本文整理汇总了Python中sympy.chebyshevu函数的典型用法代码示例。如果您正苦于以下问题:Python chebyshevu函数的具体用法?Python chebyshevu怎么用?Python chebyshevu使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了chebyshevu函数的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_manualintegrate_orthogonal_poly
def test_manualintegrate_orthogonal_poly():
n = symbols('n')
a, b = 7, S(5)/3
polys = [jacobi(n, a, b, x), gegenbauer(n, a, x), chebyshevt(n, x),
chebyshevu(n, x), legendre(n, x), hermite(n, x), laguerre(n, x),
assoc_laguerre(n, a, x)]
for p in polys:
integral = manualintegrate(p, x)
for deg in [-2, -1, 0, 1, 3, 5, 8]:
# some accept negative "degree", some do not
try:
p_subbed = p.subs(n, deg)
except ValueError:
continue
assert (integral.subs(n, deg).diff(x) - p_subbed).expand() == 0
# can also integrate simple expressions with these polynomials
q = x*p.subs(x, 2*x + 1)
integral = manualintegrate(q, x)
for deg in [2, 4, 7]:
assert (integral.subs(n, deg).diff(x) - q.subs(n, deg)).expand() == 0
# cannot integrate with respect to any other parameter
t = symbols('t')
for i in range(len(p.args) - 1):
new_args = list(p.args)
new_args[i] = t
assert isinstance(manualintegrate(p.func(*new_args), t), Integral)
开发者ID:gamechanger98,项目名称:sympy,代码行数:28,代码来源:test_manual.py
示例2: test_gegenbauer
def test_gegenbauer():
n = Symbol("n")
a = Symbol("a")
assert gegenbauer(0, a, x) == 1
assert gegenbauer(1, a, x) == 2*a*x
assert gegenbauer(2, a, x) == -a + x**2*(2*a**2 + 2*a)
assert gegenbauer(3, a, x) == \
x**3*(4*a**3/3 + 4*a**2 + 8*a/3) + x*(-2*a**2 - 2*a)
assert gegenbauer(-1, a, x) == 0
assert gegenbauer(n, S(1)/2, x) == legendre(n, x)
assert gegenbauer(n, 1, x) == chebyshevu(n, x)
assert gegenbauer(n, -1, x) == 0
X = gegenbauer(n, a, x)
assert isinstance(X, gegenbauer)
assert gegenbauer(n, a, -x) == (-1)**n*gegenbauer(n, a, x)
assert gegenbauer(n, a, 0) == 2**n*sqrt(pi) * \
gamma(a + n/2)/(gamma(a)*gamma(-n/2 + S(1)/2)*gamma(n + 1))
assert gegenbauer(n, a, 1) == gamma(2*a + n)/(gamma(2*a)*gamma(n + 1))
assert gegenbauer(n, Rational(3, 4), -1) == zoo
m = Symbol("m", positive=True)
assert gegenbauer(m, a, oo) == oo*RisingFactorial(a, m)
assert conjugate(gegenbauer(n, a, x)) == gegenbauer(n, conjugate(a), conjugate(x))
assert diff(gegenbauer(n, a, x), n) == Derivative(gegenbauer(n, a, x), n)
assert diff(gegenbauer(n, a, x), x) == 2*a*gegenbauer(n - 1, a + 1, x)
开发者ID:abhi98khandelwal,项目名称:sympy,代码行数:32,代码来源:test_spec_polynomials.py
示例3: test_jacobi
def test_jacobi():
n = Symbol("n")
a = Symbol("a")
b = Symbol("b")
assert jacobi(0, a, b, x) == 1
assert jacobi(1, a, b, x) == a/2 - b/2 + x*(a/2 + b/2 + 1)
assert jacobi(n, a, a, x) == RisingFactorial(a + 1, n)*gegenbauer(n, a + S(1)/2, x)/RisingFactorial(2*a + 1, n)
assert jacobi(n, a, -a, x) == ((-1)**a*(-x + 1)**(-a/2)*(x + 1)**(a/2)*assoc_legendre(n, a, x)*
factorial(-a + n)*gamma(a + n + 1)/(factorial(a + n)*gamma(n + 1)))
assert jacobi(n, -b, b, x) == ((-x + 1)**(b/2)*(x + 1)**(-b/2)*assoc_legendre(n, b, x)*
gamma(-b + n + 1)/gamma(n + 1))
assert jacobi(n, 0, 0, x) == legendre(n, x)
assert jacobi(n, S.Half, S.Half, x) == RisingFactorial(S(3)/2, n)*chebyshevu(n, x)/factorial(n + 1)
assert jacobi(n, -S.Half, -S.Half, x) == RisingFactorial(S(1)/2, n)*chebyshevt(n, x)/factorial(n)
X = jacobi(n, a, b, x)
assert isinstance(X, jacobi)
assert jacobi(n, a, b, -x) == (-1)**n*jacobi(n, b, a, x)
assert jacobi(n, a, b, 0) == 2**(-n)*gamma(a + n + 1)*hyper((-b - n, -n), (a + 1,), -1)/(factorial(n)*gamma(a + 1))
assert jacobi(n, a, b, 1) == RisingFactorial(a + 1, n)/factorial(n)
m = Symbol("m", positive=True)
assert jacobi(m, a, b, oo) == oo*RisingFactorial(a + b + m + 1, m)
assert conjugate(jacobi(m, a, b, x)) == jacobi(m, conjugate(a), conjugate(b), conjugate(x))
assert diff(jacobi(n,a,b,x), n) == Derivative(jacobi(n, a, b, x), n)
assert diff(jacobi(n,a,b,x), x) == (a/2 + b/2 + n/2 + S(1)/2)*jacobi(n - 1, a + 1, b + 1, x)
开发者ID:StefenYin,项目名称:sympy,代码行数:31,代码来源:test_spec_polynomials.py
示例4: test_chebyshev
def test_chebyshev():
raises(ValueError, lambda: chebyshevt(-1, x))
raises(ValueError, lambda: chebyshevu(-1, x))
assert chebyshevt(0, x) == 1
assert chebyshevt(1, x) == x
assert chebyshevt(2, x) == 2*x**2-1
assert chebyshevt(3, x) == 4*x**3-3*x
for n in range(1, 4):
for k in range(n):
z = chebyshevt_root(n, k)
assert chebyshevt(n, z) == 0
raises(ValueError, lambda: chebyshevt_root(n, n))
for n in range(1, 4):
for k in range(n):
z = chebyshevu_root(n, k)
assert chebyshevu(n, z) == 0
raises(ValueError, lambda: chebyshevu_root(n, n))
开发者ID:BDGLunde,项目名称:sympy,代码行数:17,代码来源:test_spec_polynomials.py
示例5: test_chebyshev
def test_chebyshev():
assert chebyshevt(0, x) == 1
assert chebyshevt(1, x) == x
assert chebyshevt(2, x) == 2*x**2-1
assert chebyshevt(3, x) == 4*x**3-3*x
for n in range(1, 4):
for k in range(n):
z = chebyshevt_root(n, k)
assert simplify(chebyshevt(n, z)) == 0
for n in range(1, 4):
for k in range(n):
z = chebyshevu_root(n, k)
assert simplify(chebyshevu(n, z)) == 0
开发者ID:tsarvey,项目名称:spinwaves,代码行数:13,代码来源:test_subs.py
示例6: test_latex_functions
def test_latex_functions():
assert latex(exp(x)) == "e^{x}"
assert latex(exp(1) + exp(2)) == "e + e^{2}"
f = Function("f")
assert latex(f(x)) == "\\operatorname{f}{\\left (x \\right )}"
beta = Function("beta")
assert latex(beta(x)) == r"\beta{\left (x \right )}"
assert latex(sin(x)) == r"\sin{\left (x \right )}"
assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}"
assert latex(sin(2 * x ** 2), fold_func_brackets=True) == r"\sin {2 x^{2}}"
assert latex(sin(x ** 2), fold_func_brackets=True) == r"\sin {x^{2}}"
assert latex(asin(x) ** 2) == r"\operatorname{asin}^{2}{\left (x \right )}"
assert latex(asin(x) ** 2, inv_trig_style="full") == r"\arcsin^{2}{\left (x \right )}"
assert latex(asin(x) ** 2, inv_trig_style="power") == r"\sin^{-1}{\left (x \right )}^{2}"
assert latex(asin(x ** 2), inv_trig_style="power", fold_func_brackets=True) == r"\sin^{-1} {x^{2}}"
assert latex(factorial(k)) == r"k!"
assert latex(factorial(-k)) == r"\left(- k\right)!"
assert latex(subfactorial(k)) == r"!k"
assert latex(subfactorial(-k)) == r"!\left(- k\right)"
assert latex(factorial2(k)) == r"k!!"
assert latex(factorial2(-k)) == r"\left(- k\right)!!"
assert latex(binomial(2, k)) == r"{\binom{2}{k}}"
assert latex(FallingFactorial(3, k)) == r"{\left(3\right)}_{\left(k\right)}"
assert latex(RisingFactorial(3, k)) == r"{\left(3\right)}^{\left(k\right)}"
assert latex(floor(x)) == r"\lfloor{x}\rfloor"
assert latex(ceiling(x)) == r"\lceil{x}\rceil"
assert latex(Min(x, 2, x ** 3)) == r"\min\left(2, x, x^{3}\right)"
assert latex(Min(x, y) ** 2) == r"\min\left(x, y\right)^{2}"
assert latex(Max(x, 2, x ** 3)) == r"\max\left(2, x, x^{3}\right)"
assert latex(Max(x, y) ** 2) == r"\max\left(x, y\right)^{2}"
assert latex(Abs(x)) == r"\lvert{x}\rvert"
assert latex(re(x)) == r"\Re{x}"
assert latex(re(x + y)) == r"\Re{x} + \Re{y}"
assert latex(im(x)) == r"\Im{x}"
assert latex(conjugate(x)) == r"\overline{x}"
assert latex(gamma(x)) == r"\Gamma\left(x\right)"
assert latex(Order(x)) == r"\mathcal{O}\left(x\right)"
assert latex(lowergamma(x, y)) == r"\gamma\left(x, y\right)"
assert latex(uppergamma(x, y)) == r"\Gamma\left(x, y\right)"
assert latex(cot(x)) == r"\cot{\left (x \right )}"
assert latex(coth(x)) == r"\coth{\left (x \right )}"
assert latex(re(x)) == r"\Re{x}"
assert latex(im(x)) == r"\Im{x}"
assert latex(root(x, y)) == r"x^{\frac{1}{y}}"
assert latex(arg(x)) == r"\arg{\left (x \right )}"
assert latex(zeta(x)) == r"\zeta\left(x\right)"
assert latex(zeta(x)) == r"\zeta\left(x\right)"
assert latex(zeta(x) ** 2) == r"\zeta^{2}\left(x\right)"
assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)"
assert latex(zeta(x, y) ** 2) == r"\zeta^{2}\left(x, y\right)"
assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)"
assert latex(dirichlet_eta(x) ** 2) == r"\eta^{2}\left(x\right)"
assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)"
assert latex(polylog(x, y) ** 2) == r"\operatorname{Li}_{x}^{2}\left(y\right)"
assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)"
assert latex(lerchphi(x, y, n) ** 2) == r"\Phi^{2}\left(x, y, n\right)"
assert latex(Ei(x)) == r"\operatorname{Ei}{\left (x \right )}"
assert latex(Ei(x) ** 2) == r"\operatorname{Ei}^{2}{\left (x \right )}"
assert latex(expint(x, y) ** 2) == r"\operatorname{E}_{x}^{2}\left(y\right)"
assert latex(Shi(x) ** 2) == r"\operatorname{Shi}^{2}{\left (x \right )}"
assert latex(Si(x) ** 2) == r"\operatorname{Si}^{2}{\left (x \right )}"
assert latex(Ci(x) ** 2) == r"\operatorname{Ci}^{2}{\left (x \right )}"
assert latex(Chi(x) ** 2) == r"\operatorname{Chi}^{2}{\left (x \right )}"
assert latex(jacobi(n, a, b, x)) == r"P_{n}^{\left(a,b\right)}\left(x\right)"
assert latex(jacobi(n, a, b, x) ** 2) == r"\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}"
assert latex(gegenbauer(n, a, x)) == r"C_{n}^{\left(a\right)}\left(x\right)"
assert latex(gegenbauer(n, a, x) ** 2) == r"\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}"
assert latex(chebyshevt(n, x)) == r"T_{n}\left(x\right)"
assert latex(chebyshevt(n, x) ** 2) == r"\left(T_{n}\left(x\right)\right)^{2}"
assert latex(chebyshevu(n, x)) == r"U_{n}\left(x\right)"
assert latex(chebyshevu(n, x) ** 2) == r"\left(U_{n}\left(x\right)\right)^{2}"
assert latex(legendre(n, x)) == r"P_{n}\left(x\right)"
assert latex(legendre(n, x) ** 2) == r"\left(P_{n}\left(x\right)\right)^{2}"
assert latex(assoc_legendre(n, a, x)) == r"P_{n}^{\left(a\right)}\left(x\right)"
assert latex(assoc_legendre(n, a, x) ** 2) == r"\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}"
assert latex(laguerre(n, x)) == r"L_{n}\left(x\right)"
assert latex(laguerre(n, x) ** 2) == r"\left(L_{n}\left(x\right)\right)^{2}"
assert latex(assoc_laguerre(n, a, x)) == r"L_{n}^{\left(a\right)}\left(x\right)"
assert latex(assoc_laguerre(n, a, x) ** 2) == r"\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}"
assert latex(hermite(n, x)) == r"H_{n}\left(x\right)"
assert latex(hermite(n, x) ** 2) == r"\left(H_{n}\left(x\right)\right)^{2}"
# Test latex printing of function names with "_"
assert latex(polar_lift(0)) == r"\operatorname{polar\_lift}{\left (0 \right )}"
assert latex(polar_lift(0) ** 3) == r"\operatorname{polar\_lift}^{3}{\left (0 \right )}"
开发者ID:kushal124,项目名称:sympy,代码行数:99,代码来源:test_latex.py
示例7: test_chebyshev
def test_chebyshev():
assert chebyshevt(0, x) == 1
assert chebyshevt(1, x) == x
assert chebyshevt(2, x) == 2*x**2 - 1
assert chebyshevt(3, x) == 4*x**3 - 3*x
for n in range(1, 4):
for k in range(n):
z = chebyshevt_root(n, k)
assert chebyshevt(n, z) == 0
raises(ValueError, lambda: chebyshevt_root(n, n))
for n in range(1, 4):
for k in range(n):
z = chebyshevu_root(n, k)
assert chebyshevu(n, z) == 0
raises(ValueError, lambda: chebyshevu_root(n, n))
n = Symbol("n")
X = chebyshevt(n, x)
assert isinstance(X, chebyshevt)
assert chebyshevt(n, -x) == (-1)**n*chebyshevt(n, x)
assert chebyshevt(-n, x) == chebyshevt(n, x)
assert chebyshevt(n, 0) == cos(pi*n/2)
assert chebyshevt(n, 1) == 1
assert conjugate(chebyshevt(n, x)) == chebyshevt(n, conjugate(x))
assert diff(chebyshevt(n, x), x) == n*chebyshevu(n - 1, x)
X = chebyshevu(n, x)
assert isinstance(X, chebyshevu)
assert chebyshevu(n, -x) == (-1)**n*chebyshevu(n, x)
assert chebyshevu(-n, x) == -chebyshevu(n - 2, x)
assert chebyshevu(n, 0) == cos(pi*n/2)
assert chebyshevu(n, 1) == n + 1
assert conjugate(chebyshevu(n, x)) == chebyshevu(n, conjugate(x))
assert diff(chebyshevu(n, x), x) == \
(-x*chebyshevu(n, x) + (n + 1)*chebyshevt(n + 1, x))/(x**2 - 1)
开发者ID:abhi98khandelwal,项目名称:sympy,代码行数:45,代码来源:test_spec_polynomials.py
示例8: test_latex_functions
#.........这里部分代码省略.........
assert latex(Min(x, y)**2) == r"\min\left(x, y\right)^{2}"
assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)"
assert latex(Max(x, y)**2) == r"\max\left(x, y\right)^{2}"
assert latex(Abs(x)) == r"\left\lvert{x}\right\rvert"
assert latex(re(x)) == r"\Re{x}"
assert latex(re(x + y)) == r"\Re{x} + \Re{y}"
assert latex(im(x)) == r"\Im{x}"
assert latex(conjugate(x)) == r"\overline{x}"
assert latex(gamma(x)) == r"\Gamma\left(x\right)"
assert latex(Order(x)) == r"\mathcal{O}\left(x\right)"
assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)'
assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)'
assert latex(cot(x)) == r'\cot{\left (x \right )}'
assert latex(coth(x)) == r'\coth{\left (x \right )}'
assert latex(re(x)) == r'\Re{x}'
assert latex(im(x)) == r'\Im{x}'
assert latex(root(x, y)) == r'x^{\frac{1}{y}}'
assert latex(arg(x)) == r'\arg{\left (x \right )}'
assert latex(zeta(x)) == r'\zeta\left(x\right)'
assert latex(zeta(x)) == r"\zeta\left(x\right)"
assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)"
assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)"
assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)"
assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)"
assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)"
assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)"
assert latex(
polylog(x, y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)"
assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)"
assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)"
assert latex(elliptic_k(z)) == r"K\left(z\right)"
assert latex(elliptic_k(z)**2) == r"K^{2}\left(z\right)"
assert latex(elliptic_f(x, y)) == r"F\left(x\middle| y\right)"
assert latex(elliptic_f(x, y)**2) == r"F^{2}\left(x\middle| y\right)"
assert latex(elliptic_e(x, y)) == r"E\left(x\middle| y\right)"
assert latex(elliptic_e(x, y)**2) == r"E^{2}\left(x\middle| y\right)"
assert latex(elliptic_e(z)) == r"E\left(z\right)"
assert latex(elliptic_e(z)**2) == r"E^{2}\left(z\right)"
assert latex(elliptic_pi(x, y, z)) == r"\Pi\left(x; y\middle| z\right)"
assert latex(elliptic_pi(x, y, z)**2) == \
r"\Pi^{2}\left(x; y\middle| z\right)"
assert latex(elliptic_pi(x, y)) == r"\Pi\left(x\middle| y\right)"
assert latex(elliptic_pi(x, y)**2) == r"\Pi^{2}\left(x\middle| y\right)"
assert latex(Ei(x)) == r'\operatorname{Ei}{\left (x \right )}'
assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left (x \right )}'
assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)'
assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left (x \right )}'
assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left (x \right )}'
assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left (x \right )}'
assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}{\left (x \right )}', latex(Chi(x)**2)
assert latex(
jacobi(n, a, b, x)) == r'P_{n}^{\left(a,b\right)}\left(x\right)'
assert latex(jacobi(n, a, b, x)**2) == r'\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}'
assert latex(
gegenbauer(n, a, x)) == r'C_{n}^{\left(a\right)}\left(x\right)'
assert latex(gegenbauer(n, a, x)**2) == r'\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
assert latex(chebyshevt(n, x)) == r'T_{n}\left(x\right)'
assert latex(
chebyshevt(n, x)**2) == r'\left(T_{n}\left(x\right)\right)^{2}'
assert latex(chebyshevu(n, x)) == r'U_{n}\left(x\right)'
assert latex(
chebyshevu(n, x)**2) == r'\left(U_{n}\left(x\right)\right)^{2}'
assert latex(legendre(n, x)) == r'P_{n}\left(x\right)'
assert latex(legendre(n, x)**2) == r'\left(P_{n}\left(x\right)\right)^{2}'
assert latex(
assoc_legendre(n, a, x)) == r'P_{n}^{\left(a\right)}\left(x\right)'
assert latex(assoc_legendre(n, a, x)**2) == r'\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
assert latex(laguerre(n, x)) == r'L_{n}\left(x\right)'
assert latex(laguerre(n, x)**2) == r'\left(L_{n}\left(x\right)\right)^{2}'
assert latex(
assoc_laguerre(n, a, x)) == r'L_{n}^{\left(a\right)}\left(x\right)'
assert latex(assoc_laguerre(n, a, x)**2) == r'\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
assert latex(hermite(n, x)) == r'H_{n}\left(x\right)'
assert latex(hermite(n, x)**2) == r'\left(H_{n}\left(x\right)\right)^{2}'
theta = Symbol("theta", real=True)
phi = Symbol("phi", real=True)
assert latex(Ynm(n,m,theta,phi)) == r'Y_{n}^{m}\left(\theta,\phi\right)'
assert latex(Ynm(n, m, theta, phi)**3) == r'\left(Y_{n}^{m}\left(\theta,\phi\right)\right)^{3}'
assert latex(Znm(n,m,theta,phi)) == r'Z_{n}^{m}\left(\theta,\phi\right)'
assert latex(Znm(n, m, theta, phi)**3) == r'\left(Z_{n}^{m}\left(\theta,\phi\right)\right)^{3}'
# Test latex printing of function names with "_"
assert latex(
polar_lift(0)) == r"\operatorname{polar\_lift}{\left (0 \right )}"
assert latex(polar_lift(
0)**3) == r"\operatorname{polar\_lift}^{3}{\left (0 \right )}"
assert latex(totient(n)) == r'\phi\left( n \right)'
# some unknown function name should get rendered with \operatorname
fjlkd = Function('fjlkd')
assert latex(fjlkd(x)) == r'\operatorname{fjlkd}{\left (x \right )}'
# even when it is referred to without an argument
assert latex(fjlkd) == r'\operatorname{fjlkd}'
开发者ID:Ronn3y,项目名称:sympy,代码行数:101,代码来源:test_latex.py
注:本文中的sympy.chebyshevu函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论