2/c

    # Test quick=False works
    assert trigsimp_groebner(ex, hints=[2]) in results

    # test "I"
    assert trigsimp_groebner(sin(I*x)/cos(I*x), hints=[tanh]) == I*tanh(x)

    # test hyperbolic / sums
    assert trigsimp_groebner((tanh(x)+tanh(y))/(1+tanh(x)*tanh(y)),
                             hints=[(tanh, x, y)]) == tanh(x + y)
开发者ID:baoqchau,项目名称:sympy,代码行数:27,代码来源:test_trigsimp.py


示例4: test_issue_15129_trigsimp_methods

def test_issue_15129_trigsimp_methods():
    t1 = Matrix([sin(Rational(1, 50)), cos(Rational(1, 50)), 0])
    t2 = Matrix([sin(Rational(1, 25)), cos(Rational(1, 25)), 0])
    t3 = Matrix([cos(Rational(1, 25)), sin(Rational(1, 25)), 0])
    r1 = t1.dot(t2)
    r2 = t1.dot(t3)
    assert trigsimp(r1) == cos(S(1)/50)
    assert trigsimp(r2) == sin(S(3)/50)
开发者ID:asmeurer,项目名称:sympy,代码行数:8,代码来源:test_trigsimp.py


示例5: test_trigsimp2

def test_trigsimp2():
    x, y = symbols('x,y')
    assert trigsimp(cos(x)**2*sin(y)**2 + cos(x)**2*cos(y)**2 + sin(x)**2,
            recursive=True) == 1
    assert trigsimp(sin(x)**2*sin(y)**2 + sin(x)**2*cos(y)**2 + cos(x)**2,
            recursive=True) == 1
    assert trigsimp(
        Subs(x, x, sin(y)**2 + cos(y)**2)) == Subs(x, x, 1)
开发者ID:baoqchau,项目名称:sympy,代码行数:8,代码来源:test_trigsimp.py


示例6: test_issue_4661

def test_issue_4661():
    a, x, y = symbols('a x y')
    eq = -4*sin(x)**4 + 4*cos(x)**4 - 8*cos(x)**2
    assert trigsimp(eq) == -4
    n = sin(x)**6 + 4*sin(x)**4*cos(x)**2 + 5*sin(x)**2*cos(x)**4 + 2*cos(x)**6
    d = -sin(x)**2 - 2*cos(x)**2
    assert simplify(n/d) == -1
    assert trigsimp(-2*cos(x)**2 + cos(x)**4 - sin(x)**4) == -1
    eq = (- sin(x)**3/4)*cos(x) + (cos(x)**3/4)*sin(x) - sin(2*x)*cos(2*x)/8
    assert trigsimp(eq) == 0
开发者ID:baoqchau,项目名称:sympy,代码行数:10,代码来源:test_trigsimp.py


示例7: test_transformation

    def test_transformation(self):

        theta = sympy.Symbol("theta")
        trans = matrices.TTransX(theta)
        trans_1 = matrices.TTransX(-theta)
        self.assertEqual(sympy.trigsimp(trans.m * trans_1.m), sympy.Matrix.eye(4))

        rot = matrices.TRotX(theta)
        rot_1 = matrices.TRotX(-theta)
        self.assertEqual(sympy.trigsimp(rot.m * rot_1.m), sympy.Matrix.eye(4))
开发者ID:rlarrouq,项目名称:uerobotics,代码行数:10,代码来源:test_matrices.py


示例8: _w_diff_dcm

 def _w_diff_dcm(self, otherframe):
     """Angular velocity from time differentiating the DCM. """
     from sympy.physics.vector.functions import dynamicsymbols
     dcm2diff = self.dcm(otherframe)
     diffed = dcm2diff.diff(dynamicsymbols._t)
     angvelmat = diffed * dcm2diff.T
     w1 = trigsimp(expand(angvelmat[7]), recursive=True)
     w2 = trigsimp(expand(angvelmat[2]), recursive=True)
     w3 = trigsimp(expand(angvelmat[3]), recursive=True)
     return -Vector([(Matrix([w1, w2, w3]), self)])
开发者ID:jbm950,项目名称:sympy,代码行数:10,代码来源:frame.py


示例9: solve_orientation

def solve_orientation(robo, symo, pieper_joints):
    """
    Function that solves the orientation equation for the four spherical cases.

