本文整理汇总了Python中svmlight.classify函数的典型用法代码示例。如果您正苦于以下问题:Python classify函数的具体用法?Python classify怎么用?Python classify使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了classify函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: ball_only_classifier
def ball_only_classifier(circles, color_image, bonus_radius):
model = svmlight.read_model("./output/best_single_cup_model_for_ball")
ff = find_features()
# TODO: fix
label = 0
best_classification = 0.5
best_circle = None
best_circle_pixels = None
for c in circles[:6]:
pixels, circle = find_pixels(c, color_image, bonus_radius)
# create features for that circle
features = ff.generate_features(pixels, label)
features = parse_one_line(features)
print features
# run the classifier on that circle
classification = svmlight.classify(model, [features])
print classification
if classification[0] > best_classification:
best_classification = classification
best_circle = [c]
best_circle_pixels = pixels
# make a decision about whether that circle is circly enough
# cv2.imshow("Image processed", circle)
# cv2.waitKey()
# for the strict form of the classifier, I require that all of the detected circles
# are in fact circles. other classifiers may be more lenient
return best_circle, best_classification, best_circle_pixels
开发者ID:briantoth,项目名称:BeerPongButler,代码行数:28,代码来源:detectCups.py
示例2: main_svmlight
def main_svmlight():
# copied:
import svmlight
import pdb
training_data = syntheticData(30, 1)
test_data = syntheticData(30, 1)
#training_data = __import__('data').train0
#test_data = __import__('data').test0
print 'HERE 0'
print 'training_data is', training_data
print 'test_data is', test_data
# train a model based on the data
#pdb.set_trace()
print 'HERE 1'
model = svmlight.learn(training_data, type='regression', kernelType=2, verbosity=3)
print 'HERE 2'
# model data can be stored in the same format SVM-Light uses, for interoperability
# with the binaries.
svmlight.write_model(model, 'my_model.dat')
print 'HERE 3'
# classify the test data. this function returns a list of numbers, which represent
# the classifications.
#predictions = svmlight.classify(model, test_data)
pdb.set_trace()
predictions = svmlight.classify(model, training_data)
print 'HERE 4'
for p,example in zip(predictions, test_data):
print 'pred %.8f, actual %.8f' % (p, example[0])
开发者ID:elgold92,项目名称:QuadraTot,代码行数:34,代码来源:SVMStrategy.py
示例3: predict_proba
def predict_proba(self, data):
''' returns the confidence of being included in the positive class '''
dummy_target = np.zeros(data.shape[0])
svm_test_data = npToSVMLightFormat(data, dummy_target)
predictions = svmlight.classify(self.model, svm_test_data)
return np.array(predictions)
开发者ID:pyongjoo,项目名称:twitter-research,代码行数:7,代码来源:ml_tsvm.py
示例4: predict_proba
def predict_proba(self, X):
y = np.zeros(X.shape[0]).tolist()
test_data = self.toSvmlight(X, y)
scores = np.array(svmlight.classify(self.model, test_data))
scores = 1 / (1 + np.exp(-scores))
scores.shape = (len(scores),1)
scores = np.hstack([1-scores, scores])
return scores
开发者ID:pyongjoo,项目名称:ende,代码行数:8,代码来源:svm2.py
示例5: run_svm
def run_svm(article_count, feature_functions, kernel='polynomial', split=0.9, model_path='svm.model'):
# https://bitbucket.org/wcauchois/pysvmlight
articles, total_token_count = preprocess_wsj(article_count, feature_functions)
dictionary = Dictionary()
dictionary.add_one('ZZZZZ') # so that no features are labeled 0
data = []
for article in articles:
for sentence in article:
for tag, token_features in zip(sentence.def_tags, sentence.data):
# only use def / indef tokens
if tag in ('DEF', 'INDEF'):
features = dictionary.add(token_features)
features = sorted(list(set(features)))
feature_values = zip(features, [1]*len(features))
data.append((+1 if tag == 'DEF' else -1, feature_values))
train, test = bifurcate(data, split, shuffle=True)
# for corpus, name in [(train, 'train'), (test, 'test')]:
# write_svm(corpus, 'wsj_svm-%s.data' % name)
#####################
# do svm in Python...
model = svmlight.learn(train, type='classification', kernel=kernel)
# svmlight.learn options
# type: select between 'classification', 'regression', 'ranking' (preference ranking), and 'optimization'.
# kernel: select between 'linear', 'polynomial', 'rbf', and 'sigmoid'.
# verbosity: set the verbosity level (default 0).
# C: trade-off between training error and margin.
# poly_degree: parameter d in polynomial kernel.
# rbf_gamma: parameter gamma in rbf kernel.
# coef_lin
# coef_const
# costratio (corresponds to -j option to svm_learn)
svmlight.write_model(model, model_path)
gold_labels, test_feature_values = zip(*test)
# total = len(gold_labels)
test_pairs = [(0, feature_values) for feature_values in test_feature_values]
predictions = svmlight.classify(model, test_pairs)
correct, wrong = matches(
[(gold > 0) for gold in gold_labels],
[(prediction > 0) for prediction in predictions])
return dict(
total_articles_count=len(articles), # int
total_token_count=total_token_count, # int
train_count=len(train), # int
test_count=len(test), # int
kernel=kernel,
correct=correct,
wrong=wrong,
total=correct + wrong,
)
开发者ID:Balkanlii,项目名称:nlp,代码行数:58,代码来源:definiteness.py
示例6: test
def test(test_data, fmodel_name):
print ('[ test ] ===================')
model = svmlight.read_model(fmodel_name)
# classify the test data. this function returns a list of numbers, which represent
# the classifications.
predictions = svmlight.classify(model, test_data)
for p in predictions:
print '%.8f' % p
开发者ID:fangzheng354,项目名称:expert_finding,代码行数:9,代码来源:zmodel.py
示例7: runSVMLight
def runSVMLight(trainName,testName, kerneltype, c_param = 1.0, gamma_param = 1.0, verbosity = 0):
"""
converts data to python format only if not already in python format
(files in python format are of type list, otherwise they are filenames)
inputs: trainName, either the training data in svm-light format or the name of the training data file in LIBSVM/sparse format
testName, either the test data in svm-light format or the name of the test data file in LIBSVM/sparse format
kerneltype, (str)the type of kernel (linear, polynomial, sigmoid, rbf, custom)
c_param, the C parameter (default 1)
gamma_param, the gamma parameter (default 1)
verbosity, 0, 1, or 2 for less or more information (default 0)
outputs: (positiveAccuracy, negativeAccuracy, accuracy)
"""
if type(trainName) == list:
trainingData = trainName
else:
trainingData = sparseToList(trainName)
if type(testName) == list:
testData = testName
else:
testData = sparseToList(testName)
if verbosity == 2:
print "Training svm......."
# train a model based on the data
model = svmlight.learn(trainingData, type='classification', verbosity=2, kernel=kerneltype, C = c_param, rbf_gamma = gamma_param )
# model data can be stored in the same format SVM-Light uses, for interoperability
# with the binaries.
# if type(trainName) == list:
# svmlight.write_model(model, time.strftime('%Y-%m-%d-')+datetime.datetime.now().strftime('%H%M%S%f')+'_model.dat')
# else:
# svmlight.write_model(model, trainName[:-4]+'_model.dat')
if verbosity == 2:
print "Classifying........"
# classify the test data. this function returns a list of numbers, which represent
# the classifications.
predictions = svmlight.classify(model, testData)
# for p in predictions:
# print '%.8f' % p
correctLabels = correctLabelRemove(testData)
# print 'Predictions:'
# print predictions
# print 'Correct Labels:'
# print correctLabels
return predictionCompare(predictions, correctLabels, verbosity)
开发者ID:lbynum,项目名称:pysvm,代码行数:57,代码来源:functions.py
示例8: create_classifications
def create_classifications(models, test_set):
'''
For each supplied model, use svm light to classify the
test_set with that model
'''
classifications= {}
for m in models.keys():
classifications[m]= svmlight.classify(models[m], test_set)
return classifications
开发者ID:jfein,项目名称:LearningSimilarity,代码行数:10,代码来源:svm_utils.py
示例9: test_model
def test_model(model,ind,n=3):
test = []
for i in ind.get_pos_train_ind():
item = os.listdir("pos")[i]
test.append((1,[(fmap.getID(item[0]),item[1]) for item in ngrams.ngrams(n, open("pos/"+item).read()).items() if fmap.hasFeature(item[0])]))
for i in ind.get_neg_test_ind():
item = os.listdir("neg")[i]
test.append((-1,[(fmap.getID(item[0]),item[1]) for item in ngrams.ngrams(n, open("neg/"+item).read()).items() if fmap.hasFeature(item[0])]))
predictions = svmlight.classify(model, test)
return predictions
开发者ID:Grater,项目名称:Sentiment-Analysis,代码行数:10,代码来源:svm.py
示例10: trainAndTest
def trainAndTest(training, test):
#trainingNames = [x[0] for x in training] # never used, but might be someday
trainingData = [d.dataTuple() for d in training]
testNames = [d.name for d in test]
testData = [d.dataTuple() for d in test]
testLabels = [d.label for d in test]
model = svmlight.learn(trainingData)
predictions = svmlight.classify(model,testData)
return zip(predictions, testLabels, testNames)
开发者ID:babelon,项目名称:lying-classifiers,代码行数:10,代码来源:validateSVM.py
示例11: tsvm_test0
def tsvm_test0():
# data processing
data, target = load_svmlight_file('dataset/following.scale')
data, target = shuffle(data, target)
target = binarize(target)[:,0]
cutoff = int(round(data.shape[0] * 0.8))
train_data = data[:cutoff]
train_target = target[:cutoff]
transductive_train_data = data
transductive_target = target.copy()
transductive_target[cutoff:] = 0
test_data = data[cutoff:]
test_target = target[cutoff:]
# convert the data into svmlight format
svm_train_data = npToSVMLightFormat(train_data, train_target)
svm_transductive_train_data = npToSVMLightFormat(transductive_train_data,
transductive_target)
svm_test_data = npToSVMLightFormat(test_data, test_target)
print 'labels in the training data'
print countLabels(svm_transductive_train_data).most_common()
# svmlight routine
model = svmlight.learn(svm_train_data,
j=3.0, kernel='linear', type='classification', verbosity=0)
trans_model = svmlight.learn(svm_transductive_train_data,
j=3.0, kernel='linear', type='classification', verbosity=0)
predictions = svmlight.classify(model, svm_test_data)
trans_predictions = svmlight.classify(trans_model, svm_test_data)
print 'inductive learning'
print accuracy(predictions, test_target)
print '(recall, precision)', recall_precision(predictions, test_target)
print 'transductive learning'
print accuracy(trans_predictions, test_target)
print '(recall, precision)', recall_precision(trans_predictions, test_target)
开发者ID:pyongjoo,项目名称:twitter-research,代码行数:43,代码来源:ml_tsvm.py
示例12: trainAndTest
def trainAndTest(training, test):
#trainingNames = [x[0] for x in training] # never used, but might be someday
trainingData = [(d[1],d[2]) for d in training]
testNames = [d[0] for d in test]
testData = [(d[1],d[2]) for d in test]
testLabels = [d[1] for d in test]
model = svm.learn(trainingData)
predictions = svm.classify(model,testData)
return zip(predictions, testLabels, testNames)
开发者ID:babelon,项目名称:lying-classifiers,代码行数:11,代码来源:SVMTrainTest.py
示例13: five_fold_validation
def five_fold_validation(training_sets, validation_sets, c_value):
total_accuracy= 0.0
for i in range(len(training_sets)):
model= svmlight.learn(training_sets[i], type='classification', C=c_value)
classifications= svmlight.classify(model, validation_sets[i])
predictions= change_to_binary_predictions(classifications)
accuracy= find_accuracy(validation_sets[i], predictions)
total_accuracy += accuracy[0]
return total_accuracy/len(training_sets)
开发者ID:briantoth,项目名称:BeerPongButler,代码行数:11,代码来源:svm_cross_val_funcs.py
示例14: predict
def predict(self, X):
num_data = X.shape[0]
scores = np.zeros((num_data, self.num_classes_,), dtype=np.float32)
for i in xrange(self.num_classes_):
scores[:, i] = svm.classify(
self.model_[i],
self.__data2docs(X, np.zeros((num_data,), dtype=np.float32)))
if self.num_classes_ == 1:
indices = (scores.ravel() > 0).astype(np.int)
else:
indices = scores.argmax(axis=1)
return self.classes_()[indices]
开发者ID:queqichao,项目名称:FredholmLearning,代码行数:12,代码来源:tsvm.py
示例15: predict
def predict(self, x_test):
if self.trained != True:
raise Exception("first train a model")
x = self.svmlfeaturise(x_test)
y_score = []
for j in xrange(len(self.models)):
m = np.array(svmlight.classify(self.models[j], x))
y_score.append(m)
y_predicted = np.argmax(y_score, axis=0)
return y_predicted
开发者ID:adhaka,项目名称:kthasrdnn,代码行数:12,代码来源:tsvm.py
示例16: my_cross_val_score
def my_cross_val_score(data_fold, train, c_p):
scores = []
for x, y in data_fold:
data_x = collect_data_qid(x, train)
data_y = collect_data_qid(y, train)
model = SVC.learn(data_x, C=c_p, kernel='linear', type='ranking')
pred = SVC.classify(model, data_y)
scores.append(
my_accus(data_y, pred)
)
return scores
开发者ID:lacozhang,项目名称:machinelearning,代码行数:12,代码来源:grid.py
示例17: predict
def predict(self, peptides, alleles=None, **kwargs):
if isinstance(peptides, Peptide):
pep_seqs = {str(peptides):peptides}
else:
if any(not isinstance(p, Peptide) for p in peptides):
raise ValueError("Input is not of type Protein or Peptide")
pep_seqs = {str(p):p for p in peptides}
if alleles is None:
al = [Allele("HLA-"+a) for a in self.supportedAlleles]
allales_string = {conv_a:a for conv_a, a in itertools.izip(self.convert_alleles(al), al)}
else:
if isinstance(alleles, Allele):
alleles = [alleles]
if any(not isinstance(p, Allele) for p in alleles):
raise ValueError("Input is not of type Allele")
allales_string ={conv_a:a for conv_a, a in itertools.izip(self.convert_alleles(alleles),alleles)}
#group peptides by length and
result = {}
for length, peps in itertools.groupby(pep_seqs.iterkeys(), key= lambda x: len(x)):
#load svm model
if length not in self.supportedLength:
warnings.warn("Peptide length of %i is not supported by %s"%(length,self.name))
continue
encoding = self.encode(peps)
for a in allales_string.keys():
model_path = pkg_resources.resource_filename("Fred2.Data.svms.%s"%self.name, "%s_%i"%(a,length))
if not os.path.exists(model_path):
warnings.warn("No model exists for peptides of length %i or allele %s."%(length,
allales_string[a].name))
continue
model = svmlight.read_model(model_path)
model = svmlight.read_model(model_path)
pred = svmlight.classify(model, encoding.values())
result[allales_string[a]] = {}
for pep, score in itertools.izip(encoding.keys(), pred):
result[allales_string[a]][pep_seqs[pep]] = score
if not result:
raise ValueError("No predictions could be made for given input. Check your "
"epitope length and HLA allele combination.")
df_result = EpitopePredictionResult.from_dict(result)
df_result.index = pandas.MultiIndex.from_tuples([tuple((i, self.name)) for i in df_result.index],
names=['Seq', 'Method'])
return df_result
开发者ID:SteffenK12,项目名称:Fred2,代码行数:52,代码来源:SVM.py
示例18: predict
def predict(self, dataset):
assert self.svm_list is not None
self._format_test_data(dataset)
num_samples = dataset.getNumSamples()
num_features = dataset.getNumFeatures()
predictions = np.zeros((num_samples, 12))
for month_ind in range(12):
# import pdb;pdb.set_trace()
predictions[:, month_ind] = svmlight.classify(self.svm_list[month_ind], self.formatted_data)
return predictions
开发者ID:dgboy2000,项目名称:online-sales,代码行数:13,代码来源:SVMRegression.py
示例19: __runSVMModels
def __runSVMModels(self, img):
inputfacepixels = list(img.getdata())
inputface = asfarray(inputfacepixels)
pixlistmax = max(inputface)
inputfacen = inputface / pixlistmax
inputface = inputfacen - self.__imgdata.avgvals
usub = self.__imgdata.eigenfaces[:self.__numFaces,:]
input_wk = dot(usub, inputface.transpose()).transpose()
data = [(0, self.__makeWeightTuplesList(input_wk))]
predictions = list()
for (name, model) in self.__models:
pred = svmlight.classify(model, data)
predictions.append((name,pred[0]))
return predictions
开发者ID:diederikvkrieken,项目名称:Asjemenao,代码行数:14,代码来源:eigenfaces.py
示例20: _get_svm_classification
def _get_svm_classification(self, featureset):
"""
given a set of features, classify them with our trained model
and return a signed float
:param featureset: a dict of feature/value pairs in NLTK format, representing a single instance
"""
instance_to_classify = (0, map_features_to_svm(featureset, self._svmfeatureindex))
if self._verbose:
print 'instance', instance_to_classify
# svmlight.classify expects a list; this should be taken advantage of when writing SvmClassifier.batch_classify / .batch_prob_classify.
# it returns a list of floats, too.
[prediction] = svmlight.classify(self._model, [instance_to_classify])
return prediction
开发者ID:approximatelylinear,项目名称:nltk,代码行数:14,代码来源:svm.py
注:本文中的svmlight.classify函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论