本文整理汇总了Python中sympy.series函数的典型用法代码示例。如果您正苦于以下问题:Python series函数的具体用法?Python series怎么用?Python series使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了series函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_sec
def test_sec():
x = symbols('x', real=True)
z = symbols('z')
assert sec.nargs == FiniteSet(1)
assert sec(0) == 1
assert sec(pi) == -1
assert sec(pi/2) == zoo
assert sec(-pi/2) == zoo
assert sec(pi/6) == 2*sqrt(3)/3
assert sec(pi/3) == 2
assert sec(5*pi/2) == zoo
assert sec(9*pi/7) == -sec(2*pi/7)
assert sec(I) == 1/cosh(1)
assert sec(x*I) == 1/cosh(x)
assert sec(-x) == sec(x)
assert sec(x).rewrite(exp) == 1/(exp(I*x)/2 + exp(-I*x)/2)
assert sec(x).rewrite(sin) == sec(x)
assert sec(x).rewrite(cos) == 1/cos(x)
assert sec(x).rewrite(tan) == (tan(x/2)**2 + 1)/(-tan(x/2)**2 + 1)
assert sec(x).rewrite(pow) == sec(x)
assert sec(x).rewrite(sqrt) == sec(x)
assert sec(z).conjugate() == sec(conjugate(z))
assert (sec(z).as_real_imag() ==
(cos(re(z))*cosh(im(z))/(sin(re(z))**2*sinh(im(z))**2 +
cos(re(z))**2*cosh(im(z))**2),
sin(re(z))*sinh(im(z))/(sin(re(z))**2*sinh(im(z))**2 +
cos(re(z))**2*cosh(im(z))**2)))
assert sec(x).expand(trig=True) == 1/cos(x)
assert sec(2*x).expand(trig=True) == 1/(2*cos(x)**2 - 1)
assert sec(x).is_real == True
assert sec(z).is_real == None
assert sec(x).as_leading_term() == sec(x)
assert sec(0).is_bounded == True
assert sec(x).is_bounded == None
assert sec(pi/2).is_bounded == False
assert series(sec(x), x, x0=0, n=6) == 1 + x**2/2 + 5*x**4/24 + O(x**6)
# https://github.com/sympy/sympy/issues/7166
assert series(sqrt(sec(x))) == 1 + x**2/4 + 7*x**4/96 + O(x**6)
assert sec(x).diff(x) == tan(x)*sec(x)
# Taylor Term checks
assert sec(z).taylor_term(4, z) == 5*z**4/24
assert sec(z).taylor_term(6, z) == 61*z**6/720
assert sec(z).taylor_term(5, z) == 0
开发者ID:waytai,项目名称:sympy,代码行数:56,代码来源:test_trigonometric.py
示例2: test_csc
def test_csc():
x = symbols('x', real=True)
z = symbols('z')
# https://github.com/sympy/sympy/issues/6707
cosecant = csc('x')
alternate = 1/sin('x')
assert cosecant.equals(alternate) == True
assert alternate.equals(cosecant) == True
assert csc.nargs == FiniteSet(1)
assert csc(0) == zoo
assert csc(pi) == zoo
assert csc(pi/2) == 1
assert csc(-pi/2) == -1
assert csc(pi/6) == 2
assert csc(pi/3) == 2*sqrt(3)/3
assert csc(5*pi/2) == 1
assert csc(9*pi/7) == -csc(2*pi/7)
assert csc(I) == -I/sinh(1)
assert csc(x*I) == -I/sinh(x)
assert csc(-x) == -csc(x)
assert csc(x).rewrite(exp) == 2*I/(exp(I*x) - exp(-I*x))
assert csc(x).rewrite(sin) == 1/sin(x)
assert csc(x).rewrite(cos) == csc(x)
assert csc(x).rewrite(tan) == (tan(x/2)**2 + 1)/(2*tan(x/2))
assert csc(z).conjugate() == csc(conjugate(z))
assert (csc(z).as_real_imag() ==
(sin(re(z))*cosh(im(z))/(sin(re(z))**2*cosh(im(z))**2 +
cos(re(z))**2*sinh(im(z))**2),
-cos(re(z))*sinh(im(z))/(sin(re(z))**2*cosh(im(z))**2 +
cos(re(z))**2*sinh(im(z))**2)))
assert csc(x).expand(trig=True) == 1/sin(x)
assert csc(2*x).expand(trig=True) == 1/(2*sin(x)*cos(x))
assert csc(x).is_real == True
assert csc(z).is_real == None
assert csc(x).as_leading_term() == csc(x)
assert csc(0).is_bounded == False
assert csc(x).is_bounded == None
assert csc(pi/2).is_bounded == True
assert series(csc(x), x, x0=pi/2, n=6) == \
1 + (x - pi/2)**2/2 + 5*(x - pi/2)**4/24 + O((x - pi/2)**6, (x, pi/2))
assert series(csc(x), x, x0=0, n=6) == \
1/x + x/6 + 7*x**3/360 + 31*x**5/15120 + O(x**6)
assert csc(x).diff(x) == -cot(x)*csc(x)
开发者ID:Eskatrem,项目名称:sympy,代码行数:56,代码来源:test_trigonometric.py
示例3: exercise_6_43
def exercise_6_43():
z = sp.Symbol('z')
b_of_z = 1/(1 - z)
sp.pprint('\n' + 'b_of_z:')
sp.pprint(b_of_z)
e_b_prime_of_z = z**2/(1 - z)**2
sp.pprint('\n' +'e_b_prime_of_z:')
sp.pprint(e_b_prime_of_z)
e_b_prime_of_n = sp.series(e_b_prime_of_z, z, 0, 10)
sp.pprint('\n' +'e_b_prime_of_n:')
sp.pprint(e_b_prime_of_n)
e_b_of_z = sp.integrate(e_b_prime_of_z, z)
constant = e_b_of_z.subs(z, 0)
e_b_of_z = e_b_of_z - constant
sp.pprint('\n' +'e_b_of_z:')
sp.pprint(e_b_of_z)
e_b_of_n = sp.series(e_b_of_z, z, 0, 10)
sp.pprint('\n' +'e_b_of_n:')
sp.pprint(e_b_of_n)
e_b_prime_of_z = sp.diff(e_b_of_z, z)
sp.pprint('\n' +'e_b_prime_of_z:')
sp.pprint(e_b_prime_of_z)
f_of_z = sp.together((1 - z)**2*e_b_prime_of_z)
sp.pprint('\n' +'f_of_z:')
sp.pprint(f_of_z)
F_of_z = sp.integrate(f_of_z, z)
sp.pprint('\n' +'F_of_z:')
sp.pprint(F_of_z)
c_b_of_z = (e_b_of_z.subs(z, 0) + F_of_z)/(1 - z)**2
sp.pprint('\n' +'c_b_of_z:')
sp.pprint(c_b_of_z)
c_b_of_n = sp.series(c_b_of_z, z, 0, 10)
sp.pprint('\n' +'c_b_of_n:')
sp.pprint(c_b_of_n)
开发者ID:ricksladkey,项目名称:analysis-of-algorithms,代码行数:55,代码来源:exercise_6_43.py
示例4: test_sec
def test_sec():
x = symbols('x', real=True)
z = symbols('z')
assert sec.nargs == 1
assert sec(0) == 1
assert sec(pi) == -1
assert sec(pi/2) == oo
assert sec(-pi/2) == oo
assert sec(pi/6) == 2*sqrt(3)/3
assert sec(pi/3) == 2
assert sec(5*pi/2) == oo
assert sec(9*pi/7) == -sec(2*pi/7)
assert sec(I) == 1/cosh(1)
assert sec(x*I) == 1/cosh(x)
assert sec(-x) == sec(x)
assert sec(x).rewrite(exp) == 1/(exp(I*x)/2 + exp(-I*x)/2)
assert sec(x).rewrite(sin) == sec(x)
assert sec(x).rewrite(cos) == 1/cos(x)
assert sec(x).rewrite(tan) == (tan(x/2)**2 + 1)/(-tan(x/2)**2 + 1)
assert sec(x).rewrite(pow) == sec(x)
assert sec(x).rewrite(sqrt) == sec(x)
assert sec(z).conjugate() == sec(conjugate(z))
assert (sec(z).as_real_imag() ==
(cos(re(z))*cosh(im(z))/(sin(re(z))**2*sinh(im(z))**2 +
cos(re(z))**2*cosh(im(z))**2),
sin(re(z))*sinh(im(z))/(sin(re(z))**2*sinh(im(z))**2 +
cos(re(z))**2*cosh(im(z))**2)))
assert sec(x).expand(trig=True) == 1/cos(x)
assert sec(2*x).expand(trig=True) == 1/(2*cos(x)**2 - 1)
assert sec(x).is_real == True
assert sec(z).is_real == None
assert sec(x).as_leading_term() == sec(x)
assert sec(0).is_bounded == True
assert sec(x).is_bounded == None
assert sec(pi/2).is_bounded == False
assert series(sec(x), x, x0=0, n=6) == 1 + x**2/2 + 5*x**4/24 + O(x**6)
# https://code.google.com/p/sympy/issues/detail?id=4067
assert series(sqrt(sec(x))) == 1 + x**2/4 + 7*x**4/96 + O(x**6)
# https://code.google.com/p/sympy/issues/detail?id=4068
assert (series(sqrt(sec(x)), x, x0=pi*3/2, n=4) ==
1/sqrt(x) +x**(S(3)/2)/12 + x**(S(7)/2)/160 + O(x**4))
assert sec(x).diff(x) == tan(x)*sec(x)
开发者ID:romanstingler,项目名称:sympy,代码行数:55,代码来源:test_trigonometric.py
示例5: test_2124
def test_2124():
assert series(1, x) == 1
assert S(0).lseries(x).next() == 0
assert cos(x).series() == cos(x).series(x)
raises(ValueError, lambda: cos(x + y).series())
raises(ValueError, lambda: x.series(dir=""))
assert (cos(x).series(x, 1).removeO().subs(x, x - 1) -
cos(x + 1).series(x).removeO().subs(x, x - 1)).expand() == 0
e = cos(x).series(x, 1, n=None)
assert [e.next() for i in range(2)] == [cos(1), -((x - 1)*sin(1))]
e = cos(x).series(x, 1, n=None, dir='-')
assert [e.next() for i in range(2)] == [cos(1), (1 - x)*sin(1)]
# the following test is exact so no need for x -> x - 1 replacement
assert abs(x).series(x, 1, dir='-') == x
assert exp(x).series(x, 1, dir='-', n=3).removeO().subs(x, x - 1) == \
E + E*(x - 1) + E*(x - 1)**2/2
D = Derivative
assert D(x**2 + x**3*y**2, x, 2, y, 1).series(x).doit() == 12*x*y
assert D(cos(x), x).lseries().next() == D(1, x)
assert D(
exp(x), x).series(n=3) == D(1, x) + D(x, x) + D(x**2/2, x) + O(x**3)
assert Integral(x, (x, 1, 3), (y, 1, x)).series(x) == -4 + 4*x
assert (1 + x + O(x**2)).getn() == 2
assert (1 + x).getn() is None
assert ((1/sin(x))**oo).series() == oo
logx = Symbol('logx')
assert ((sin(x))**y).nseries(x, n=1, logx=logx) \
== exp(y*logx) + O(x*exp(y*logx), x)
raises(NotImplementedError, lambda: series(Function("f")(x)))
assert sin(1/x).series(x, oo, n=5) == 1/x - 1/(6*x**3)
assert abs(x).series(x, oo, n=5, dir='+') == x
assert abs(x).series(x, -oo, n=5, dir='-') == -x
assert abs(-x).series(x, oo, n=5, dir='+') == x
assert abs(-x).series(x, -oo, n=5, dir='-') == -x
assert exp(x*log(x)).series(n=3) == \
1 + x*log(x) + x**2*log(x)**2/2 + O(x**3*log(x)**3)
# XXX is this right? If not, fix "ngot > n" handling in expr.
p = Symbol('p', positive=True)
assert exp(sqrt(p)**3*log(p)).series(n=3) == \
1 + p**S('3/2')*log(p) + O(p**3*log(p)**3)
assert exp(sin(x)*log(x)).series(n=2) == 1 + x*log(x) + O(x**2*log(x)**2)
开发者ID:jenshnielsen,项目名称:sympy,代码行数:50,代码来源:test_series.py
示例6: test_airybiprime
def test_airybiprime():
z = Symbol('z', real=False)
t = Symbol('t', negative=True)
p = Symbol('p', positive=True)
assert isinstance(airybiprime(z), airybiprime)
assert airybiprime(0) == 3**(S(1)/6)/gamma(S(1)/3)
assert airybiprime(oo) == oo
assert airybiprime(-oo) == 0
assert diff(airybiprime(z), z) == z*airybi(z)
assert series(airybiprime(z), z, 0, 3) == (
3**(S(1)/6)/gamma(S(1)/3) + 3**(S(5)/6)*z**2/(6*gamma(S(2)/3)) + O(z**3))
assert airybiprime(z).rewrite(hyper) == (
3**(S(5)/6)*z**2*hyper((), (S(5)/3,), z**S(3)/9)/(6*gamma(S(2)/3)) +
3**(S(1)/6)*hyper((), (S(1)/3,), z**S(3)/9)/gamma(S(1)/3))
assert isinstance(airybiprime(z).rewrite(besselj), airybiprime)
assert airyai(t).rewrite(besselj) == (
sqrt(-t)*(besselj(-S(1)/3, 2*(-t)**(S(3)/2)/3) +
besselj(S(1)/3, 2*(-t)**(S(3)/2)/3))/3)
assert airybiprime(z).rewrite(besseli) == (
sqrt(3)*(z**2*besseli(S(2)/3, 2*z**(S(3)/2)/3)/(z**(S(3)/2))**(S(2)/3) +
(z**(S(3)/2))**(S(2)/3)*besseli(-S(2)/3, 2*z**(S(3)/2)/3))/3)
assert airybiprime(p).rewrite(besseli) == (
sqrt(3)*p*(besseli(-S(2)/3, 2*p**(S(3)/2)/3) + besseli(S(2)/3, 2*p**(S(3)/2)/3))/3)
assert expand_func(airybiprime(2*(3*z**5)**(S(1)/3))) == (
sqrt(3)*(z**(S(5)/3)/(z**5)**(S(1)/3) - 1)*airyaiprime(2*3**(S(1)/3)*z**(S(5)/3))/2 +
(z**(S(5)/3)/(z**5)**(S(1)/3) + 1)*airybiprime(2*3**(S(1)/3)*z**(S(5)/3))/2)
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:33,代码来源:test_bessel.py
示例7: test_airyai
def test_airyai():
z = Symbol('z', real=False)
t = Symbol('t', negative=True)
p = Symbol('p', positive=True)
assert isinstance(airyai(z), airyai)
assert airyai(0) == 3**(S(1)/3)/(3*gamma(S(2)/3))
assert airyai(oo) == 0
assert airyai(-oo) == 0
assert diff(airyai(z), z) == airyaiprime(z)
assert series(airyai(z), z, 0, 3) == (
3**(S(5)/6)*gamma(S(1)/3)/(6*pi) - 3**(S(1)/6)*z*gamma(S(2)/3)/(2*pi) + O(z**3))
assert airyai(z).rewrite(hyper) == (
-3**(S(2)/3)*z*hyper((), (S(4)/3,), z**S(3)/9)/(3*gamma(S(1)/3)) +
3**(S(1)/3)*hyper((), (S(2)/3,), z**S(3)/9)/(3*gamma(S(2)/3)))
assert isinstance(airyai(z).rewrite(besselj), airyai)
assert airyai(t).rewrite(besselj) == (
sqrt(-t)*(besselj(-S(1)/3, 2*(-t)**(S(3)/2)/3) +
besselj(S(1)/3, 2*(-t)**(S(3)/2)/3))/3)
assert airyai(z).rewrite(besseli) == (
-z*besseli(S(1)/3, 2*z**(S(3)/2)/3)/(3*(z**(S(3)/2))**(S(1)/3)) +
(z**(S(3)/2))**(S(1)/3)*besseli(-S(1)/3, 2*z**(S(3)/2)/3)/3)
assert airyai(p).rewrite(besseli) == (
sqrt(p)*(besseli(-S(1)/3, 2*p**(S(3)/2)/3) -
besseli(S(1)/3, 2*p**(S(3)/2)/3))/3)
assert expand_func(airyai(2*(3*z**5)**(S(1)/3))) == (
-sqrt(3)*(-1 + (z**5)**(S(1)/3)/z**(S(5)/3))*airybi(2*3**(S(1)/3)*z**(S(5)/3))/6 +
(1 + (z**5)**(S(1)/3)/z**(S(5)/3))*airyai(2*3**(S(1)/3)*z**(S(5)/3))/2)
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:34,代码来源:test_bessel.py
示例8: expectation
def expectation(self, expr, var, evaluate=True, **kwargs):
""" Expectation of expression over distribution """
# TODO: support discrete sets with non integer stepsizes
if evaluate:
try:
p = poly(expr, var)
t = Dummy('t', real=True)
mgf = self.moment_generating_function(t)
deg = p.degree()
taylor = poly(series(mgf, t, 0, deg + 1).removeO(), t)
result = 0
for k in range(deg+1):
result += p.coeff_monomial(var ** k) * taylor.coeff_monomial(t ** k) * factorial(k)
return result
except PolynomialError:
return summation(expr * self.pdf(var),
(var, self.set.inf, self.set.sup), **kwargs)
else:
return Sum(expr * self.pdf(var),
(var, self.set.inf, self.set.sup), **kwargs)
开发者ID:normalhuman,项目名称:sympy,代码行数:26,代码来源:drv.py
示例9: t_expand
def t_expand(expr, max_deg):
"""
Takes an expression f(x,y) and computes the Taylor expansion
in x and y up to bi-degree fixed by max_deg.
For example:
x / (1 - y)
with value of max_deg = 3 will give
x + x * y
up to bi-degree 2.
"""
f = expr.subs([(x, t*x), (y, t*y)])
return series(f, t, 0, max_deg).removeO().subs(t, 1)
开发者ID:chan-y-park,项目名称:mose,代码行数:12,代码来源:kswcf.py
示例10: t_degree
def t_degree(expr, max_deg):
"""
Takes an expression f(x,y) and computes the Taylor expansion
in x and y up to bi-degree fixed by max_deg. Then, picks the term
of highest bi-degree, and returns the value of the degree.
For example:
x / (1 - y)
with value of max_deg = 3 will give
t * x + t**2 * x * y
up to bi-degree 2. Will return 2.
"""
f = expr.subs([(x, t*x), (y, t*y)])
return degree(series(f, t, 0, max_deg).removeO(), t)
开发者ID:chan-y-park,项目名称:mose,代码行数:13,代码来源:kswcf.py
示例11: t_min_degree
def t_min_degree(expr, max_deg, large_number=1000):
"""
Takes an expression f(x,y) and computes the Taylor expansion
in x and y up to bi-degree fixed by max_deg. Then, picks the term
of lowest bi-degree.
For example:
x / (1 - y)
with value of max_deg = 3 will give
t * x + t**2 * x * y
up to bi-degree 2. Will return x.
"""
f = expr.subs([(x, x / t), (y, y / t)])
f_t_series = t**large_number * series(f, t, 0, max_deg).removeO()
leading_term = LT(f_t_series.expand(), t).subs(t, 1)
return leading_term
开发者ID:chan-y-park,项目名称:mose,代码行数:15,代码来源:kswcf.py
示例12: expectation
def expectation(self, expr, var, evaluate=True, **kwargs):
""" Expectation of expression over distribution """
if evaluate:
try:
p = poly(expr, var)
t = Dummy('t', real=True)
mgf = self._moment_generating_function(t)
if mgf is None:
return integrate(expr * self.pdf(var), (var, self.set), **kwargs)
deg = p.degree()
taylor = poly(series(mgf, t, 0, deg + 1).removeO(), t)
result = 0
for k in range(deg+1):
result += p.coeff_monomial(var ** k) * taylor.coeff_monomial(t ** k) * factorial(k)
return result
except PolynomialError:
return integrate(expr * self.pdf(var), (var, self.set), **kwargs)
else:
return Integral(expr * self.pdf(var), (var, self.set), **kwargs)
开发者ID:Lenqth,项目名称:sympy,代码行数:19,代码来源:crv.py
示例13: _get_dict
def _get_dict(self, other):
"""
Returns a dictionary representing the (exponent, coefficient) pairs
of the Puiseux series expansion of `other`.
If `other` is a `PuiseuxSeries` then we take the minimum order
of `other` and self. If `other is a SymPy expression then we
compute the Taylor series in (x-alpha) of other up to `self.order`.
"""
# if other is a Puiseux series (also centered at self.alpha)
# then the order of the new puiseux series is the smaller of
# the two
if isinstance(other, PuiseuxSeries):
if self.alpha != other.alpha:
raise ValueError("Puiseux series must be centered at " + \
"the same point.")
order = min(self.order, other.order)
d = other.d
# if other is a SymPy Expr then compute the series expansion
# of other up to self's order and store the exponent, coeff
# pairs in d
elif isinstance(other, sympy.Expr):
d = {}
order = self.order
s = sympy.series(other, self.var, x0=self.alpha, n=None)
for term in s:
# we have to shift because SymPy has trouble
# collecting expressions such as c*(x-a) in terms of
# (x-a). Example: 1-x should be -1*(x-1) but SymPy
# cannot detect this.
term = term.subs(x,x+self.alpha)
coeff, exp = term.as_coeff_exponent(self.var)
if exp < order:
d[exp] = coeff
else:
break
return order,d
开发者ID:mkaralus,项目名称:abelfunctions,代码行数:40,代码来源:puiseux.py
示例14: get_coefficients
def get_coefficients(function, p, x0, n):
taylor_series = sp.series(expr=function, x=p, x0=x0, n=n).removeO()
coefficients_dict_sympy_pow_keys = taylor_series.as_coefficients_dict()
coefficients_dict_string_keys = {}
for key in coefficients_dict_sympy_pow_keys.keys():
coefficients_dict_string_keys[str(key)] = coefficients_dict_sympy_pow_keys[key]
taylor_coefficients = []
for i in range(n):
if i == 0:
key = '1'
elif i == 1:
key = 'p'
else:
key = "(p - 0.5)**{}".format(i)
taylor_coefficients.append( coefficients_dict_string_keys[key] / (2**i) )
coeffs = [ sp.N(c, precision) for c in taylor_coefficients ]
return coeffs
开发者ID:tripatheea,项目名称:Riemann-Zeta,代码行数:24,代码来源:riemann_siegel_taylor_series.py
示例15: test_exp2
def test_exp2():
e1 = exp(cos(x)).series(x, 0)
e2 = series(exp(cos(x)), x, 0)
assert e1 == e2
开发者ID:abhishekkumawat23,项目名称:sympy,代码行数:4,代码来源:test_series.py
示例16: test_exp
def test_exp():
e1 = exp(x).series(x, 0)
e2 = series(exp(x), x, 0)
assert e1 == e2
开发者ID:abhishekkumawat23,项目名称:sympy,代码行数:4,代码来源:test_series.py
示例17: test_cos
def test_cos():
e1 = cos(x).series(x, 0)
e2 = series(cos(x), x, 0)
assert e1 == e2
开发者ID:abhishekkumawat23,项目名称:sympy,代码行数:4,代码来源:test_series.py
示例18:
sym_DxyyyG_near = pickle.load(open(prefix+'DxyyyG_near.dat','r'))
sym_DyyyyG_near = pickle.load(open(prefix+'DyyyyG_near.dat','r'))
sym_DxxxxxG_near = pickle.load(open(prefix+'DxxxxxG_near.dat','r'))
sym_DxxxxyG_near = pickle.load(open(prefix+'DxxxxyG_near.dat','r'))
sym_DxxxyyG_near = pickle.load(open(prefix+'DxxxyyG_near.dat','r'))
sym_DxxyyyG_near = pickle.load(open(prefix+'DxxyyyG_near.dat','r'))
sym_DxyyyyG_near = pickle.load(open(prefix+'DxyyyyG_near.dat','r'))
sym_DyyyyyG_near = pickle.load(open(prefix+'DyyyyyG_near.dat','r'))
print "Complete."
else:
print "Calculating derivatives of kernel symbolically..."
rr = x**2 + y**2
rho = rr / delta**2
sym_DxG = x*(sp.exp( - rho ) - 1 )/(2*sp.pi*rr)
sym_DyG = y*(sp.exp( - rho ) - 1 )/(2*sp.pi*rr)
sym_DxG_near = sp.series(sp.series(sym_DxG,x).removeO()\
,y).removeO()
sym_DyG_near = sp.series(sp.series(sym_DyG,x).removeO()\
,y).removeO()
pickle.dump(sym_DxG,open(prefix+'DxG.dat','w'))
pickle.dump(sym_DyG,open(prefix+'DyG.dat','w'))
pickle.dump(sym_DxG_near,open(prefix+'DxG_near.dat','w'))
pickle.dump(sym_DyG_near,open(prefix+'DyG_near.dat','w'))
print "Computed first order derivatives"
sym_DxxG = sp.diff( sym_DxG , x )
sym_DxyG = sp.diff( sym_DxG , y )
sym_DyyG = sp.diff( sym_DyG , y )
sym_DxxG_near = sp.series(sp.series(sym_DxxG,x).removeO()\
,y).removeO()
sym_DxyG_near = sp.series(sp.series(sym_DxyG,x).removeO()\
,y).removeO()
sym_DyyG_near = sp.series(sp.series(sym_DyyG,x).removeO()\
开发者ID:hoj201,项目名称:jet_vortex,代码行数:32,代码来源:jet_vortex_lib.py
示例19: exercise_5_3
def exercise_5_3():
u, z = sp.symbols('u, z')
quadratic = z*u**2 - u + z
u_of_z = sp.simplify(sp.solve(quadratic, u)[0])
sp.pprint(u_of_z)
sp.pprint(sp.series(u_of_z, z, 0, 13), num_columns=100)
开发者ID:ricksladkey,项目名称:analysis-of-algorithms,代码行数:6,代码来源:exercise_5_3.py
示例20: test_issue_14885
def test_issue_14885():
assert series(x**(-S(3)/2)*exp(x), x, 0) == (x**(-S(3)/2) + 1/sqrt(x) +
sqrt(x)/2 + x**(S(3)/2)/6 + x**(S(5)/2)/24 + x**(S(7)/2)/120 +
x**(S(9)/2)/720 + x**(S(11)/2)/5040 + O(x**6))
开发者ID:asmeurer,项目名称:sympy,代码行数:4,代码来源:test_series.py
注:本文中的sympy.series函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论