• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python util.make_lag_names函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中statsmodels.tsa.vector_ar.util.make_lag_names函数的典型用法代码示例。如果您正苦于以下问题:Python make_lag_names函数的具体用法?Python make_lag_names怎么用?Python make_lag_names使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了make_lag_names函数的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: _make_arma_names

def _make_arma_names(data, k_trend, order):
    k_ar, k_ma = order
    exog = data.exog
    if exog is not None:
        exog_names = data._get_names(data._orig_exog) or []
    else:
        exog_names = []
    ar_lag_names = util.make_lag_names(data.ynames, k_ar, 0)
    ar_lag_names = ["".join(("ar.", i)) for i in ar_lag_names]
    ma_lag_names = util.make_lag_names(data.ynames, k_ma, 0)
    ma_lag_names = ["".join(("ma.", i)) for i in ma_lag_names]
    trend_name = util.make_lag_names("", 0, k_trend)
    exog_names = trend_name + exog_names + ar_lag_names + ma_lag_names
    return exog_names
开发者ID:slojo404,项目名称:statsmodels,代码行数:14,代码来源:arima_model.py


示例2: __init__

    def __init__(self, endog, endog_lagged, params, sigma_u, lag_order,
                 model=None, trend='c', names=None, dates=None):

        self.model = model
        self.y = self.endog = endog  #keep alias for now
        self.ys_lagged = self.endog_lagged = endog_lagged #keep alias for now
        self.dates = dates

        self.n_totobs, neqs = self.y.shape
        self.nobs = self.n_totobs - lag_order
        k_trend = util.get_trendorder(trend)
        if k_trend > 0: # make this the polynomial trend order
            trendorder = k_trend - 1
        else:
            trendorder = None
        self.k_trend = k_trend
        self.trendorder = trendorder
        self.exog_names = util.make_lag_names(names, lag_order, k_trend)
        self.params = params

        # Initialize VARProcess parent class
        # construct coefficient matrices
        # Each matrix needs to be transposed
        reshaped = self.params[self.k_trend:]
        reshaped = reshaped.reshape((lag_order, neqs, neqs))

        # Need to transpose each coefficient matrix
        intercept = self.params[0]
        coefs = reshaped.swapaxes(1, 2).copy()

        super(VARResults, self).__init__(coefs, intercept, sigma_u, names=names)
开发者ID:AnaMP,项目名称:statsmodels,代码行数:31,代码来源:var_model.py


示例3: fit

    def fit(self, maxlags=None, method='ols', ic=None, trend='c',
            verbose=False):
        """
        Fit the VAR model

        Parameters
        ----------
        maxlags : int
            Maximum number of lags to check for order selection, defaults to
            12 * (nobs/100.)**(1./4), see select_order function
        method : {'ols'}
            Estimation method to use
        ic : {'aic', 'fpe', 'hqic', 'bic', None}
            Information criterion to use for VAR order selection.
            aic : Akaike
            fpe : Final prediction error
            hqic : Hannan-Quinn
            bic : Bayesian a.k.a. Schwarz
        verbose : bool, default False
            Print order selection output to the screen
        trend, str {"c", "ct", "ctt", "nc"}
            "c" - add constant
            "ct" - constant and trend
            "ctt" - constant, linear and quadratic trend
            "nc" - co constant, no trend
            Note that these are prepended to the columns of the dataset.

        Notes
        -----
        Lutkepohl pp. 146-153

        Returns
        -------
        est : VARResults
        """
        lags = maxlags

        if trend not in ['c', 'ct', 'ctt', 'nc']:
            raise ValueError("trend '{}' not supported for VAR".format(trend))

        if ic is not None:
            selections = self.select_order(maxlags=maxlags, verbose=verbose)
            if ic not in selections:
                raise Exception("%s not recognized, must be among %s"
                                % (ic, sorted(selections)))
            lags = selections[ic]
            if verbose:
                print('Using %d based on %s criterion' %  (lags, ic))
        else:
            if lags is None:
                lags = 1

        k_trend = util.get_trendorder(trend)
        self.exog_names = util.make_lag_names(self.endog_names, lags, k_trend)
        self.nobs = len(self.endog) - lags

        return self._estimate_var(lags, trend=trend)
开发者ID:bert9bert,项目名称:statsmodels,代码行数:57,代码来源:var_model.py


示例4: __init__

    def __init__(
        self,
        endog,
        endog_lagged,
        params,
        sigma_u,
        lag_order,
        A=None,
        B=None,
        A_mask=None,
        B_mask=None,
        model=None,
        trend="c",
        names=None,
        dates=None,
    ):

        self.model = model
        self.y = self.endog = endog  # keep alias for now
        self.ys_lagged = self.endog_lagged = endog_lagged  # keep alias for now
        self.dates = dates

        self.n_totobs, self.neqs = self.y.shape
        self.nobs = self.n_totobs - lag_order
        k_trend = util.get_trendorder(trend)
        if k_trend > 0:  # make this the polynomial trend order
            trendorder = k_trend - 1
        else:
            trendorder = None
        self.k_trend = k_trend
        self.trendorder = trendorder

        self.exog_names = util.make_lag_names(names, lag_order, k_trend)
        self.params = params
        self.sigma_u = sigma_u

        # Each matrix needs to be transposed
        reshaped = self.params[self.k_trend :]
        reshaped = reshaped.reshape((lag_order, self.neqs, self.neqs))

        # Need to transpose each coefficient matrix
        intercept = self.params[0]
        coefs = reshaped.swapaxes(1, 2).copy()

        # SVAR components
        # TODO: if you define these here, you don't also have to define
        # them in SVAR process, but I left them for now -ss
        self.A = A
        self.B = B
        self.A_mask = A_mask
        self.B_mask = B_mask

        super(SVARResults, self).__init__(coefs, intercept, sigma_u, A, B, names=names)
开发者ID:alfonsodiecko,项目名称:PYTHON_DIST,代码行数:53,代码来源:svar_model.py


示例5: fit

    def fit(self, maxlag=None, method='cmle', ic=None, trend='c',
            transparams=True, start_params=None, solver='lbfgs', maxiter=35,
            full_output=1, disp=1, callback=None, **kwargs):
        """
        Fit the unconditional maximum likelihood of an AR(p) process.

        Parameters
        ----------
        maxlag : int
            If `ic` is None, then maxlag is the lag length used in fit.  If
            `ic` is specified then maxlag is the highest lag order used to
            select the correct lag order.  If maxlag is None, the default is
            round(12*(nobs/100.)**(1/4.))
        method : str {'cmle', 'mle'}, optional
            cmle - Conditional maximum likelihood using OLS
            mle - Unconditional (exact) maximum likelihood.  See `solver`
            and the Notes.
        ic : str {'aic','bic','hic','t-stat'}
            Criterion used for selecting the optimal lag length.
            aic - Akaike Information Criterion
            bic - Bayes Information Criterion
            t-stat - Based on last lag
            hqic - Hannan-Quinn Information Criterion
            If any of the information criteria are selected, the lag length
            which results in the lowest value is selected.  If t-stat, the
            model starts with maxlag and drops a lag until the highest lag
            has a t-stat that is significant at the 95 % level.
        trend : str {'c','nc'}
            Whether to include a constant or not. 'c' - include constant.
            'nc' - no constant.

        The below can be specified if method is 'mle'

        transparams : bool, optional
            Whether or not to transform the parameters to ensure stationarity.
            Uses the transformation suggested in Jones (1980).
        start_params : array-like, optional
            A first guess on the parameters.  Default is cmle estimates.
        solver : str or None, optional
            Solver to be used if method is 'mle'.  The default is 'lbfgs'
            (limited memory Broyden-Fletcher-Goldfarb-Shanno).  Other choices
            are 'bfgs', 'newton' (Newton-Raphson), 'nm' (Nelder-Mead),
            'cg' - (conjugate gradient), 'ncg' (non-conjugate gradient),
            and 'powell'.
        maxiter : int, optional
            The maximum number of function evaluations. Default is 35.
        tol : float
            The convergence tolerance.  Default is 1e-08.
        full_output : bool, optional
            If True, all output from solver will be available in
            the Results object's mle_retvals attribute.  Output is dependent
            on the solver.  See Notes for more information.
        disp : bool, optional
            If True, convergence information is output.
        callback : function, optional
            Called after each iteration as callback(xk) where xk is the current
            parameter vector.
        kwargs
            See Notes for keyword arguments that can be passed to fit.

        References
        ----------
        Jones, R.H. 1980 "Maximum likelihood fitting of ARMA models to time
            series with missing observations."  `Technometrics`.  22.3.
            389-95.

        See also
        --------
        statsmodels.base.model.LikelihoodModel.fit
        """
        method = method.lower()
        if method not in ['cmle', 'yw', 'mle']:
            raise ValueError("Method %s not recognized" % method)
        self.method = method
        self.trend = trend
        self.transparams = transparams
        nobs = len(self.endog)  # overwritten if method is 'cmle'
        endog = self.endog

        if maxlag is None:
            maxlag = int(round(12*(nobs/100.)**(1/4.)))
        k_ar = maxlag  # stays this if ic is None

        # select lag length
        if ic is not None:
            ic = ic.lower()
            if ic not in ['aic', 'bic', 'hqic', 't-stat']:
                raise ValueError("ic option %s not understood" % ic)
            k_ar = self.select_order(k_ar, ic, trend, method)

        self.k_ar = k_ar  # change to what was chosen by ic

        # redo estimation for best lag
        # make LHS
        Y = endog[k_ar:, :]
        # make lagged RHS
        X = self._stackX(k_ar, trend)  # sets self.k_trend
        k_trend = self.k_trend
        self.exog_names = util.make_lag_names(self.endog_names, k_ar, k_trend)
        self.Y = Y
#.........这里部分代码省略.........
开发者ID:0ceangypsy,项目名称:statsmodels,代码行数:101,代码来源:ar_model.py



注:本文中的statsmodels.tsa.vector_ar.util.make_lag_names函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python var_model.VAR类代码示例发布时间:2022-05-27
下一篇:
Python util.get_trendorder函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap