本文整理汇总了Python中sympy.ceiling函数的典型用法代码示例。如果您正苦于以下问题:Python ceiling函数的具体用法?Python ceiling怎么用?Python ceiling使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了ceiling函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_frac
def test_frac():
assert isinstance(frac(x), frac)
assert frac(oo) == AccumBounds(0, 1)
assert frac(-oo) == AccumBounds(0, 1)
assert frac(n) == 0
assert frac(nan) == nan
assert frac(Rational(4, 3)) == Rational(1, 3)
assert frac(-Rational(4, 3)) == Rational(2, 3)
r = Symbol('r', real=True)
assert frac(I*r) == I*frac(r)
assert frac(1 + I*r) == I*frac(r)
assert frac(0.5 + I*r) == 0.5 + I*frac(r)
assert frac(n + I*r) == I*frac(r)
assert frac(n + I*k) == 0
assert frac(x + I*x) == frac(x + I*x)
assert frac(x + I*n) == frac(x)
assert frac(x).rewrite(floor) == x - floor(x)
assert frac(x).rewrite(ceiling) == x + ceiling(-x)
assert frac(y).rewrite(floor).subs(y, pi) == frac(pi)
assert frac(y).rewrite(floor).subs(y, -E) == frac(-E)
assert frac(y).rewrite(ceiling).subs(y, -pi) == frac(-pi)
assert frac(y).rewrite(ceiling).subs(y, E) == frac(E)
assert Eq(frac(y), y - floor(y))
assert Eq(frac(y), y + ceiling(-y))
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:28,代码来源:test_integers.py
示例2: test_issue_8444_workingtests
def test_issue_8444_workingtests():
x = symbols('x')
assert Gt(x, floor(x)) == Gt(x, floor(x), evaluate=False)
assert Ge(x, floor(x)) == Ge(x, floor(x), evaluate=False)
assert Lt(x, ceiling(x)) == Lt(x, ceiling(x), evaluate=False)
assert Le(x, ceiling(x)) == Le(x, ceiling(x), evaluate=False)
i = symbols('i', integer=True)
assert (i > floor(i)) == False
assert (i < ceiling(i)) == False
开发者ID:asmeurer,项目名称:sympy,代码行数:9,代码来源:test_relational.py
示例3: test_issue_8444_nonworkingtests
def test_issue_8444_nonworkingtests():
x = symbols('x', real=True)
assert (x <= oo) == (x >= -oo) == True
x = symbols('x')
assert x >= floor(x)
assert (x < floor(x)) == False
assert x <= ceiling(x)
assert (x > ceiling(x)) == False
开发者ID:asmeurer,项目名称:sympy,代码行数:9,代码来源:test_relational.py
示例4: test_series
def test_series():
x, y = symbols('x,y')
assert floor(x).nseries(x, y, 100) == floor(y)
assert ceiling(x).nseries(x, y, 100) == ceiling(y)
assert floor(x).nseries(x, pi, 100) == 3
assert ceiling(x).nseries(x, pi, 100) == 4
assert floor(x).nseries(x, 0, 100) == 0
assert ceiling(x).nseries(x, 0, 100) == 1
assert floor(-x).nseries(x, 0, 100) == -1
assert ceiling(-x).nseries(x, 0, 100) == 0
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:10,代码来源:test_integers.py
示例5: test_issue_8853
def test_issue_8853():
p = Symbol('x', even=True, positive=True)
assert floor(-p - S.Half).is_even == False
assert floor(-p + S.Half).is_even == True
assert ceiling(p - S.Half).is_even == True
assert ceiling(p + S.Half).is_even == False
assert get_integer_part(S.Half, -1, {}, True) == (0, 0)
assert get_integer_part(S.Half, 1, {}, True) == (1, 0)
assert get_integer_part(-S.Half, -1, {}, True) == (-1, 0)
assert get_integer_part(-S.Half, 1, {}, True) == (0, 0)
开发者ID:nickle8424,项目名称:sympy,代码行数:11,代码来源:test_evalf.py
示例6: test_upretty_ceiling
def test_upretty_ceiling():
assert upretty(ceiling(x)) == u'⌈x⌉'
u = upretty( ceiling(1 / (y - ceiling(x))) )
s = \
u"""\
⎡ 1 ⎤
⎢───────⎥
⎢y - ⌈x⌉⎥\
"""
assert u == s
开发者ID:Praveen-Ramanujam,项目名称:MobRAVE,代码行数:11,代码来源:test_pretty_unicode.py
示例7: test_evalf_integer_parts
def test_evalf_integer_parts():
a = floor(log(8)/log(2) - exp(-1000), evaluate=False)
