• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python sympy.assoc_legendre函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sympy.assoc_legendre函数的典型用法代码示例。如果您正苦于以下问题:Python assoc_legendre函数的具体用法?Python assoc_legendre怎么用?Python assoc_legendre使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了assoc_legendre函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_jacobi

def test_jacobi():
    n = Symbol("n")
    a = Symbol("a")
    b = Symbol("b")

    assert jacobi(0, a, b, x) == 1
    assert jacobi(1, a, b, x) == a/2 - b/2 + x*(a/2 + b/2 + 1)

    assert jacobi(n, a, a, x) == RisingFactorial(a + 1, n)*gegenbauer(n, a + S(1)/2, x)/RisingFactorial(2*a + 1, n)
    assert jacobi(n, a, -a, x) == ((-1)**a*(-x + 1)**(-a/2)*(x + 1)**(a/2)*assoc_legendre(n, a, x)*
                                   factorial(-a + n)*gamma(a + n + 1)/(factorial(a + n)*gamma(n + 1)))
    assert jacobi(n, -b, b, x) == ((-x + 1)**(b/2)*(x + 1)**(-b/2)*assoc_legendre(n, b, x)*
                                   gamma(-b + n + 1)/gamma(n + 1))
    assert jacobi(n, 0, 0, x) == legendre(n, x)
    assert jacobi(n, S.Half, S.Half, x) == RisingFactorial(S(3)/2, n)*chebyshevu(n, x)/factorial(n + 1)
    assert jacobi(n, -S.Half, -S.Half, x) == RisingFactorial(S(1)/2, n)*chebyshevt(n, x)/factorial(n)

    X = jacobi(n, a, b, x)
    assert isinstance(X, jacobi)

    assert jacobi(n, a, b, -x) == (-1)**n*jacobi(n, b, a, x)
    assert jacobi(n, a, b, 0) == 2**(-n)*gamma(a + n + 1)*hyper((-b - n, -n), (a + 1,), -1)/(factorial(n)*gamma(a + 1))
    assert jacobi(n, a, b, 1) == RisingFactorial(a + 1, n)/factorial(n)

    m = Symbol("m", positive=True)
    assert jacobi(m, a, b, oo) == oo*RisingFactorial(a + b + m + 1, m)

    assert conjugate(jacobi(m, a, b, x)) == jacobi(m, conjugate(a), conjugate(b), conjugate(x))

    assert diff(jacobi(n,a,b,x), n) == Derivative(jacobi(n, a, b, x), n)
    assert diff(jacobi(n,a,b,x), x) == (a/2 + b/2 + n/2 + S(1)/2)*jacobi(n - 1, a + 1, b + 1, x)
开发者ID:StefenYin,项目名称:sympy,代码行数:31,代码来源:test_spec_polynomials.py


示例2: semiNormalizedSH_genericNumpy

def semiNormalizedSH_genericNumpy(e, a, target=None) :
	"""
	Returns the value of the sh components at the specified orientation.
	Version based on the generic formula, using sympy just for legendre.
	"""
	x,y,z = ead2xyz(e, a, 1)

	sn3d = np.zeros((order+1,order+1)) if target is None else target
	from sympy import factorial, sqrt, S
	import sympy as sp
	ra = math.radians(a)

	for l in xrange(order+1) :
		for m in xrange(-l,l+1) :
			absm = abs(m)
			factor = math.sqrt(2) if m else 1.
			sn3d[shi(l,m)] = (factor
				/ math.sqrt(
#					sp.factorial(l+absm) / sp.factorial(l-absm) # clearest for the next one
					np.prod(xrange(l-absm+1, l+absm+1))
					)
				* ( sp.assoc_legendre(l,absm,z) * S(-1)**m ).evalf()
				* ( np.cos(m*ra) if m>=0 else np.sin(absm*ra) )
				)
	return sn3d
开发者ID:rolodub,项目名称:thesis,代码行数:25,代码来源:sphericalHarmonics.py


示例3: get_norm_p

def get_norm_p(n, m, t):
    pnm = sympy.assoc_legendre(n, m, t)
    if m == 0:
        j = 1
    if m != 0:
        j = 2
    p1 = j * (2.0 * n + 1.0)
    p2 = float(mt.factorial(n-m))
    p3 = float(mt.factorial(n+m))
    p4 = p2/p3
    return (np.sqrt(p1 * p4)) * pnm
开发者ID:TimIainMarsh,项目名称:APG4001S,代码行数:11,代码来源:main.py


示例4: _get_Ylm

    def _get_Ylm(self, l, m):
        """
        Compute an expression for spherical harmonic of order (l,m)
        in terms of Cartesian unit vectors, :math:`\hat{z}`
        and :math:`\hat{x} + i \hat{y}`

        Parameters
        ----------
        l : int
            the degree of the harmonic
        m : int
            the order of the harmonic; |m| < l

        Returns
        -------
        expr :
            a sympy expression that corresponds to the
            requested Ylm

        References
        ----------
        https://en.wikipedia.org/wiki/Spherical_harmonics
        """
        import sympy as sp

        # the relevant cartesian and spherical symbols
        x, y, z, r = sp.symbols('x y z r', real=True, positive=True)
        xhat, yhat, zhat = sp.symbols('xhat yhat zhat', real=True, positive=True)
        xpyhat = sp.Symbol('xpyhat', complex=True)
        phi, theta = sp.symbols('phi theta')
        defs = [(sp.sin(phi), y/sp.sqrt(x**2+y**2)),
                (sp.cos(phi), x/sp.sqrt(x**2+y**2)),
                (sp.cos(theta), z/sp.sqrt(x**2 + y**2 + z**2))
                ]

        # the cos(theta) dependence encoded by the associated Legendre poly
        expr = sp.assoc_legendre(l, m, sp.cos(theta))

        # the exp(i*m*phi) dependence
        expr *= sp.expand_trig(sp.cos(m*phi)) + sp.I*sp.expand_trig(sp.sin(m*phi))

        # simplifying optimizations
        expr = sp.together(expr.subs(defs)).subs(x**2 + y**2 + z**2, r**2)
        expr = expr.expand().subs([(x/r, xhat), (y/r, yhat), (z/r, zhat)])
        expr = expr.factor().factor(extension=[sp.I]).subs(xhat+sp.I*yhat, xpyhat)
        expr = expr.subs(xhat**2 + yhat**2, 1-zhat**2).factor()

        # and finally add the normalization
        amp = sp.sqrt((2*l+1) / (4*numpy.pi) * sp.factorial(l-m) / sp.factorial(l+m))
        expr *= amp

        return expr
开发者ID:bccp,项目名称:nbodykit,代码行数:52,代码来源:threeptcf.py


示例5: test_assoc_legendre

def test_assoc_legendre():
    Plm = assoc_legendre
    Q = sqrt(1 - x**2)

    assert Plm(0, 0, x) == 1
    assert Plm(1, 0, x) == x
    assert Plm(1, 1, x) == -Q
    assert Plm(2, 0, x) == (3*x**2 - 1)/2
    assert Plm(2, 1, x) == -3*x*Q
    assert Plm(2, 2, x) == 3*Q**2
    assert Plm(3, 0, x) == (5*x**3 - 3*x)/2
    assert Plm(3, 1, x).expand() == (( 3*(1 - 5*x**2)/2 ).expand() * Q).expand()
    assert Plm(3, 2, x) == 15*x * Q**2
    assert Plm(3, 3, x) == -15 * Q**3

    # negative m
    assert Plm(1, -1, x) == -Plm(1, 1, x)/2
    assert Plm(2, -2, x) == Plm(2, 2, x)/24
    assert Plm(2, -1, x) == -Plm(2, 1, x)/6
    assert Plm(3, -3, x) == -Plm(3, 3, x)/720
    assert Plm(3, -2, x) == Plm(3, 2, x)/120
    assert Plm(3, -1, x) == -Plm(3, 1, x)/12

    n = Symbol("n")
    m = Symbol("m")

    X = Plm(n, m, x)
    assert isinstance(X, assoc_legendre)

    assert Plm(n, 0, x) == legendre(n, x)

    raises(ValueError, lambda: Plm(-1, 0, x))
    raises(ValueError, lambda: Plm(0, 1, x))

    assert conjugate(assoc_legendre(n, m, x)) == \
        assoc_legendre(n, conjugate(m), conjugate(x))
开发者ID:abhi98khandelwal,项目名称:sympy,代码行数:36,代码来源:test_spec_polynomials.py


示例6: getSphericalFunc

    def getSphericalFunc(self, l, m):
        if m < 0:
            m = abs(m)
            fac = sin(m*theta)
        else:
            fac = cos(m*theta)

        P = assoc_legendre(l, m, cos(phi))
        res = fac*P

        res = self.sphere2Cart(trigsimp(res))

        #Takes care of Abs when the argument is real..
        res = res.subs(r2d, r_2d).subs(r3d, r).subs(r, r3d).subs(r_2d, r2d)
        
        return res; 
开发者ID:rogerkj,项目名称:master,代码行数:16,代码来源:orbitalGenerator.py


示例7: sphericalHarmonic

def sphericalHarmonic(l,n) :
	"""Returns an evaluator for the seminormalized real spherical harmonic
	of order l, degree n as defined in:
	http://ambisonics.iem.at/xchange/format/ambisonics-xchange-format-appendix
	"""
	import sympy
	sign = -1 if n<0 else +1
	n = abs(n)
	x,y=sympy.var("x y")
	f= sympy.powsimp(sympy.trigsimp(
		sympy.assoc_legendre(l,n,sympy.sin(x)) *
		(-1)**n *
		sympy.sqrt((2*l+1) *
		(1 if n==0 else 2) *
		sympy.factorial(l-n)/sympy.factorial(l+n)) *
		(sympy.cos(n*y) if sign>=0 else sympy.sin(n*y))
		))
	return SympyEvaluator(f,x,y)
开发者ID:rolodub,项目名称:thesis,代码行数:18,代码来源:bmaudio.py


示例8: test_latex_functions

def test_latex_functions():
    assert latex(exp(x)) == "e^{x}"
    assert latex(exp(1) + exp(2)) == "e + e^{2}"

    f = Function("f")
    assert latex(f(x)) == "\\operatorname{f}{\\left (x \\right )}"

    beta = Function("beta")

    assert latex(beta(x)) == r"\beta{\left (x \right )}"
    assert latex(sin(x)) == r"\sin{\left (x \right )}"
    assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}"
    assert latex(sin(2 * x ** 2), fold_func_brackets=True) == r"\sin {2 x^{2}}"
    assert latex(sin(x ** 2), fold_func_brackets=True) == r"\sin {x^{2}}"

    assert latex(asin(x) ** 2) == r"\operatorname{asin}^{2}{\left (x \right )}"
    assert latex(asin(x) ** 2, inv_trig_style="full") == r"\arcsin^{2}{\left (x \right )}"
    assert latex(asin(x) ** 2, inv_trig_style="power") == r"\sin^{-1}{\left (x \right )}^{2}"
    assert latex(asin(x ** 2), inv_trig_style="power", fold_func_brackets=True) == r"\sin^{-1} {x^{2}}"

    assert latex(factorial(k)) == r"k!"
    assert latex(factorial(-k)) == r"\left(- k\right)!"

    assert latex(subfactorial(k)) == r"!k"
    assert latex(subfactorial(-k)) == r"!\left(- k\right)"

    assert latex(factorial2(k)) == r"k!!"
    assert latex(factorial2(-k)) == r"\left(- k\right)!!"

    assert latex(binomial(2, k)) == r"{\binom{2}{k}}"

    assert latex(FallingFactorial(3, k)) == r"{\left(3\right)}_{\left(k\right)}"
    assert latex(RisingFactorial(3, k)) == r"{\left(3\right)}^{\left(k\right)}"

    assert latex(floor(x)) == r"\lfloor{x}\rfloor"
    assert latex(ceiling(x)) == r"\lceil{x}\rceil"
    assert latex(Min(x, 2, x ** 3)) == r"\min\left(2, x, x^{3}\right)"
    assert latex(Min(x, y) ** 2) == r"\min\left(x, y\right)^{2}"
    assert latex(Max(x, 2, x ** 3)) == r"\max\left(2, x, x^{3}\right)"
    assert latex(Max(x, y) ** 2) == r"\max\left(x, y\right)^{2}"
    assert latex(Abs(x)) == r"\lvert{x}\rvert"
    assert latex(re(x)) == r"\Re{x}"
    assert latex(re(x + y)) == r"\Re{x} + \Re{y}"
    assert latex(im(x)) == r"\Im{x}"
    assert latex(conjugate(x)) == r"\overline{x}"
    assert latex(gamma(x)) == r"\Gamma\left(x\right)"
    assert latex(Order(x)) == r"\mathcal{O}\left(x\right)"
    assert latex(lowergamma(x, y)) == r"\gamma\left(x, y\right)"
    assert latex(uppergamma(x, y)) == r"\Gamma\left(x, y\right)"

    assert latex(cot(x)) == r"\cot{\left (x \right )}"
    assert latex(coth(x)) == r"\coth{\left (x \right )}"
    assert latex(re(x)) == r"\Re{x}"
    assert latex(im(x)) == r"\Im{x}"
    assert latex(root(x, y)) == r"x^{\frac{1}{y}}"
    assert latex(arg(x)) == r"\arg{\left (x \right )}"
    assert latex(zeta(x)) == r"\zeta\left(x\right)"

    assert latex(zeta(x)) == r"\zeta\left(x\right)"
    assert latex(zeta(x) ** 2) == r"\zeta^{2}\left(x\right)"
    assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)"
    assert latex(zeta(x, y) ** 2) == r"\zeta^{2}\left(x, y\right)"
    assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)"
    assert latex(dirichlet_eta(x) ** 2) == r"\eta^{2}\left(x\right)"
    assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)"
    assert latex(polylog(x, y) ** 2) == r"\operatorname{Li}_{x}^{2}\left(y\right)"
    assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)"
    assert latex(lerchphi(x, y, n) ** 2) == r"\Phi^{2}\left(x, y, n\right)"

    assert latex(Ei(x)) == r"\operatorname{Ei}{\left (x \right )}"
    assert latex(Ei(x) ** 2) == r"\operatorname{Ei}^{2}{\left (x \right )}"
    assert latex(expint(x, y) ** 2) == r"\operatorname{E}_{x}^{2}\left(y\right)"
    assert latex(Shi(x) ** 2) == r"\operatorname{Shi}^{2}{\left (x \right )}"
    assert latex(Si(x) ** 2) == r"\operatorname{Si}^{2}{\left (x \right )}"
    assert latex(Ci(x) ** 2) == r"\operatorname{Ci}^{2}{\left (x \right )}"
    assert latex(Chi(x) ** 2) == r"\operatorname{Chi}^{2}{\left (x \right )}"

    assert latex(jacobi(n, a, b, x)) == r"P_{n}^{\left(a,b\right)}\left(x\right)"
    assert latex(jacobi(n, a, b, x) ** 2) == r"\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}"
    assert latex(gegenbauer(n, a, x)) == r"C_{n}^{\left(a\right)}\left(x\right)"
    assert latex(gegenbauer(n, a, x) ** 2) == r"\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}"
    assert latex(chebyshevt(n, x)) == r"T_{n}\left(x\right)"
    assert latex(chebyshevt(n, x) ** 2) == r"\left(T_{n}\left(x\right)\right)^{2}"
    assert latex(chebyshevu(n, x)) == r"U_{n}\left(x\right)"
    assert latex(chebyshevu(n, x) ** 2) == r"\left(U_{n}\left(x\right)\right)^{2}"
    assert latex(legendre(n, x)) == r"P_{n}\left(x\right)"
    assert latex(legendre(n, x) ** 2) == r"\left(P_{n}\left(x\right)\right)^{2}"
    assert latex(assoc_legendre(n, a, x)) == r"P_{n}^{\left(a\right)}\left(x\right)"
    assert latex(assoc_legendre(n, a, x) ** 2) == r"\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}"
    assert latex(laguerre(n, x)) == r"L_{n}\left(x\right)"
    assert latex(laguerre(n, x) ** 2) == r"\left(L_{n}\left(x\right)\right)^{2}"
    assert latex(assoc_laguerre(n, a, x)) == r"L_{n}^{\left(a\right)}\left(x\right)"
    assert latex(assoc_laguerre(n, a, x) ** 2) == r"\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}"
    assert latex(hermite(n, x)) == r"H_{n}\left(x\right)"
    assert latex(hermite(n, x) ** 2) == r"\left(H_{n}\left(x\right)\right)^{2}"

    # Test latex printing of function names with "_"
    assert latex(polar_lift(0)) == r"\operatorname{polar\_lift}{\left (0 \right )}"
    assert latex(polar_lift(0) ** 3) == r"\operatorname{polar\_lift}^{3}{\left (0 \right )}"
开发者ID:kushal124,项目名称:sympy,代码行数:99,代码来源:test_latex.py


示例9: acustic_sh

def acustic_sh(l,m,a,z) :
	am = numpy.abs(m)
	if m<0 :
		return sh_normalization(l,am) * sympy.sin(am*a) * sympy.assoc_legendre(l,am,sympy.cos(z))
	else:
		return sh_normalization(l,am) * sympy.cos(am*a) * sympy.assoc_legendre(l,am,sympy.cos(z))
开发者ID:rolodub,项目名称:thesis,代码行数:6,代码来源:3dPlaneWaveDecoding.py


示例10: xrange

a0, z0 = 0, numpy.pi/2
epsilon = a*1e-15 + z*1e-15
order = 5
nSamples = 70
angles = numpy.arange(0,nSamples+1)*2*numpy.pi/nSamples
w = 2*math.pi*spectralRange/spectrumBins * numpy.arange(spectrumBins)

if False:
	print "Checking that the azimuthal formula is equivalent to the zenital formula"
	for l in xrange(0,order+1) :
	#	pattern1 = sum([sh_normalization2(l,m)*sympy.assoc_legendre(l,m,sympy.cos(z))*sympy.assoc_legendre(l,m,1) for m in xrange(0,l+1)])
	#	pattern1 = sh_normalization2(l,0)*sympy.assoc_legendre(l,0,sympy.cos(z))
		pattern1 = sh_normalization2(l,0)*sympy.legendre(l,sympy.cos(z))
		pylab.polar(angles, [ pattern1.subs(z,angle)/(2*l+1) for angle in angles ], label="Zenital %s"%l)

		pattern2 = sum([sh_normalization2(l,m)*sympy.cos(m*z)*sympy.assoc_legendre(l,m,0)**2 for m in xrange(0,l+1)])
		pylab.polar(angles, [ pattern2.subs(z,angle)/(2*l+1) for angle in angles ], label="Azimuthal %s"%l)
	pylab.title("Zenital vs Azimuthal variation",horizontalalignment='center', verticalalignment='baseline', position=(.5,-.1))
	pylab.rgrids(numpy.arange(.4,1,.2),angle=220)
	pylab.legend(loc=2)
	pylab.savefig(figurePath(__file__,"pdf"))
	pylab.show()
# We take the azimuthal formula which is faster
print "Computing component patterns"
patternComponents = [
	sh_normalization2(l,0)*sympy.legendre(l,sympy.cos(z))
	for l in xrange(0,order+1)
	]
for l, pattern in enumerate(patternComponents) :
	print "%i:"%l, pattern
开发者ID:rolodub,项目名称:thesis,代码行数:30,代码来源:3dPlaneWaveDecoding.py


示例11: test_J11

def test_J11():
    assert simplify(assoc_legendre(3, 1, x)) == simplify(-R(3, 2)*sqrt(1 - x**2)*(5*x**2 - 1))
开发者ID:batya239,项目名称:sympy,代码行数:2,代码来源:test_wester.py


示例12: test_J10

def test_J10():
    mu, nu = symbols('mu, nu', integer=True)
    assert assoc_legendre(nu, mu, 0) == 2**mu*sqrt(pi)/gamma((nu - mu)/2 + 1)/gamma((-nu - mu + 1)/2)
开发者ID:batya239,项目名称:sympy,代码行数:3,代码来源:test_wester.py


示例13: get_p

def get_p(n, m, t):
    return sympy.assoc_legendre(n, m, t)
开发者ID:jasrusable,项目名称:APG4001S,代码行数:2,代码来源:main.py


示例14: test_latex_functions


#.........这里部分代码省略.........
    assert latex(Min(x, y)**2) == r"\min\left(x, y\right)^{2}"
    assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)"
    assert latex(Max(x, y)**2) == r"\max\left(x, y\right)^{2}"
    assert latex(Abs(x)) == r"\left\lvert{x}\right\rvert"
    assert latex(re(x)) == r"\Re{x}"
    assert latex(re(x + y)) == r"\Re{x} + \Re{y}"
    assert latex(im(x)) == r"\Im{x}"
    assert latex(conjugate(x)) == r"\overline{x}"
    assert latex(gamma(x)) == r"\Gamma\left(x\right)"
    assert latex(Order(x)) == r"\mathcal{O}\left(x\right)"
    assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)'
    assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)'

    assert latex(cot(x)) == r'\cot{\left (x \right )}'
    assert latex(coth(x)) == r'\coth{\left (x \right )}'
    assert latex(re(x)) == r'\Re{x}'
    assert latex(im(x)) == r'\Im{x}'
    assert latex(root(x, y)) == r'x^{\frac{1}{y}}'
    assert latex(arg(x)) == r'\arg{\left (x \right )}'
    assert latex(zeta(x)) == r'\zeta\left(x\right)'

    assert latex(zeta(x)) == r"\zeta\left(x\right)"
    assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)"
    assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)"
    assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)"
    assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)"
    assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)"
    assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)"
    assert latex(
        polylog(x, y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)"
    assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)"
    assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)"

    assert latex(elliptic_k(z)) == r"K\left(z\right)"
    assert latex(elliptic_k(z)**2) == r"K^{2}\left(z\right)"
    assert latex(elliptic_f(x, y)) == r"F\left(x\middle| y\right)"
    assert latex(elliptic_f(x, y)**2) == r"F^{2}\left(x\middle| y\right)"
    assert latex(elliptic_e(x, y)) == r"E\left(x\middle| y\right)"
    assert latex(elliptic_e(x, y)**2) == r"E^{2}\left(x\middle| y\right)"
    assert latex(elliptic_e(z)) == r"E\left(z\right)"
    assert latex(elliptic_e(z)**2) == r"E^{2}\left(z\right)"
    assert latex(elliptic_pi(x, y, z)) == r"\Pi\left(x; y\middle| z\right)"
    assert latex(elliptic_pi(x, y, z)**2) == \
        r"\Pi^{2}\left(x; y\middle| z\right)"
    assert latex(elliptic_pi(x, y)) == r"\Pi\left(x\middle| y\right)"
    assert latex(elliptic_pi(x, y)**2) == r"\Pi^{2}\left(x\middle| y\right)"

    assert latex(Ei(x)) == r'\operatorname{Ei}{\left (x \right )}'
    assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left (x \right )}'
    assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)'
    assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left (x \right )}'
    assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left (x \right )}'
    assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left (x \right )}'
    assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}{\left (x \right )}', latex(Chi(x)**2)

    assert latex(
        jacobi(n, a, b, x)) == r'P_{n}^{\left(a,b\right)}\left(x\right)'
    assert latex(jacobi(n, a, b, x)**2) == r'\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}'
    assert latex(
        gegenbauer(n, a, x)) == r'C_{n}^{\left(a\right)}\left(x\right)'
    assert latex(gegenbauer(n, a, x)**2) == r'\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
    assert latex(chebyshevt(n, x)) == r'T_{n}\left(x\right)'
    assert latex(
        chebyshevt(n, x)**2) == r'\left(T_{n}\left(x\right)\right)^{2}'
    assert latex(chebyshevu(n, x)) == r'U_{n}\left(x\right)'
    assert latex(
        chebyshevu(n, x)**2) == r'\left(U_{n}\left(x\right)\right)^{2}'
    assert latex(legendre(n, x)) == r'P_{n}\left(x\right)'
    assert latex(legendre(n, x)**2) == r'\left(P_{n}\left(x\right)\right)^{2}'
    assert latex(
        assoc_legendre(n, a, x)) == r'P_{n}^{\left(a\right)}\left(x\right)'
    assert latex(assoc_legendre(n, a, x)**2) == r'\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
    assert latex(laguerre(n, x)) == r'L_{n}\left(x\right)'
    assert latex(laguerre(n, x)**2) == r'\left(L_{n}\left(x\right)\right)^{2}'
    assert latex(
        assoc_laguerre(n, a, x)) == r'L_{n}^{\left(a\right)}\left(x\right)'
    assert latex(assoc_laguerre(n, a, x)**2) == r'\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
    assert latex(hermite(n, x)) == r'H_{n}\left(x\right)'
    assert latex(hermite(n, x)**2) == r'\left(H_{n}\left(x\right)\right)^{2}'

    theta = Symbol("theta", real=True)
    phi = Symbol("phi", real=True)
    assert latex(Ynm(n,m,theta,phi)) == r'Y_{n}^{m}\left(\theta,\phi\right)'
    assert latex(Ynm(n, m, theta, phi)**3) == r'\left(Y_{n}^{m}\left(\theta,\phi\right)\right)^{3}'
    assert latex(Znm(n,m,theta,phi)) == r'Z_{n}^{m}\left(\theta,\phi\right)'
    assert latex(Znm(n, m, theta, phi)**3) == r'\left(Z_{n}^{m}\left(\theta,\phi\right)\right)^{3}'

    # Test latex printing of function names with "_"
    assert latex(
        polar_lift(0)) == r"\operatorname{polar\_lift}{\left (0 \right )}"
    assert latex(polar_lift(
        0)**3) == r"\operatorname{polar\_lift}^{3}{\left (0 \right )}"

    assert latex(totient(n)) == r'\phi\left( n \right)'

    # some unknown function name should get rendered with \operatorname
    fjlkd = Function('fjlkd')
    assert latex(fjlkd(x)) == r'\operatorname{fjlkd}{\left (x \right )}'
    # even when it is referred to without an argument
    assert latex(fjlkd) == r'\operatorname{fjlkd}'
开发者ID:Ronn3y,项目名称:sympy,代码行数:101,代码来源:test_latex.py


示例15: test_J11

def test_J11():
    assert assoc_legendre(3,1,x) == sqrt(1 - x**2)*(R(3,2) - R(15,2)*x**2)
开发者ID:jcockayne,项目名称:sympy-rkern,代码行数:2,代码来源:test_wester.py



注:本文中的sympy.assoc_legendre函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python sympy.atan函数代码示例发布时间:2022-05-27
下一篇:
Python sympy.ask函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap