• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python sympy.sqrt函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sympy.sqrt函数的典型用法代码示例。如果您正苦于以下问题:Python sqrt函数的具体用法?Python sqrt怎么用?Python sqrt使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了sqrt函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: root_mul_rule

def root_mul_rule(integral):
    integrand, symbol = integral
    a = sympy.Wild("a", exclude=[symbol])
    b = sympy.Wild("b", exclude=[symbol])
    c = sympy.Wild("c")
    match = integrand.match(sympy.sqrt(a * symbol + b) * c)

    if not match:
        return

    a, b, c = match[a], match[b], match[c]
    d = sympy.Wild("d", exclude=[symbol])
    e = sympy.Wild("e", exclude=[symbol])
    f = sympy.Wild("f")
    recursion_test = c.match(sympy.sqrt(d * symbol + e) * f)
    if recursion_test:
        return

    u = sympy.Dummy("u")
    u_func = sympy.sqrt(a * symbol + b)
    integrand = integrand.subs(u_func, u)
    integrand = integrand.subs(symbol, (u ** 2 - b) / a)
    integrand = integrand * 2 * u / a
    next_step = integral_steps(integrand, u)
    if next_step:
        return URule(u, u_func, None, next_step, integrand, symbol)
开发者ID:latot,项目名称:sympy,代码行数:26,代码来源:manualintegrate.py


示例2: test_pretty_functions

def test_pretty_functions():
    f = Function('f')

    # Simple
    assert pretty( (2*x + exp(x)) ) in [' x      \ne  + 2*x', '       x\n2*x + e ']
    assert pretty(abs(x)) == '|x|'
    assert pretty(abs(x/(x**2+1))) in [
            '|  x   |\n|------|\n|     2|\n|1 + x |',
            '|  x   |\n|------|\n| 2    |\n|x  + 1|']
    assert pretty(conjugate(x)) == '_\nx'
    assert pretty(conjugate(f(x+1))) in [
            '________\nf(1 + x)',
            '________\nf(x + 1)']

    # Univariate/Multivariate functions
    assert pretty(f(x)) == 'f(x)'
    assert pretty(f(x, y)) == 'f(x, y)'
    assert pretty(f(x/(y+1), y)) in [
            ' /  x     \\\nf|-----, y|\n \\1 + y   /',
            ' /  x     \\\nf|-----, y|\n \\y + 1   /',
            ]

    # Nesting of square roots
    assert pretty( sqrt((sqrt(x+1))+1) ) in [
            '   _______________\n  /       _______ \n\\/  1 + \\/ 1 + x  ',
            '   _______________\n  /   _______     \n\\/  \\/ x + 1  + 1 ']
    # Function powers
    assert pretty( sin(x)**2 ) == '   2   \nsin (x)'

    # Conjugates
    a,b = map(Symbol, 'ab')
开发者ID:fperez,项目名称:sympy,代码行数:31,代码来源:test_pretty.py


示例3: test_director_circle

def test_director_circle():
    x, y, a, b = symbols('x y a b')
    e = Ellipse((x, y), a, b)
    # the general result
    assert e.director_circle() == Circle((x, y), sqrt(a**2 + b**2))
    # a special case where Ellipse is a Circle
    assert Circle((3, 4), 8).director_circle() == Circle((3, 4), 8*sqrt(2))
开发者ID:oscarbenjamin,项目名称:sympy,代码行数:7,代码来源:test_ellipse.py


示例4: test_as_ordered_terms

def test_as_ordered_terms():
    f, g = symbols("f,g", cls=Function)

    assert x.as_ordered_terms() == [x]
    assert (sin(x) ** 2 * cos(x) + sin(x) * cos(x) ** 2 + 1).as_ordered_terms() == [
        sin(x) ** 2 * cos(x),
        sin(x) * cos(x) ** 2,
        1,
    ]

    args = [f(1), f(2), f(3), f(1, 2, 3), g(1), g(2), g(3), g(1, 2, 3)]
    expr = Add(*args)

    assert expr.as_ordered_terms() == args

    assert (1 + 4 * sqrt(3) * pi * x).as_ordered_terms() == [4 * pi * x * sqrt(3), 1]

    assert (2 + 3 * I).as_ordered_terms() == [2, 3 * I]
    assert (-2 + 3 * I).as_ordered_terms() == [-2, 3 * I]
    assert (2 - 3 * I).as_ordered_terms() == [2, -3 * I]
    assert (-2 - 3 * I).as_ordered_terms() == [-2, -3 * I]

    assert (4 + 3 * I).as_ordered_terms() == [4, 3 * I]
    assert (-4 + 3 * I).as_ordered_terms() == [-4, 3 * I]
    assert (4 - 3 * I).as_ordered_terms() == [4, -3 * I]
    assert (-4 - 3 * I).as_ordered_terms() == [-4, -3 * I]

    f = x ** 2 * y ** 2 + x * y ** 4 + y + 2

    assert f.as_ordered_terms(order="lex") == [x ** 2 * y ** 2, x * y ** 4, y, 2]
    assert f.as_ordered_terms(order="grlex") == [x * y ** 4, x ** 2 * y ** 2, y, 2]
    assert f.as_ordered_terms(order="rev-lex") == [2, y, x * y ** 4, x ** 2 * y ** 2]
    assert f.as_ordered_terms(order="rev-grlex") == [2, y, x ** 2 * y ** 2, x * y ** 4]
开发者ID:Botouls,项目名称:sympy,代码行数:33,代码来源:test_expr.py


示例5: eval_trigsubstitution

def eval_trigsubstitution(theta, func, rewritten, substep, restriction, integrand, symbol):
    func = func.subs(sympy.sec(theta), 1/sympy.cos(theta))

    trig_function = list(func.find(TrigonometricFunction))
    assert len(trig_function) == 1
    trig_function = trig_function[0]
    relation = sympy.solve(symbol - func, trig_function)
    assert len(relation) == 1
    numer, denom = sympy.fraction(relation[0])

    if isinstance(trig_function, sympy.sin):
        opposite = numer
        hypotenuse = denom
        adjacent = sympy.sqrt(denom**2 - numer**2)
        inverse = sympy.asin(relation[0])
    elif isinstance(trig_function, sympy.cos):
        adjacent = numer
        hypotenuse = denom
        opposite = sympy.sqrt(denom**2 - numer**2)
        inverse = sympy.acos(relation[0])
    elif isinstance(trig_function, sympy.tan):
        opposite = numer
        adjacent = denom
        hypotenuse = sympy.sqrt(denom**2 + numer**2)
        inverse = sympy.atan(relation[0])

    substitution = [
        (sympy.sin(theta), opposite/hypotenuse),
        (sympy.cos(theta), adjacent/hypotenuse),
        (sympy.tan(theta), opposite/adjacent),
        (theta, inverse)
    ]
    return sympy.Piecewise(
        (_manualintegrate(substep).subs(substitution).trigsimp(), restriction)
    )
开发者ID:DVNSarma,项目名称:sympy,代码行数:35,代码来源:manualintegrate.py


示例6: test_issue_1364

def test_issue_1364():
    assert solve(-a*x + 2*x*log(x), x) == [exp(a/2)]
    assert solve(a/x + exp(x/2), x) == [2*LambertW(-a/2)]
    assert solve(x**x) == []
    assert solve(x**x - 2) == [exp(LambertW(log(2)))]
    assert solve(((x - 3)*(x - 2))**((x - 3)*(x - 4))) == [2]
    assert solve((a/x + exp(x/2)).diff(x), x) == [4*LambertW(sqrt(2)*sqrt(a)/4)]
开发者ID:Enchanter12,项目名称:sympy,代码行数:7,代码来源:test_solvers.py


示例7: test_uselogcombine_1

def test_uselogcombine_1():
    assert solveset_real(log(x - 3) + log(x + 3), x) == \
        FiniteSet(sqrt(10))
    assert solveset_real(log(x + 1) - log(2*x - 1), x) == FiniteSet(2)
    assert solveset_real(log(x + 3) + log(1 + 3/x) - 3) == FiniteSet(
        -3 + sqrt(-12 + exp(3))*exp(S(3)/2)/2 + exp(3)/2,
        -sqrt(-12 + exp(3))*exp(S(3)/2)/2 - 3 + exp(3)/2)
开发者ID:nickle8424,项目名称:sympy,代码行数:7,代码来源:test_solveset.py


示例8: eta_fil

    def eta_fil(self, x, V_app, apprx=(0, 0, 0, 0)):
        m_eff = self.m_r * const.electron_mass

        mpmath.mp.dps = 20
        x0 = Symbol('x0')  # eta_fil
        x1 = Symbol('x1')  # eta_ac
        x2 = Symbol('x2')  # eta_hop
        x3 = Symbol('x3')  # V_tunnel

        f0 = const.Boltzmann * self.T / (1 - self.alpha) / const.elementary_charge / self.z * \
             ln(self.A_fil/self.A_ac*(exp(- self.alpha * const.elementary_charge * self.z / const.Boltzmann / self.T * x0) - 1) + 1) - x1# eta_ac = f(eta_fil) x1 = f(x0)
        f1 = x*2*const.Boltzmann*self.T/self.a/self.z/const.elementary_charge*\
             asinh(self.j_0et/self.j_0hop*(exp(- self.alpha * const.elementary_charge * self.z / const.Boltzmann / self.T * x0) - 1)) - x2# eta_hop = f(eta_fil)
        f2 = x1 - x0 + x2 - x3

        f3 = -V_app + ((self.C * 3 * sqrt(2 * m_eff * ((4+x3/2)*const.elementary_charge)) / 2 / x * (const.elementary_charge / const.Planck)**2 * \
             exp(- 4 * const.pi * x / const.Planck * sqrt(2 * m_eff * ((4+x3/2)*const.elementary_charge))) * self.A_fil*x3)
                       + (self.j_0et*self.A_fil*(exp(-self.alpha*const.elementary_charge*self.z*x0/const.Boltzmann/self.T) - 1))) * (self.R_el + self.R_S + self.rho_fil*(self.L - x) / self.A_fil) \
             + x3

        eta_fil, eta_ac, eta_hop, V_tunnel = nsolve((f0, f1, f2, f3), [x0, x1, x2, x3], apprx)
        eta_fil = np.real(np.complex128(eta_fil))
        eta_ac = np.real(np.complex128(eta_ac))
        eta_hop = np.real(np.complex128(eta_hop))
        V_tunnel = np.real(np.complex128(V_tunnel))
        current = ((self.C * 3 * sqrt(2 * m_eff * ((4+V_tunnel)*const.elementary_charge)) / 2 / x * (const.elementary_charge / const.Planck)**2 * \
            exp(- 4 * const.pi * x / const.Planck * sqrt(2 * m_eff * ((4+V_tunnel)*const.elementary_charge))) * self.A_fil*V_tunnel)
                       + (self.j_0et*self.A_fil*(exp(-self.alpha*const.elementary_charge*self.z*eta_fil/const.Boltzmann/self.T) - 1)))
        print(eta_fil, eta_ac, eta_hop, V_tunnel)
        # print(eta_ac - eta_fil + eta_hop - V_tunnel)
        return eta_fil, eta_ac, eta_hop, V_tunnel, current
开发者ID:KrepakVitaly,项目名称:nanotech,代码行数:31,代码来源:main.py


示例9: test_cse_single2

def test_cse_single2():
    # Simple substitution, test for being able to pass the expression directly
    e = Add(Pow(x+y,2), sqrt(x+y))
    substs, reduced = cse(e, optimizations=[])
    assert substs == [(x0, x+y)]
    assert reduced == [sqrt(x0) + x0**2]
    assert isinstance(cse(Matrix([[1]]))[1][0], Matrix)
开发者ID:Enchanter12,项目名称:sympy,代码行数:7,代码来源:test_cse.py


示例10: test__erfs

def test__erfs():
    assert _erfs(z).diff(z) == -2/sqrt(S.Pi)+2*z*_erfs(z)

    assert _erfs(1/z).series(z) == z/sqrt(pi) - z**3/(2*sqrt(pi)) + 3*z**5/(4*sqrt(pi)) + O(z**6)

    assert expand(erf(z).rewrite('tractable').diff(z).rewrite('intractable')) == erf(z).diff(z)
    assert _erfs(z).rewrite("intractable") == (-erf(z) + 1)*exp(z**2)
开发者ID:abhishek070193,项目名称:sympy,代码行数:7,代码来源:test_error_functions.py


示例11: test_roots_quartic

def test_roots_quartic():
    assert roots_quartic(Poly(x**4, x)) == [0, 0, 0, 0]
    assert roots_quartic(Poly(x**4 + x**3, x)) in [
        [-1,0,0,0],
        [0,-1,0,0],
        [0,0,-1,0],
        [0,0,0,-1]
    ]
    assert roots_quartic(Poly(x**4 - x**3, x)) in [
        [1,0,0,0],
        [0,1,0,0],
        [0,0,1,0],
        [0,0,0,1]
    ]

    lhs = roots_quartic(Poly(x**4 + x, x))
    rhs = [S.Half + I*sqrt(3)/2, S.Half - I*sqrt(3)/2, S.Zero, -S.One]

    assert sorted(lhs, key=hash) == sorted(rhs, key=hash)

    # test of all branches of roots quartic
    for i, (a, b, c, d) in enumerate([(1, 2, 3, 0),
                                      (3, -7, -9, 9),
                                      (1, 2, 3, 4),
                                      (1, 2, 3, 4),
                                      (-7, -3, 3, -6),
                                      (-3, 5, -6, -4)]):
        if i == 2:
            c = -a*(a**2/S(8) - b/S(2))
        elif i == 3:
            d = a*(a*(3*a**2/S(256) - b/S(16)) + c/S(4))
        eq = x**4 + a*x**3 + b*x**2 + c*x + d
        ans = roots_quartic(Poly(eq, x))
        assert all([eq.subs(x, ai).n(chop=True) == 0 for ai in ans])
开发者ID:qmattpap,项目名称:sympy,代码行数:34,代码来源:test_polyroots.py


示例12: test_expr_sorting

def test_expr_sorting():
    f, g = symbols('f,g', cls=Function)

    exprs = [1/x**2, 1/x, sqrt(sqrt(x)), sqrt(x), x, sqrt(x)**3, x**2]
    assert sorted(exprs, key=default_sort_key) == exprs

    exprs = [x, 2*x, 2*x**2, 2*x**3, x**n, 2*x**n, sin(x), sin(x)**n, sin(x**2), cos(x), cos(x**2), tan(x)]
    assert sorted(exprs, key=default_sort_key) == exprs

    exprs = [x + 1, x**2 + x + 1, x**3 + x**2 + x + 1]
    assert sorted(exprs, key=default_sort_key) == exprs

    exprs = [S(4), x - 3*I/2, x + 3*I/2, x - 4*I + 1, x + 4*I + 1]
    assert sorted(exprs, key=default_sort_key) == exprs

    exprs = [f(1), f(2), f(3), f(1, 2, 3), g(1), g(2), g(3), g(1, 2, 3)]
    assert sorted(exprs, key=default_sort_key) == exprs

    exprs = [f(x), g(x), exp(x), sin(x), cos(x), factorial(x)]
    assert sorted(exprs, key=default_sort_key) == exprs

    exprs = [Tuple(x, y), Tuple(x, z), Tuple(x, y, z)]
    assert sorted(exprs, key=default_sort_key) == exprs

    exprs = [[3], [1, 2]]
    assert sorted(exprs, key=default_sort_key) == exprs

    exprs = [[1, 2], [2, 3]]
    assert sorted(exprs, key=default_sort_key) == exprs

    exprs = [[1, 2], [1, 2, 3]]
    assert sorted(exprs, key=default_sort_key) == exprs

    exprs = [{x: -y}, {x: y}]
    assert sorted(exprs, key=default_sort_key) == exprs
开发者ID:goodok,项目名称:sympy,代码行数:35,代码来源:test_expr.py


示例13: test_rayleigh

def test_rayleigh():
    sigma = Symbol("sigma", positive=True)

    X = Rayleigh('x', sigma)
    assert density(X)(x) ==  x*exp(-x**2/(2*sigma**2))/sigma**2
    assert E(X) == sqrt(2)*sqrt(pi)*sigma/2
    assert variance(X) == -pi*sigma**2/2 + 2*sigma**2
开发者ID:vprusso,项目名称:sympy,代码行数:7,代码来源:test_continuous_rv.py


示例14: test_lognormal

def test_lognormal():
    mean = Symbol('mu', real=True, finite=True)
    std = Symbol('sigma', positive=True, real=True, finite=True)
    X = LogNormal('x', mean, std)
    # The sympy integrator can't do this too well
    #assert E(X) == exp(mean+std**2/2)
    #assert variance(X) == (exp(std**2)-1) * exp(2*mean + std**2)

    # Right now, only density function and sampling works
    # Test sampling: Only e^mean in sample std of 0
    for i in range(3):
        X = LogNormal('x', i, 0)
        assert S(sample(X)) == N(exp(i))
    # The sympy integrator can't do this too well
    #assert E(X) ==

    mu = Symbol("mu", real=True)
    sigma = Symbol("sigma", positive=True)

    X = LogNormal('x', mu, sigma)
    assert density(X)(x) == (sqrt(2)*exp(-(-mu + log(x))**2
                                    /(2*sigma**2))/(2*x*sqrt(pi)*sigma))

    X = LogNormal('x', 0, 1)  # Mean 0, standard deviation 1
    assert density(X)(x) == sqrt(2)*exp(-log(x)**2/2)/(2*x*sqrt(pi))
开发者ID:vprusso,项目名称:sympy,代码行数:25,代码来源:test_continuous_rv.py


示例15: test_checking

def test_checking():
    assert set(solve(x*(x - y/x),x, check=False)) == set([sqrt(y), S(0), -sqrt(y)])
    assert set(solve(x*(x - y/x),x, check=True)) == set([sqrt(y), -sqrt(y)])
    # {x: 0, y: 4} sets denominator to 0 in the following so system should return None
    assert solve((1/(1/x + 2), 1/(y - 3) - 1)) is None
    # 0 sets denominator of 1/x to zero so [] is returned
    assert solve(1/(1/x + 2)) == []
开发者ID:Enchanter12,项目名称:sympy,代码行数:7,代码来源:test_solvers.py


示例16: test_guess_rational_cv

def test_guess_rational_cv():
    # rational functions
    assert guess_solve_strategy( (x+1)/(x**2 + 2), x) #== GS_RATIONAL
    assert guess_solve_strategy( (x - y**3)/(y**2*sqrt(1 - y**2)), y) #== GS_RATIONAL_CV_1

    # rational functions via the change of variable y -> x**n
    assert guess_solve_strategy( (sqrt(x) + 1)/(x**Rational(1,3) + sqrt(x) + 1), x ) \
开发者ID:Enchanter12,项目名称:sympy,代码行数:7,代码来源:test_solvers.py


示例17: square_root_of_expr

def square_root_of_expr(expr):
    """
    If expression is product of even powers then every power is divided
    by two and the product is returned.  If some terms in product are
    not even powers the sqrt of the absolute value of the expression is
    returned.  If the expression is a number the sqrt of the absolute
    value of the number is returned.
    """
    if expr.is_number:
        if expr > 0:
            return(sqrt(expr))
        else:
            return(sqrt(-expr))
    else:
        expr = trigsimp(expr)
        (coef, pow_lst) = sqf_list(expr)
        if coef != S(1):
            if coef.is_number:
                coef = square_root_of_expr(coef)
            else:
                coef = sqrt(abs(coef))  # Product coefficient not a number
        for p in pow_lst:
            (f, n) = p
            if n % 2 != 0:
                return(sqrt(abs(expr)))  # Product not all even powers
            else:
                coef *= f ** (n / 2)  # Positive sqrt of the square of an expression
        return coef
开发者ID:utensil-contrib,项目名称:galgebra,代码行数:28,代码来源:metric.py


示例18: test_factorial2_rewrite

def test_factorial2_rewrite():
    n = Symbol('n', integer=True)
    assert factorial2(n).rewrite(gamma) == \
        2**(n/2)*Piecewise((1, Eq(Mod(n, 2), 0)), (sqrt(2)/sqrt(pi), Eq(Mod(n, 2), 1)))*gamma(n/2 + 1)
    assert factorial2(2*n).rewrite(gamma) == 2**n*gamma(n + 1)
    assert factorial2(2*n + 1).rewrite(gamma) == \
        sqrt(2)*2**(n + 1/2)*gamma(n + 3/2)/sqrt(pi)
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:7,代码来源:test_comb_factorials.py


示例19: test_solve_complex_sqrt

def test_solve_complex_sqrt():
    assert solveset_complex(sqrt(5*x + 6) - 2 - x, x) == \
        FiniteSet(-S(1), S(2))
    assert solveset_complex(sqrt(5*x + 6) - (2 + 2*I) - x, x) == \
        FiniteSet(-S(2), 3 - 4*I)
    assert solveset_complex(4*x*(1 - a * sqrt(x)), x) == \
        FiniteSet(S(0), 1 / a ** 2)
开发者ID:nickle8424,项目名称:sympy,代码行数:7,代码来源:test_solveset.py


示例20: test_polysys

def test_polysys():
    from sympy.abc import x, y
    assert solve([x**2 + 2/y - 2 , x + y - 3], [x, y]) == \
        [(1, 2), (1 + sqrt(5), 2 - sqrt(5)), (1 - sqrt(5), 2 + sqrt(5))]
    assert solve([x**2 + y - 2, x**2 + y]) is None
    # the ordering should be whatever the user requested
    assert solve([x**2 + y - 3, x - y - 4], (x, y)) != solve([x**2 + y - 3, x - y - 4], (y, x))
开发者ID:itsrg,项目名称:sympy,代码行数:7,代码来源:test_solvers.py



注:本文中的sympy.sqrt函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python sympy.sqrtdenest函数代码示例发布时间:2022-05-27
下一篇:
Python sympy.solve_linear函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap