本文整理汇总了Python中sympy.sqrt函数的典型用法代码示例。如果您正苦于以下问题:Python sqrt函数的具体用法?Python sqrt怎么用?Python sqrt使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了sqrt函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: root_mul_rule
def root_mul_rule(integral):
integrand, symbol = integral
a = sympy.Wild("a", exclude=[symbol])
b = sympy.Wild("b", exclude=[symbol])
c = sympy.Wild("c")
match = integrand.match(sympy.sqrt(a * symbol + b) * c)
if not match:
return
a, b, c = match[a], match[b], match[c]
d = sympy.Wild("d", exclude=[symbol])
e = sympy.Wild("e", exclude=[symbol])
f = sympy.Wild("f")
recursion_test = c.match(sympy.sqrt(d * symbol + e) * f)
if recursion_test:
return
u = sympy.Dummy("u")
u_func = sympy.sqrt(a * symbol + b)
integrand = integrand.subs(u_func, u)
integrand = integrand.subs(symbol, (u ** 2 - b) / a)
integrand = integrand * 2 * u / a
next_step = integral_steps(integrand, u)
if next_step:
return URule(u, u_func, None, next_step, integrand, symbol)
开发者ID:latot,项目名称:sympy,代码行数:26,代码来源:manualintegrate.py
示例2: test_pretty_functions
def test_pretty_functions():
f = Function('f')
# Simple
assert pretty( (2*x + exp(x)) ) in [' x \ne + 2*x', ' x\n2*x + e ']
assert pretty(abs(x)) == '|x|'
assert pretty(abs(x/(x**2+1))) in [
'| x |\n|------|\n| 2|\n|1 + x |',
'| x |\n|------|\n| 2 |\n|x + 1|']
assert pretty(conjugate(x)) == '_\nx'
assert pretty(conjugate(f(x+1))) in [
'________\nf(1 + x)',
'________\nf(x + 1)']
# Univariate/Multivariate functions
assert pretty(f(x)) == 'f(x)'
assert pretty(f(x, y)) == 'f(x, y)'
assert pretty(f(x/(y+1), y)) in [
' / x \\\nf|-----, y|\n \\1 + y /',
' / x \\\nf|-----, y|\n \\y + 1 /',
]
# Nesting of square roots
assert pretty( sqrt((sqrt(x+1))+1) ) in [
' _______________\n / _______ \n\\/ 1 + \\/ 1 + x ',
' _______________\n / _______ \n\\/ \\/ x + 1 + 1 ']
# Function powers
assert pretty( sin(x)**2 ) == ' 2 \nsin (x)'
# Conjugates
a,b = map(Symbol, 'ab')
开发者ID:fperez,项目名称:sympy,代码行数:31,代码来源:test_pretty.py
示例3: test_director_circle
def test_director_circle():
x, y, a, b = symbols('x y a b')
e = Ellipse((x, y), a, b)
# the general result
assert e.director_circle() == Circle((x, y), sqrt(a**2 + b**2))
# a special case where Ellipse is a Circle
assert Circle((3, 4), 8).director_circle() == Circle((3, 4), 8*sqrt(2))
开发者ID:oscarbenjamin,项目名称:sympy,代码行数:7,代码来源:test_ellipse.py
示例4: test_as_ordered_terms
def test_as_ordered_terms():
f, g = symbols("f,g", cls=Function)
assert x.as_ordered_terms() == [x]
assert (sin(x) ** 2 * cos(x) + sin(x) * cos(x) ** 2 + 1).as_ordered_terms() == [
sin(x) ** 2 * cos(x),
sin(x) * cos(x) ** 2,
1,
]
args = [f(1), f(2), f(3), f(1, 2, 3), g(1), g(2), g(3), g(1, 2, 3)]
expr = Add(*args)
assert expr.as_ordered_terms() == args
assert (1 + 4 * sqrt(3) * pi * x).as_ordered_terms() == [4 * pi * x * sqrt(3), 1]
assert (2 + 3 * I).as_ordered_terms() == [2, 3 * I]
assert (-2 + 3 * I).as_ordered_terms() == [-2, 3 * I]
assert (2 - 3 * I).as_ordered_terms() == [2, -3 * I]
assert (-2 - 3 * I).as_ordered_terms() == [-2, -3 * I]
assert (4 + 3 * I).as_ordered_terms() == [4, 3 * I]
assert (-4 + 3 * I).as_ordered_terms() == [-4, 3 * I]
assert (4 - 3 * I).as_ordered_terms() == [4, -3 * I]
assert (-4 - 3 * I).as_ordered_terms() == [-4, -3 * I]
f = x ** 2 * y ** 2 + x * y ** 4 + y + 2
assert f.as_ordered_terms(order="lex") == [x ** 2 * y ** 2, x * y ** 4, y, 2]
assert f.as_ordered_terms(order="grlex") == [x * y ** 4, x ** 2 * y ** 2, y, 2]
assert f.as_ordered_terms(order="rev-lex") == [2, y, x * y ** 4, x ** 2 * y ** 2]
assert f.as_ordered_terms(order="rev-grlex") == [2, y, x ** 2 * y ** 2, x * y ** 4]
开发者ID:Botouls,项目名称:sympy,代码行数:33,代码来源:test_expr.py
示例5: eval_trigsubstitution
def eval_trigsubstitution(theta, func, rewritten, substep, restriction, integrand, symbol):
func = func.subs(sympy.sec(theta), 1/sympy.cos(theta))
trig_function = list(func.find(TrigonometricFunction))
assert len(trig_function) == 1
trig_function = trig_function[0]
relation = sympy.solve(symbol - func, trig_function)
assert len(relation) == 1
numer, denom = sympy.fraction(relation[0])
if isinstance(trig_function, sympy.sin):
opposite = numer
hypotenuse = denom
adjacent = sympy.sqrt(denom**2 - numer**2)
inverse = sympy.asin(relation[0])
elif isinstance(trig_function, sympy.cos):
adjacent = numer
hypotenuse = denom
opposite = sympy.sqrt(denom**2 - numer**2)
inverse = sympy.acos(relation[0])
elif isinstance(trig_function, sympy.tan):
opposite = numer
adjacent = denom
hypotenuse = sympy.sqrt(denom**2 + numer**2)
inverse = sympy.atan(relation[0])
substitution = [
(sympy.sin(theta), opposite/hypotenuse),
(sympy.cos(theta), adjacent/hypotenuse),
(sympy.tan(theta), opposite/adjacent),
(theta, inverse)
]
return sympy.Piecewise(
(_manualintegrate(substep).subs(substitution).trigsimp(), restriction)
)
开发者ID:DVNSarma,项目名称:sympy,代码行数:35,代码来源:manualintegrate.py
示例6: test_issue_1364
def test_issue_1364():
assert solve(-a*x + 2*x*log(x), x) == [exp(a/2)]
assert solve(a/x + exp(x/2), x) == [2*LambertW(-a/2)]
assert solve(x**x) == []
assert solve(x**x - 2) == [exp(LambertW(log(2)))]
assert solve(((x - 3)*(x - 2))**((x - 3)*(x - 4))) == [2]
assert solve((a/x + exp(x/2)).diff(x), x) == [4*LambertW(sqrt(2)*sqrt(a)/4)]
开发者ID:Enchanter12,项目名称:sympy,代码行数:7,代码来源:test_solvers.py
示例7: test_uselogcombine_1
def test_uselogcombine_1():
assert solveset_real(log(x - 3) + log(x + 3), x) == \
FiniteSet(sqrt(10))
assert solveset_real(log(x + 1) - log(2*x - 1), x) == FiniteSet(2)
assert solveset_real(log(x + 3) + log(1 + 3/x) - 3) == FiniteSet(
-3 + sqrt(-12 + exp(3))*exp(S(3)/2)/2 + exp(3)/2,
-sqrt(-12 + exp(3))*exp(S(3)/2)/2 - 3 + exp(3)/2)
开发者ID:nickle8424,项目名称:sympy,代码行数:7,代码来源:test_solveset.py
示例8: eta_fil
def eta_fil(self, x, V_app, apprx=(0, 0, 0, 0)):
m_eff = self.m_r * const.electron_mass
mpmath.mp.dps = 20
x0 = Symbol('x0') # eta_fil
x1 = Symbol('x1') # eta_ac
x2 = Symbol('x2') # eta_hop
x3 = Symbol('x3') # V_tunnel
f0 = const.Boltzmann * self.T / (1 - self.alpha) / const.elementary_charge / self.z * \
ln(self.A_fil/self.A_ac*(exp(- self.alpha * const.elementary_charge * self.z / const.Boltzmann / self.T * x0) - 1) + 1) - x1# eta_ac = f(eta_fil) x1 = f(x0)
f1 = x*2*const.Boltzmann*self.T/self.a/self.z/const.elementary_charge*\
asinh(self.j_0et/self.j_0hop*(exp(- self.alpha * const.elementary_charge * self.z / const.Boltzmann / self.T * x0) - 1)) - x2# eta_hop = f(eta_fil)
f2 = x1 - x0 + x2 - x3
f3 = -V_app + ((self.C * 3 * sqrt(2 * m_eff * ((4+x3/2)*const.elementary_charge)) / 2 / x * (const.elementary_charge / const.Planck)**2 * \
exp(- 4 * const.pi * x / const.Planck * sqrt(2 * m_eff * ((4+x3/2)*const.elementary_charge))) * self.A_fil*x3)
+ (self.j_0et*self.A_fil*(exp(-self.alpha*const.elementary_charge*self.z*x0/const.Boltzmann/self.T) - 1))) * (self.R_el + self.R_S + self.rho_fil*(self.L - x) / self.A_fil) \
+ x3
eta_fil, eta_ac, eta_hop, V_tunnel = nsolve((f0, f1, f2, f3), [x0, x1, x2, x3], apprx)
eta_fil = np.real(np.complex128(eta_fil))
eta_ac = np.real(np.complex128(eta_ac))
eta_hop = np.real(np.complex128(eta_hop))
V_tunnel = np.real(np.complex128(V_tunnel))
current = ((self.C * 3 * sqrt(2 * m_eff * ((4+V_tunnel)*const.elementary_charge)) / 2 / x * (const.elementary_charge / const.Planck)**2 * \
exp(- 4 * const.pi * x / const.Planck * sqrt(2 * m_eff * ((4+V_tunnel)*const.elementary_charge))) * self.A_fil*V_tunnel)
+ (self.j_0et*self.A_fil*(exp(-self.alpha*const.elementary_charge*self.z*eta_fil/const.Boltzmann/self.T) - 1)))
print(eta_fil, eta_ac, eta_hop, V_tunnel)
# print(eta_ac - eta_fil + eta_hop - V_tunnel)
return eta_fil, eta_ac, eta_hop, V_tunnel, current
开发者ID:KrepakVitaly,项目名称:nanotech,代码行数:31,代码来源:main.py
示例9: test_cse_single2
def test_cse_single2():
# Simple substitution, test for being able to pass the expression directly
e = Add(Pow(x+y,2), sqrt(x+y))
substs, reduced = cse(e, optimizations=[])
assert substs == [(x0, x+y)]
assert reduced == [sqrt(x0) + x0**2]
assert isinstance(cse(Matrix([[1]]))[1][0], Matrix)
开发者ID:Enchanter12,项目名称:sympy,代码行数:7,代码来源:test_cse.py
示例10: test__erfs
def test__erfs():
assert _erfs(z).diff(z) == -2/sqrt(S.Pi)+2*z*_erfs(z)
assert _erfs(1/z).series(z) == z/sqrt(pi) - z**3/(2*sqrt(pi)) + 3*z**5/(4*sqrt(pi)) + O(z**6)
assert expand(erf(z).rewrite('tractable').diff(z).rewrite('intractable')) == erf(z).diff(z)
assert _erfs(z).rewrite("intractable") == (-erf(z) + 1)*exp(z**2)
开发者ID:abhishek070193,项目名称:sympy,代码行数:7,代码来源:test_error_functions.py
示例11: test_roots_quartic
def test_roots_quartic():
assert roots_quartic(Poly(x**4, x)) == [0, 0, 0, 0]
assert roots_quartic(Poly(x**4 + x**3, x)) in [
[-1,0,0,0],
[0,-1,0,0],
[0,0,-1,0],
[0,0,0,-1]
]
assert roots_quartic(Poly(x**4 - x**3, x)) in [
[1,0,0,0],
[0,1,0,0],
[0,0,1,0],
[0,0,0,1]
]
lhs = roots_quartic(Poly(x**4 + x, x))
rhs = [S.Half + I*sqrt(3)/2, S.Half - I*sqrt(3)/2, S.Zero, -S.One]
assert sorted(lhs, key=hash) == sorted(rhs, key=hash)
# test of all branches of roots quartic
for i, (a, b, c, d) in enumerate([(1, 2, 3, 0),
(3, -7, -9, 9),
(1, 2, 3, 4),
(1, 2, 3, 4),
(-7, -3, 3, -6),
(-3, 5, -6, -4)]):
if i == 2:
c = -a*(a**2/S(8) - b/S(2))
elif i == 3:
d = a*(a*(3*a**2/S(256) - b/S(16)) + c/S(4))
eq = x**4 + a*x**3 + b*x**2 + c*x + d
ans = roots_quartic(Poly(eq, x))
assert all([eq.subs(x, ai).n(chop=True) == 0 for ai in ans])
开发者ID:qmattpap,项目名称:sympy,代码行数:34,代码来源:test_polyroots.py
示例12: test_expr_sorting
def test_expr_sorting():
f, g = symbols('f,g', cls=Function)
exprs = [1/x**2, 1/x, sqrt(sqrt(x)), sqrt(x), x, sqrt(x)**3, x**2]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [x, 2*x, 2*x**2, 2*x**3, x**n, 2*x**n, sin(x), sin(x)**n, sin(x**2), cos(x), cos(x**2), tan(x)]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [x + 1, x**2 + x + 1, x**3 + x**2 + x + 1]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [S(4), x - 3*I/2, x + 3*I/2, x - 4*I + 1, x + 4*I + 1]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [f(1), f(2), f(3), f(1, 2, 3), g(1), g(2), g(3), g(1, 2, 3)]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [f(x), g(x), exp(x), sin(x), cos(x), factorial(x)]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [Tuple(x, y), Tuple(x, z), Tuple(x, y, z)]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [[3], [1, 2]]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [[1, 2], [2, 3]]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [[1, 2], [1, 2, 3]]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [{x: -y}, {x: y}]
assert sorted(exprs, key=default_sort_key) == exprs
开发者ID:goodok,项目名称:sympy,代码行数:35,代码来源:test_expr.py
示例13: test_rayleigh
def test_rayleigh():
sigma = Symbol("sigma", positive=True)
X = Rayleigh('x', sigma)
assert density(X)(x) == x*exp(-x**2/(2*sigma**2))/sigma**2
assert E(X) == sqrt(2)*sqrt(pi)*sigma/2
assert variance(X) == -pi*sigma**2/2 + 2*sigma**2
开发者ID:vprusso,项目名称:sympy,代码行数:7,代码来源:test_continuous_rv.py
示例14: test_lognormal
def test_lognormal():
mean = Symbol('mu', real=True, finite=True)
std = Symbol('sigma', positive=True, real=True, finite=True)
X = LogNormal('x', mean, std)
# The sympy integrator can't do this too well
#assert E(X) == exp(mean+std**2/2)
#assert variance(X) == (exp(std**2)-1) * exp(2*mean + std**2)
# Right now, only density function and sampling works
# Test sampling: Only e^mean in sample std of 0
for i in range(3):
X = LogNormal('x', i, 0)
assert S(sample(X)) == N(exp(i))
# The sympy integrator can't do this too well
#assert E(X) ==
mu = Symbol("mu", real=True)
sigma = Symbol("sigma", positive=True)
X = LogNormal('x', mu, sigma)
assert density(X)(x) == (sqrt(2)*exp(-(-mu + log(x))**2
/(2*sigma**2))/(2*x*sqrt(pi)*sigma))
X = LogNormal('x', 0, 1) # Mean 0, standard deviation 1
assert density(X)(x) == sqrt(2)*exp(-log(x)**2/2)/(2*x*sqrt(pi))
开发者ID:vprusso,项目名称:sympy,代码行数:25,代码来源:test_continuous_rv.py
示例15: test_checking
def test_checking():
assert set(solve(x*(x - y/x),x, check=False)) == set([sqrt(y), S(0), -sqrt(y)])
assert set(solve(x*(x - y/x),x, check=True)) == set([sqrt(y), -sqrt(y)])
# {x: 0, y: 4} sets denominator to 0 in the following so system should return None
assert solve((1/(1/x + 2), 1/(y - 3) - 1)) is None
# 0 sets denominator of 1/x to zero so [] is returned
assert solve(1/(1/x + 2)) == []
开发者ID:Enchanter12,项目名称:sympy,代码行数:7,代码来源:test_solvers.py
示例16: test_guess_rational_cv
def test_guess_rational_cv():
# rational functions
assert guess_solve_strategy( (x+1)/(x**2 + 2), x) #== GS_RATIONAL
assert guess_solve_strategy( (x - y**3)/(y**2*sqrt(1 - y**2)), y) #== GS_RATIONAL_CV_1
# rational functions via the change of variable y -> x**n
assert guess_solve_strategy( (sqrt(x) + 1)/(x**Rational(1,3) + sqrt(x) + 1), x ) \
开发者ID:Enchanter12,项目名称:sympy,代码行数:7,代码来源:test_solvers.py
示例17: square_root_of_expr
def square_root_of_expr(expr):
"""
If expression is product of even powers then every power is divided
by two and the product is returned. If some terms in product are
not even powers the sqrt of the absolute value of the expression is
returned. If the expression is a number the sqrt of the absolute
value of the number is returned.
"""
if expr.is_number:
if expr > 0:
return(sqrt(expr))
else:
return(sqrt(-expr))
else:
expr = trigsimp(expr)
(coef, pow_lst) = sqf_list(expr)
if coef != S(1):
if coef.is_number:
coef = square_root_of_expr(coef)
else:
coef = sqrt(abs(coef)) # Product coefficient not a number
for p in pow_lst:
(f, n) = p
if n % 2 != 0:
return(sqrt(abs(expr))) # Product not all even powers
else:
coef *= f ** (n / 2) # Positive sqrt of the square of an expression
return coef
开发者ID:utensil-contrib,项目名称:galgebra,代码行数:28,代码来源:metric.py
示例18: test_factorial2_rewrite
def test_factorial2_rewrite():
n = Symbol('n', integer=True)
assert factorial2(n).rewrite(gamma) == \
2**(n/2)*Piecewise((1, Eq(Mod(n, 2), 0)), (sqrt(2)/sqrt(pi), Eq(Mod(n, 2), 1)))*gamma(n/2 + 1)
assert factorial2(2*n).rewrite(gamma) == 2**n*gamma(n + 1)
assert factorial2(2*n + 1).rewrite(gamma) == \
sqrt(2)*2**(n + 1/2)*gamma(n + 3/2)/sqrt(pi)
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:7,代码来源:test_comb_factorials.py
示例19: test_solve_complex_sqrt
def test_solve_complex_sqrt():
assert solveset_complex(sqrt(5*x + 6) - 2 - x, x) == \
FiniteSet(-S(1), S(2))
assert solveset_complex(sqrt(5*x + 6) - (2 + 2*I) - x, x) == \
FiniteSet(-S(2), 3 - 4*I)
assert solveset_complex(4*x*(1 - a * sqrt(x)), x) == \
FiniteSet(S(0), 1 / a ** 2)
开发者ID:nickle8424,项目名称:sympy,代码行数:7,代码来源:test_solveset.py
示例20: test_polysys
def test_polysys():
from sympy.abc import x, y
assert solve([x**2 + 2/y - 2 , x + y - 3], [x, y]) == \
[(1, 2), (1 + sqrt(5), 2 - sqrt(5)), (1 - sqrt(5), 2 + sqrt(5))]
assert solve([x**2 + y - 2, x**2 + y]) is None
# the ordering should be whatever the user requested
assert solve([x**2 + y - 3, x - y - 4], (x, y)) != solve([x**2 + y - 3, x - y - 4], (y, x))
开发者ID:itsrg,项目名称:sympy,代码行数:7,代码来源:test_solvers.py
注:本文中的sympy.sqrt函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论