b = floor(log(8)/log(2), evaluate=False)
assert a.evalf() == 3
assert b.evalf() == 3
# equals, as a fallback, can still fail but it might succeed as here
assert ceiling(10*(sin(1)**2 + cos(1)**2)) == 10
assert int(floor(factorial(50)/E, evaluate=False).evalf(70)) == \
long(11188719610782480504630258070757734324011354208865721592720336800)
assert int(ceiling(factorial(50)/E, evaluate=False).evalf(70)) == \
long(11188719610782480504630258070757734324011354208865721592720336801)
assert int(floor((GoldenRatio**999 / sqrt(5) + Rational(1, 2)))
.evalf(1000)) == fibonacci(999)
assert int(floor((GoldenRatio**1000 / sqrt(5) + Rational(1, 2)))
.evalf(1000)) == fibonacci(1000)
assert ceiling(x).evalf(subs={x: 3}) == 3
assert ceiling(x).evalf(subs={x: 3*I}) == 3*I
assert ceiling(x).evalf(subs={x: 2 + 3*I}) == 2 + 3*I
assert ceiling(x).evalf(subs={x: 3.}) == 3
assert ceiling(x).evalf(subs={x: 3.*I}) == 3*I
assert ceiling(x).evalf(subs={x: 2. + 3*I}) == 2 + 3*I
assert float((floor(1.5, evaluate=False)+1/9).evalf()) == 1 + 1/9
assert float((floor(0.5, evaluate=False)+20).evalf()) == 20
开发者ID:cklb,项目名称:sympy,代码行数:26,代码来源:test_evalf.py
示例8: test_latex_functions
def test_latex_functions():
assert latex(exp(x)) == "$e^{x}$"
assert latex(exp(1) + exp(2)) == "$e + e^{2}$"
f = Function("f")
assert latex(f(x)) == "$\\operatorname{f}\\left(x\\right)$"
beta = Function("beta")
assert latex(beta(x)) == r"$\operatorname{beta}\left(x\right)$"
assert latex(sin(x)) == r"$\operatorname{sin}\left(x\right)$"
assert latex(sin(x), fold_func_brackets=True) == r"$\operatorname{sin}x$"
assert latex(sin(2 * x ** 2), fold_func_brackets=True) == r"$\operatorname{sin}2 x^{2}$"
assert latex(sin(x ** 2), fold_func_brackets=True) == r"$\operatorname{sin}x^{2}$"
assert latex(asin(x) ** 2) == r"$\operatorname{asin}^{2}\left(x\right)$"
assert latex(asin(x) ** 2, inv_trig_style="full") == r"$\operatorname{arcsin}^{2}\left(x\right)$"
assert latex(asin(x) ** 2, inv_trig_style="power") == r"$\operatorname{sin}^{-1}\left(x\right)^{2}$"
assert latex(asin(x ** 2), inv_trig_style="power", fold_func_brackets=True) == r"$\operatorname{sin}^{-1}x^{2}$"
assert latex(factorial(k)) == r"$k!$"
assert latex(factorial(-k)) == r"$\left(- k\right)!$"
assert latex(floor(x)) == r"$\lfloor{x}\rfloor$"
assert latex(ceiling(x)) == r"$\lceil{x}\rceil$"
assert latex(abs(x)) == r"$\lvert{x}\rvert$"
assert latex(re(x)) == r"$\Re{x}$"
assert latex(im(x)) == r"$\Im{x}$"
assert latex(conjugate(x)) == r"$\overline{x}$"
assert latex(gamma(x)) == r"$\operatorname{\Gamma}\left(x\right)$"
assert latex(Order(x)) == r"$\operatorname{\mathcal{O}}\left(x\right)$"
开发者ID:hazelnusse,项目名称:sympy-old,代码行数:31,代码来源:test_latex.py
示例9: test_ansi_math1_codegen
def test_ansi_math1_codegen():
# not included: log10
from sympy import acos, asin, atan, ceiling, cos, cosh, floor, log, ln, \
sin, sinh, sqrt, tan, tanh, N
x = symbols('x')
name_expr = [
("test_fabs", abs(x)),
("test_acos", acos(x)),
("test_asin", asin(x)),
("test_atan", atan(x)),
("test_ceil", ceiling(x)),
("test_cos", cos(x)),
("test_cosh", cosh(x)),
("test_floor", floor(x)),
("test_log", log(x)),
("test_ln", ln(x)),
("test_sin", sin(x)),
("test_sinh", sinh(x)),
("test_sqrt", sqrt(x)),
("test_tan", tan(x)),
("test_tanh", tanh(x)),
]
numerical_tests = []
for name, expr in name_expr:
for xval in 0.2, 0.5, 0.8:
expected = N(expr.subs(x, xval))
numerical_tests.append((name, (xval,), expected, 1e-14))
run_cc_test("ansi_math1", name_expr, numerical_tests)
开发者ID:Praveen-Ramanujam,项目名称:MobRAVE,代码行数:28,代码来源:test_codegen_c_cc.py
示例10: test_latex_functions
def test_latex_functions():
assert latex(exp(x)) == "$e^{x}$"
assert latex(exp(1)+exp(2)) == "$e + e^{2}$"
f = Function('f')
assert latex(f(x)) == '$\\operatorname{f}\\left(x\\right)$'
beta = Function('beta')
assert latex(beta(x)) == r"$\operatorname{beta}\left(x\right)$"
assert latex(sin(x)) == r"$\operatorname{sin}\left(x\right)$"
assert latex(sin(x), fold_func_brackets=True) == r"$\operatorname{sin}x$"
assert latex(sin(2*x**2), fold_func_brackets=True) == \
r"$\operatorname{sin}2 x^{2}$"
assert latex(factorial(k)) == r"$k!$"
assert latex(factorial(-k)) == r"$\left(- k\right)!$"
assert latex(floor(x)) == r"$\lfloor{x}\rfloor$"
assert latex(ceiling(x)) == r"$\lceil{x}\rceil$"
assert latex(abs(x)) == r"$\lvert{x}\rvert$"
assert latex(re(x)) == r"$\Re{x}$"
assert latex(im(x)) == r"$\Im{x}$"
assert latex(conjugate(x)) == r"$\overline{x}$"
assert latex(gamma(x)) == r"$\operatorname{\Gamma}\left(x\right)$"
assert latex(Order(x)) == r"$\operatorname{\mathcal{O}}\left(x\right)$"
开发者ID:jcockayne,项目名称:sympy-rkern,代码行数:26,代码来源:test_latex.py
示例11: eval
def eval(cls, ar, period):
# Our strategy is to evaluate the argument on the riemann surface of the
# logarithm, and then reduce.
# NOTE evidently this means it is a rather bad idea to use this with
# period != 2*pi and non-polar numbers.
from sympy import ceiling, oo, atan2, atan, polar_lift, pi, Mul
if not period.is_positive:
return None
if period == oo and isinstance(ar, principal_branch):
return periodic_argument(*ar.args)
if ar.func is polar_lift and period >= 2*pi:
return periodic_argument(ar.args[0], period)
if ar.is_Mul:
newargs = [x for x in ar.args if not x.is_positive]
if len(newargs) != len(ar.args):
return periodic_argument(Mul(*newargs), period)
unbranched = cls._getunbranched(ar)
if unbranched is None:
return None
if unbranched.has(periodic_argument, atan2, arg, atan):
return None
if period == oo:
return unbranched
if period != oo:
n = ceiling(unbranched/period - S(1)/2)*period
if not n.has(ceiling):
return unbranched - n
开发者ID:B-Rich,项目名称:sympy,代码行数:27,代码来源:complexes.py
示例12: test_bng_rounding
def test_bng_rounding():
""" Test Ceiling and Floor match BNG implementation of rounding """
x_sym = sympy.symbols('x')
for x in (-1.5, -1, -0.5, 0, 0.5, 1.0, 1.5):
for expr in (sympy.ceiling(x_sym), sympy.floor(x_sym)):
assert expr.subs({'x': x}) == eval(
_bng_print(expr), {}, {'rint': _rint, 'x': x})
开发者ID:LoLab-VU,项目名称:pysb,代码行数:7,代码来源:test_bng.py
示例13: test_evalf_integer_parts
def test_evalf_integer_parts():
a = floor(log(8)/log(2) - exp(-1000), evaluate=False)
b = floor(log(8)/log(2), evaluate=False)
raises(PrecisionExhausted, "a.evalf()")
assert a.evalf(chop=True) == 3
assert a.evalf(maxn=500) == 2
assert b.evalf() == 3
# equals, as a fallback, can still fail but it might succeed as here
assert ceiling(10*(sin(1)**2 + cos(1)**2)) == 10
assert int(floor(factorial(50)/E,evaluate=False).evalf()) == \
11188719610782480504630258070757734324011354208865721592720336800L
assert int(ceiling(factorial(50)/E,evaluate=False).evalf()) == \
11188719610782480504630258070757734324011354208865721592720336801L
assert int(floor((GoldenRatio**999 / sqrt(5) + Rational(1,2))).evalf(1000)) == fibonacci(999)
assert int(floor((GoldenRatio**1000 / sqrt(5) + Rational(1,2))).evalf(1000)) == fibonacci(1000)
开发者ID:vipulnsward,项目名称:sympy,代码行数:16,代码来源:test_evalf.py
示例14: test_intrinsic_math1_codegen
def test_intrinsic_math1_codegen():
# not included: log10
from sympy import acos, asin, atan, ceiling, cos, cosh, floor, log, ln, \
sin, sinh, sqrt, tan, tanh, N
x = symbols('x')
name_expr = [
("test_fabs", abs(x)),
("test_acos", acos(x)),
("test_asin", asin(x)),
("test_atan", atan(x)),
("test_cos", cos(x)),
("test_cosh", cosh(x)),
("test_log", log(x)),
("test_ln", ln(x)),
("test_sin", sin(x)),
("test_sinh", sinh(x)),
("test_sqrt", sqrt(x)),
("test_tan", tan(x)),
("test_tanh", tanh(x)),
]
numerical_tests = []
for name, expr in name_expr:
for xval in 0.2, 0.5, 0.8:
expected = N(expr.subs(x, xval))
numerical_tests.append((name, (xval,), expected, 1e-14))
for lang, commands in valid_lang_commands:
if lang == "C":
name_expr_C = [("test_floor", floor(x)), ("test_ceil", ceiling(x))]
else:
name_expr_C = []
run_test("intrinsic_math1", name_expr + name_expr_C, numerical_tests, lang, commands)
开发者ID:Aang,项目名称:sympy,代码行数:31,代码来源:test_codegen.py
示例15: test_ceiling_requires_robust_assumptions
def test_ceiling_requires_robust_assumptions():
assert limit(ceiling(sin(x)), x, 0, "+") == 1
assert limit(ceiling(sin(x)), x, 0, "-") == 0
assert limit(ceiling(cos(x)), x, 0, "+") == 1
assert limit(ceiling(cos(x)), x, 0, "-") == 1
assert limit(ceiling(5 + sin(x)), x, 0, "+") == 6
assert limit(ceiling(5 + sin(x)), x, 0, "-") == 5
assert limit(ceiling(5 + cos(x)), x, 0, "+") == 6
assert limit(ceiling(5 + cos(x)), x, 0, "-") == 6
开发者ID:AdrianPotter,项目名称:sympy,代码行数:9,代码来源:test_limits.py
示例16: test_ceiling
def test_ceiling():
assert ceiling(x).series(x) == 1
assert ceiling(-x).series(x) == 0
assert ceiling(sin(x)).series(x) == 1
assert ceiling(sin(-x)).series(x) == 0
assert ceiling(1 - cos(x)).series(x) == 1
assert ceiling(1 - cos(-x)).series(x) == 1
assert ceiling(x).series(x, 2) == 3
assert ceiling(-x).series(x, 2) == -2
开发者ID:QuaBoo,项目名称:sympy,代码行数:9,代码来源:test_nseries.py
示例17: test_dir
def test_dir():
assert abs(x).series(x, 0, dir="+") == x
assert abs(x).series(x, 0, dir="-") == -x
assert floor(x + 2).series(x, 0, dir='+') == 2
assert floor(x + 2).series(x, 0, dir='-') == 1
assert floor(x + 2.2).series(x, 0, dir='-') == 2
assert ceiling(x + 2.2).series(x, 0, dir='-') == 3
assert sin(x + y).series(x, 0, dir='-') == sin(x + y).series(x, 0, dir='+')
开发者ID:QuaBoo,项目名称:sympy,代码行数:8,代码来源:test_nseries.py
示例18: test_ceiling
def test_ceiling():
x = Symbol('x')
assert ceiling(x).series(x) == 1
assert ceiling(-x).series(x) == 0
assert ceiling(sin(x)).series(x) == 1
assert ceiling(sin(-x)).series(x) == 0
assert ceiling(1-cos(x)).series(x) == 1
assert ceiling(1-cos(-x)).series(x) == 1
assert ceiling(x).series(x, 2) == 3
assert ceiling(-x).series(x, 2) == -2
开发者ID:jcockayne,项目名称:sympy-rkern,代码行数:10,代码来源:test_nseries.py
示例19: solve
def solve(a, b):
s = sympy.fraction(sympy.Rational(a,b))
if sympy.log(s[1],2) % 1 != 0:
return 'impossible'
y = sympy.ceiling(sympy.log(s[1]/s[0],2))
if y > 40:
return 'impossible'
else:
return str(y)
开发者ID:nickgolob,项目名称:GCJ-Part-Elf,代码行数:9,代码来源:solution.py
示例20: test_own_module
def test_own_module():
f = lambdify(x, sin(x), math)
assert f(0)==0.0
f = lambdify(x, sympy.ceiling(x), math)
try:
f(4.5)
assert False
except NameError:
pass
开发者ID:minrk,项目名称:sympy,代码行数:9,代码来源:test_lambdify.py
注:本文中的sympy.ceiling函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论