    Parameters:
    ===========
    1) pieper_joints: Joints that form the spherical wrist
    """
    m = pieper_joints[1]        # Center of the spherical joint
    [S,N,A] = [0,1,2]           # Book convention indexes
    [x,y,z] = [0,1,2]           # Book convention indexes

    t1 = dgm(robo, symo, m-2, 0, fast_form=True, trig_subs=True)
    t2 = dgm(robo, symo, 6, m+1, fast_form=True, trig_subs=True)

    Am2A0 = Matrix([ t1[:3,:3] ])
    A6Am1 = Matrix([ t2[:3,:3] ])

    A0 = T_GENERAL[:3,:3]

    SNA = _rot(axis=x, th=-robo.alpha[m-1])*Am2A0*A0*A6Am1
    SNA = symo.replace(trigsimp(SNA), 'SNA')

    # calculate theta(m-1) (i)
    # eq 1.68
    eq_type = 3
    offset = robo.gamma[robo.ant[m-1]]
    robo.r[m-1] = robo.r[m-1] + robo.b[robo.ant[m-1]]
    coef = [-SNA[y,A]*sin(robo.alpha[m]) , SNA[x,A]*sin(robo.alpha[m]) , SNA[z,A]*cos(robo.alpha[m])-cos(robo.alpha[m+1])]
    _equation_solve(symo, coef, eq_type, robo.theta[m-1], offset)

    # calculate theta(m) (j)
    # eq 1.72
    S1N1A1 = _rot(axis=x, th=-robo.alpha[m])*_rot(axis=z, th=-robo.theta[m-1])*SNA
    eq_type = 4
    offset = robo.gamma[robo.ant[m]]
    robo.r[m] = robo.r[m] + robo.b[robo.ant[m]]
    symo.write_line("\r\n\r\n")
    B1 = symo.replace(trigsimp(-S1N1A1[x,A]), 'B1', robo.theta[m])
    B2 = symo.replace(trigsimp(S1N1A1[y,A]), 'B2', robo.theta[m])
    coef = [0, sin(robo.alpha[m+1]), B1, sin(robo.alpha[m+1]), 0, B2]
    _equation_solve(symo, coef, eq_type, robo.theta[m], offset)

    # calculate theta(m+1) (k)
    # eq 1.73
    eq_type = 4
    offset = robo.gamma[robo.ant[m+1]]
    robo.r[m+1] = robo.r[m+1] + robo.b[robo.ant[m+1]]
    symo.write_line("\r\n\r\n")
    B1 = symo.replace(trigsimp(-S1N1A1[z,S]), 'B1', robo.theta[m+1])
    B2 = symo.replace(trigsimp(-S1N1A1[z,N]), 'B2', robo.theta[m+1])
    coef = [0, sin(robo.alpha[m+1]), B1, sin(robo.alpha[m+1]), 0, B2]
    _equation_solve(symo, coef, eq_type, robo.theta[m+1], offset)

    return
开发者ID:ELZo3,项目名称:symoro,代码行数:55,代码来源:invdata.py


示例10: _w_diff_dcm

 def _w_diff_dcm(self, otherframe):
     """Angular velocity from time differentiating the DCM. """
     from sympy.physics.vector.functions import dynamicsymbols
     dcm2diff = self.dcm(otherframe)
     diffed = dcm2diff.diff(dynamicsymbols._t)
     # angvelmat = diffed * dcm2diff.T
     # This one seems to produce the correct result when I checked using Autolev.
     angvelmat = dcm2diff*diffed.T
     w1 = trigsimp(expand(angvelmat[7]), recursive=True)
     w2 = trigsimp(expand(angvelmat[2]), recursive=True)
     w3 = trigsimp(expand(angvelmat[3]), recursive=True)
     return -Vector([(Matrix([w1, w2, w3]), self)])
开发者ID:Lenqth,项目名称:sympy,代码行数:12,代码来源:frame.py


示例11: _try_solve_0

def _try_solve_0(symo, eq_sys, knowns):
    res = False
    for eq, [r], th_names in eq_sys:
        X = tools.get_max_coef(eq, r)
        if X != 0:
            Y = X*r - eq
            symo.write_line("# Solving type 1")
            X = symo.replace(trigsimp(X), 'X', r)
            Y = symo.replace(trigsimp(Y), 'Y', r)
            symo.add_to_dict(r, Y/X)
            knowns.add(r)
            res = True
    return res
开发者ID:symoro,项目名称:symoro-draw,代码行数:13,代码来源:invgeom.py


示例12: _solve_type_4

def _solve_type_4(symo, X1, Y1, X2, Y2, th, r):
    """Solution for the system:
    X1*S*r = Y1
    X2*C*r = Y2
    """
    symo.write_line("# X1*sin({0})*{1} = Y1".format(th, r))
    symo.write_line("# X2*cos({0})*{1} = Y2".format(th, r))
    X1 = symo.replace(trigsimp(X1), 'X1', th)
    Y1 = symo.replace(trigsimp(Y1), 'Y1', th)
    X2 = symo.replace(trigsimp(X2), 'X2', th)
    Y2 = symo.replace(trigsimp(Y2), 'Y2', th)
    YPS = var('YPS' + r)
    symo.add_to_dict(YPS, (tools.ONE, - tools.ONE))
    symo.add_to_dict(r, YPS*sqrt((Y1/X1)**2 + (Y2/X2)**2))
    symo.add_to_dict(th, atan2(Y1/(X1*r), Y2/(X2*r)))
开发者ID:symoro,项目名称:symoro-draw,代码行数:15,代码来源:invgeom.py


示例13: test_trigsimp3

def test_trigsimp3():
    x, y = symbols('x,y')
    assert trigsimp(sin(x)/cos(x)) == tan(x)
    assert trigsimp(sin(x)**2/cos(x)**2) == tan(x)**2
    assert trigsimp(sin(x)**3/cos(x)**3) == tan(x)**3
    assert trigsimp(sin(x)**10/cos(x)**10) == tan(x)**10

    assert trigsimp(cos(x)/sin(x)) == 1/tan(x)
    assert trigsimp(cos(x)**2/sin(x)**2) == 1/tan(x)**2
    assert trigsimp(cos(x)**10/sin(x)**10) == 1/tan(x)**10

    assert trigsimp(tan(x)) == trigsimp(sin(x)/cos(x))
开发者ID:ness01,项目名称:sympy,代码行数:12,代码来源:test_simplify.py


示例14: scalar_map

    def scalar_map(self, other):
        """
        Returns a dictionary which expresses the coordinate variables
        (base scalars) of this frame in terms of the variables of
        otherframe.

        Parameters
        ==========

        otherframe : CoordSysCartesian
            The other system to map the variables to.

        Examples
        ========

        >>> from sympy.vector import CoordSysCartesian
        >>> from sympy import Symbol
        >>> A = CoordSysCartesian('A')
        >>> q = Symbol('q')
        >>> B = A.orient_new('B', 'Axis', [q, A.k])
        >>> A.scalar_map(B)
        {A.x: B.x*cos(q) - B.y*sin(q), A.y: B.x*sin(q) + B.y*cos(q), A.z: B.z}

        """

        vars_matrix = self.rotation_matrix(other) * Matrix(other.base_scalars())
        mapping = {}
        for i, x in enumerate(self.base_scalars()):
            mapping[x] = trigsimp(vars_matrix[i])
        return mapping
开发者ID:hacman,项目名称:sympy,代码行数:30,代码来源:coordsysrect.py


示例15: _generate_eoms

    def _generate_eoms(self):

        self.kane = me.KanesMethod(self.frames['inertial'],
                                   self.coordinates.values(),
                                   self.speeds.values(),
                                   self.kin_diff_eqs)

        fr, frstar = self.kane.kanes_equations(self.loads.values(),
                                               self.rigid_bodies.values())

        sub = {self.specified['platform_speed'].diff(self.time):
               self.specified['platform_acceleration']}

        self.fr_plus_frstar = sy.trigsimp(fr + frstar).subs(sub)

        udots = sy.Matrix([s.diff(self.time) for s in self.speeds.values()])

        m1 = self.fr_plus_frstar.diff(udots[0])
        m2 = self.fr_plus_frstar.diff(udots[1])

        # M x' = F
        self.mass_matrix = -m1.row_join(m2)
        self.forcing_vector = sy.simplify(self.fr_plus_frstar +
                                          self.mass_matrix * udots)

        M_top_rows = sy.eye(2).row_join(sy.zeros(2))
        F_top_rows = sy.Matrix(self.speeds.values())

        tmp = sy.zeros(2).row_join(self.mass_matrix)
        self.mass_matrix_full = M_top_rows.col_join(tmp)
        self.forcing_vector_full = F_top_rows.col_join(self.forcing_vector)
开发者ID:HuaweiWang,项目名称:opty,代码行数:31,代码来源:model.py


示例16: square_root_of_expr

def square_root_of_expr(expr):
    """
    If expression is product of even powers then every power is divided
    by two and the product is returned.  If some terms in product are
    not even powers the sqrt of the absolute value of the expression is
    returned.  If the expression is a number the sqrt of the absolute
    value of the number is returned.
    """
    if expr.is_number:
        if expr > 0:
            return(sqrt(expr))
        else:
            return(sqrt(-expr))
    else:
        expr = trigsimp(expr)
        (coef, pow_lst) = sqf_list(expr)
        if coef != S(1):
            if coef.is_number:
                coef = square_root_of_expr(coef)
            else:
                coef = sqrt(abs(coef))  # Product coefficient not a number
        for p in pow_lst:
            (f, n) = p
            if n % 2 != 0:
                return(sqrt(abs(expr)))  # Product not all even powers
            else:
                coef *= f ** (n / 2)  # Positive sqrt of the square of an expression
        return coef
开发者ID:utensil-contrib,项目名称:galgebra,代码行数:28,代码来源:metric.py


示例17: solve_orientation_prismatic

def solve_orientation_prismatic(robo, symo, X_joints):
    """
    Function that solves the orientation equation of the three prismatic joints case. (to find the three angles)

    Parameters:
    ===========
    1) X_joint: The three revolute joints for the prismatic case
    """
    [i,j,k] = X_joints                   # X joints vector
    [S,S1,S2,S3,x] = [0,0,0,0,0]        # Book convention indexes
    [N,N1,N2,N3,y] = [1,1,1,1,1]        # Book convention indexes
    [A,A1,A2,A3,z] = [2,2,2,2,2]        # Book convention indexes
    robo.theta[i] = robo.theta[i] + robo.gamma[robo.ant[i]]
    robo.theta[j] = robo.theta[j] + robo.gamma[robo.ant[j]]
    robo.theta[k] = robo.theta[k] + robo.gamma[robo.ant[k]]

    T6k = dgm(robo, symo, 6, k, fast_form=True,trig_subs=True)
    Ti0 = dgm(robo, symo, robo.ant[i], 0, fast_form=True, trig_subs=True)
    Tji = dgm(robo, symo, j-1, i, fast_form=True, trig_subs=True)
    Tjk = dgm(robo, symo, j, k-1, fast_form=True, trig_subs=True)

    S3N3A3 = _rot_trans(axis=x, th=-robo.alpha[i], p=0)*Ti0*T_GENERAL*T6k   # S3N3A3 = rot(x,-alphai)*rot(z,-gami)*aiTo*SNA
    S2N2A2 = _rot_trans(axis=x, th=-robo.alpha[j], p=0)*Tji                 # S2N2A2 = iTa(j)*rot(x,-alphaj)
    S1N1A1 = Tjk*_rot_trans(axis=x, th=-robo.alpha[k], p=0)                 # S1N1A1 = jTa(k)*rot(x,alphak)

    S3N3A3 = Matrix([ S3N3A3[:3, :3] ])
    S2N2A2 = Matrix([ S2N2A2[:3, :3] ])
    S1N1A1 = Matrix([ S1N1A1[:3, :3] ])
    SNA = Matrix([ T_GENERAL[:3, :3] ])
    SNA = symo.replace(trigsimp(SNA), 'SNA')

    # solve thetai
    # eq 1.100 (page 49)
    eq_type = 3
    offset = robo.gamma[robo.ant[i]]
    robo.r[i] = robo.r[i] + robo.b[robo.ant[i]]
    el1 = S2N2A2[z,S2]*S3N3A3[x,A3] + S2N2A2[z,N2]*S3N3A3[y,A3]
    el2 = S2N2A2[z,S2]*S3N3A3[y,A3] - S2N2A2[z,N2]*S3N3A3[x,A3]
    el3 = S2N2A2[z,A2]*S3N3A3[z,A3] - S1N1A1[z,A1]
    coef = [el1,el2,el3]
    _equation_solve(symo, coef, eq_type, robo.theta[i], offset)

    # solve thetaj
    # eq 1.102
    eq_type = 4
    offset = robo.gamma[robo.ant[j]]
    robo.r[j] = robo.r[j] + robo.b[robo.ant[j]]
    coef = [S1N1A1[x,A1] , -S1N1A1[y,A1] , -SNA[x,A] , S1N1A1[y,A1] , S1N1A1[x,A1] , -SNA[y,A] ]
    _equation_solve(symo, coef, eq_type, robo.theta[j], offset)

    # solve thetak
    # eq 1.103
    eq_type = 4
    offset = robo.gamma[robo.ant[k]]
    robo.r[k] = robo.r[k] + robo.b[robo.ant[k]]
    coef = [S1N1A1[z,S1] , S1N1A1[z,N1] , -SNA[z,S] , S1N1A1[z,N1] , -S1N1A1[z,S1] , -SNA[z,N] ]
    _equation_solve(symo, coef, eq_type, robo.theta[k], offset)

    return
开发者ID:ELZo3,项目名称:symoro,代码行数:59,代码来源:invdata.py


示例18: test_issue_2827_trigsimp_methods

def test_issue_2827_trigsimp_methods():
    measure1 = lambda expr: len(str(expr))
    measure2 = lambda expr: -count_ops(expr)
                                       # Return the most complicated result
    expr = (x + 1)/(x + sin(x)**2 + cos(x)**2)
    ans = Matrix([1])
    M = Matrix([expr])
    assert trigsimp(M, method='fu', measure=measure1) == ans
    assert trigsimp(M, method='fu', measure=measure2) != ans
    # all methods should work with Basic expressions even if they
    # aren't Expr
    M = Matrix.eye(1)
    assert all(trigsimp(M, method=m) == M for m in
        'fu matching groebner old'.split())
    # watch for E in exptrigsimp, not only exp()
    eq = 1/sqrt(E) + E
    assert exptrigsimp(eq) == eq
开发者ID:baoqchau,项目名称:sympy,代码行数:17,代码来源:test_trigsimp.py


示例19: _symplify_expr

 def _symplify_expr(self,expr): # this is a costly stage for complex expressions
         """
         Perform simplification of the provided expression.
         Method returns a SymPy expression.
         """
         expr = sympy.trigsimp(expr) 
         expr = sympy.simplify(expr) 
         return expr
开发者ID:imranal,项目名称:DiffTens,代码行数:8,代码来源:tensor.py


示例20: test_issue_6811_fail

def test_issue_6811_fail():
    # from doc/src/modules/physics/mechanics/examples.rst, the current `eq`
    # at Line 576 (in different variables) was formerly the equivalent and
    # shorter expression given below...it would be nice to get the short one
    # back again
    xp, y, x, z = symbols('xp, y, x, z')
    eq = 4*(-19*sin(x)*y + 5*sin(3*x)*y + 15*cos(2*x)*z - 21*z)*xp/(9*cos(x) - 5*cos(3*x))
    assert trigsimp(eq) == -2*(2*cos(x)*tan(x)*y + 3*z)*xp/cos(x)
开发者ID:baoqchau,项目名称:sympy,代码行数:8,代码来源:test_trigsimp.py



注:本文中的sympy.trigsimp函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python sympy.unpolarify函数代码示例发布时间:2022-05-27
下一篇:
Python sympy.transpose函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap