• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tsatools.add_trend函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中statsmodels.tsa.tsatools.add_trend函数的典型用法代码示例。如果您正苦于以下问题:Python add_trend函数的具体用法?Python add_trend怎么用?Python add_trend使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了add_trend函数的17个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_dataframe

    def test_dataframe(self):
        df = pd.DataFrame(self.arr_2d)
        appended = tools.add_trend(df)
        expected = df.copy()
        expected["const"] = self.c
        assert_frame_equal(expected, appended)

        prepended = tools.add_trend(df, prepend=True)
        expected = df.copy()
        expected.insert(0, "const", self.c)
        assert_frame_equal(expected, prepended)

        df = pd.DataFrame(self.arr_2d)
        appended = tools.add_trend(df, trend="t")
        expected = df.copy()
        expected["trend"] = self.t
        assert_frame_equal(expected, appended)

        df = pd.DataFrame(self.arr_2d)
        appended = tools.add_trend(df, trend="ctt")
        expected = df.copy()
        expected["const"] = self.c
        expected["trend"] = self.t
        expected["trend_squared"] = self.t ** 2
        assert_frame_equal(expected, appended)
开发者ID:phobson,项目名称:statsmodels,代码行数:25,代码来源:test_tsa_tools.py


示例2: test_mixed_recarray

 def test_mixed_recarray(self):
     dt = np.dtype([('c0', np.float64), ('c1', np.int8), ('c2', 'S4')])
     ra = np.array([(1.0, 1, 'aaaa'), (1.1, 2, 'bbbb')], dtype=dt).view(np.recarray)
     added = tools.add_trend(ra, trend='ct')
     dt = np.dtype([('c0', np.float64), ('c1', np.int8), ('c2', 'S4'), ('const', np.float64), ('trend', np.float64)])
     expected = np.array([(1.0, 1, 'aaaa', 1.0, 1.0), (1.1, 2, 'bbbb', 1.0, 2.0)], dtype=dt).view(np.recarray)
     assert_equal(added, expected)
开发者ID:Bonfils-ebu,项目名称:statsmodels,代码行数:7,代码来源:test_tsa_tools.py


示例3: test_series

    def test_series(self):
        s = pd.Series(self.arr_1d)
        appended = tools.add_trend(s)
        expected = pd.DataFrame(s)
        expected['const'] = self.c
        assert_frame_equal(expected, appended)

        prepended = tools.add_trend(s, prepend=True)
        expected = pd.DataFrame(s)
        expected.insert(0, 'const', self.c)
        assert_frame_equal(expected, prepended)

        s = pd.Series(self.arr_1d)
        appended = tools.add_trend(s, trend='ct')
        expected = pd.DataFrame(s)
        expected['const'] = self.c
        expected['trend'] = self.t
        assert_frame_equal(expected, appended)
开发者ID:Bonfils-ebu,项目名称:statsmodels,代码行数:18,代码来源:test_tsa_tools.py


示例4: test_array

    def test_array(self):
        base = np.vstack((self.arr_1d, self.c, self.t, self.t ** 2)).T
        assert_equal(tools.add_trend(self.arr_1d), base[:, :2])
        assert_equal(tools.add_trend(self.arr_1d, trend='t'), base[:, [0, 2]])
        assert_equal(tools.add_trend(self.arr_1d, trend='ct'), base[:, :3])
        assert_equal(tools.add_trend(self.arr_1d, trend='ctt'), base)

        base = np.hstack((self.c[:, None], self.t[:, None], self.t[:, None] ** 2, self.arr_2d))
        assert_equal(tools.add_trend(self.arr_2d, prepend=True), base[:, [0, 3, 4]])
        assert_equal(tools.add_trend(self.arr_2d, trend='t', prepend=True), base[:, [1, 3, 4]])
        assert_equal(tools.add_trend(self.arr_2d, trend='ct', prepend=True), base[:, [0, 1, 3, 4]])
        assert_equal(tools.add_trend(self.arr_2d, trend='ctt', prepend=True), base)
开发者ID:Bonfils-ebu,项目名称:statsmodels,代码行数:12,代码来源:test_tsa_tools.py


示例5: test_duplicate_const

    def test_duplicate_const(self):
        assert_raises(ValueError, tools.add_trend, x=self.c, trend='c', has_constant='raise')
        assert_raises(ValueError, tools.add_trend, x=self.c, trend='ct', has_constant='raise')
        df = pd.DataFrame(self.c)
        assert_raises(ValueError, tools.add_trend, x=df, trend='c', has_constant='raise')
        assert_raises(ValueError, tools.add_trend, x=df, trend='ct', has_constant='raise')

        skipped = tools.add_trend(self.c, trend='c')
        assert_equal(skipped, self.c[:,None])

        skipped_const = tools.add_trend(self.c, trend='ct', has_constant='skip')
        expected = np.vstack((self.c, self.t)).T
        assert_equal(skipped_const, expected)

        added = tools.add_trend(self.c, trend='c', has_constant='add')
        expected = np.vstack((self.c, self.c)).T
        assert_equal(added, expected)

        added = tools.add_trend(self.c, trend='ct', has_constant='add')
        expected = np.vstack((self.c, self.c, self.t)).T
        assert_equal(added, expected)
开发者ID:Bonfils-ebu,项目名称:statsmodels,代码行数:21,代码来源:test_tsa_tools.py


示例6: test_recarray

    def test_recarray(self):
        recarray = pd.DataFrame(self.arr_2d).to_records(index=False, convert_datetime64=False)
        appended = tools.add_trend(recarray)
        expected = pd.DataFrame(self.arr_2d)
        expected['const'] = self.c
        expected = expected.to_records(index=False, convert_datetime64=False)
        assert_equal(expected, appended)

        prepended = tools.add_trend(recarray, prepend=True)
        expected = pd.DataFrame(self.arr_2d)
        expected.insert(0, 'const', self.c)
        expected = expected.to_records(index=False, convert_datetime64=False)
        assert_equal(expected, prepended)

        appended = tools.add_trend(recarray, trend='ctt')
        expected = pd.DataFrame(self.arr_2d)
        expected['const'] = self.c
        expected['trend'] = self.t
        expected['trend_squared'] = self.t ** 2
        expected = expected.to_records(index=False, convert_datetime64=False)
        assert_equal(expected, appended)
开发者ID:Bonfils-ebu,项目名称:statsmodels,代码行数:21,代码来源:test_tsa_tools.py


示例7: test_duplicate_const

    def test_duplicate_const(self):
        assert_raises(ValueError, tools.add_trend, x=self.c, trend="c", has_constant="raise")
        assert_raises(ValueError, tools.add_trend, x=self.c, trend="ct", has_constant="raise")
        df = pd.DataFrame(self.c)
        assert_raises(ValueError, tools.add_trend, x=df, trend="c", has_constant="raise")
        assert_raises(ValueError, tools.add_trend, x=df, trend="ct", has_constant="raise")

        skipped = tools.add_trend(self.c, trend="c")
        assert_equal(skipped, self.c[:, None])

        skipped_const = tools.add_trend(self.c, trend="ct", has_constant="skip")
        expected = np.vstack((self.c, self.t)).T
        assert_equal(skipped_const, expected)

        added = tools.add_trend(self.c, trend="c", has_constant="add")
        expected = np.vstack((self.c, self.c)).T
        assert_equal(added, expected)

        added = tools.add_trend(self.c, trend="ct", has_constant="add")
        expected = np.vstack((self.c, self.c, self.t)).T
        assert_equal(added, expected)
开发者ID:phobson,项目名称:statsmodels,代码行数:21,代码来源:test_tsa_tools.py


示例8: _stackX

    def _stackX(self, k_ar, trend):
        """
        Private method to build the RHS matrix for estimation.

        Columns are trend terms then lags.
        """
        endog = self.endog
        X = lagmat(endog, maxlag=k_ar, trim='both')
        k_trend = util.get_trendorder(trend)
        if k_trend:
            X = add_trend(X, prepend=True, trend=trend)
        self.k_trend = k_trend
        return X
开发者ID:0ceangypsy,项目名称:statsmodels,代码行数:13,代码来源:ar_model.py


示例9: add_constant

def add_constant(data, prepend=True, has_constant='skip'):
    """
    Adds a column of ones to an array

    Parameters
    ----------
    data : array-like
        `data` is the column-ordered design matrix
    prepend : bool
        If true, the constant is in the first column.  Else the constant is
        appended (last column).
    has_constant : str {'raise', 'add', 'skip'}
        Behavior if ``data'' already has a constant. The default will return
        data without adding another constant. If 'raise', will raise an
        error if a constant is present. Using 'add' will duplicate the
        constant, if one is present.

    Returns
    -------
    data : array, recarray or DataFrame
        The original values with a constant (column of ones) as the first or
        last column. Returned value depends on input type.

    Notes
    -----
    When the input is recarray or a pandas Series or DataFrame, the added
    column's name is 'const'.
    """
    if _is_using_pandas(data, None) or _is_recarray(data):
        from statsmodels.tsa.tsatools import add_trend
        return add_trend(data, trend='c', prepend=prepend, has_constant=has_constant)

    # Special case for NumPy
    x = np.asanyarray(data)
    if x.ndim == 1:
        x = x[:,None]
    elif x.ndim > 2:
        raise ValueError('Only implementd 2-dimensional arrays')

    is_nonzero_const = np.ptp(x, axis=0) == 0
    is_nonzero_const &= np.all(x != 0.0, axis=0)
    if is_nonzero_const.any():
        if has_constant == 'skip':
            return x
        elif has_constant == 'raise':
            raise ValueError("data already contains a constant")

    x = [np.ones(x.shape[0]), x]
    x = x if prepend else x[::-1]
    return np.column_stack(x)
开发者ID:Leo666,项目名称:statsmodels,代码行数:50,代码来源:tools.py


示例10: _make_arma_exog

def _make_arma_exog(endog, exog, trend):
    k_trend = 1 # overwritten if no constant
    if exog is None and trend == 'c':   # constant only
        exog = np.ones((len(endog),1))
    elif exog is not None and trend == 'c': # constant plus exogenous
        exog = add_trend(exog, trend='c', prepend=True)
    elif exog is not None and trend == 'nc':
        # make sure it's not holding constant from last run
        if exog.var() == 0:
            exog = None
        k_trend = 0
    if trend == 'nc':
        k_trend = 0
    return k_trend, exog
开发者ID:arokem,项目名称:statsmodels,代码行数:14,代码来源:arima_model.py


示例11: get_var_endog

def get_var_endog(y, lags, trend='c'):
    """
    Make predictor matrix for VAR(p) process

    Z := (Z_0, ..., Z_T).T (T x Kp)
    Z_t = [1 y_t y_{t-1} ... y_{t - p + 1}] (Kp x 1)

    Ref: Lutkepohl p.70 (transposed)
    """
    nobs = len(y)
    # Ravel C order, need to put in descending order
    Z = np.array([y[t-lags : t][::-1].ravel() for t in xrange(lags, nobs)])

    # Add constant, trend, etc.
    if trend != 'nc':
        Z = tsa.add_trend(Z, prepend=True, trend=trend)

    return Z
开发者ID:Autodidact24,项目名称:statsmodels,代码行数:18,代码来源:util.py


示例12: get_var_endog

def get_var_endog(y, lags, trend="c", has_constant="skip"):
    """
    Make predictor matrix for VAR(p) process

    Z := (Z_0, ..., Z_T).T (T x Kp)
    Z_t = [1 y_t y_{t-1} ... y_{t - p + 1}] (Kp x 1)

    Ref: Lutkepohl p.70 (transposed)

    has_constant can be 'raise', 'add', or 'skip'. See add_constant.
    """
    nobs = len(y)
    # Ravel C order, need to put in descending order
    Z = np.array([y[t - lags : t][::-1].ravel() for t in range(lags, nobs)])

    # Add constant, trend, etc.
    if trend != "nc":
        Z = tsa.add_trend(Z, prepend=True, trend=trend, has_constant=has_constant)

    return Z
开发者ID:caitouwh,项目名称:statsmodels,代码行数:20,代码来源:util.py


示例13: simulate_kpss

def simulate_kpss(nobs, B, trend='c', rng=None):
    """
    Simulated the KPSS test statistic for nobs observations,
    performing B replications.
    """
    if rng is None:
        rng = RandomState()
        rng.seed(0)

    standard_normal = rng.standard_normal

    e = standard_normal((nobs, B))
    z = np.ones((nobs, 1))
    if trend == 'ct':
        z = add_trend(z, trend='t')
    zinv = np.linalg.pinv(z)
    trend_coef = zinv.dot(e)
    resid = e - z.dot(trend_coef)
    s = np.cumsum(resid, axis=0)
    lam = np.mean(resid ** 2.0, axis=0)
    kpss = 1 / (nobs ** 2.0) * np.sum(s ** 2.0, axis=0) / lam
    return kpss
开发者ID:bashtage,项目名称:arch,代码行数:22,代码来源:kpss_critical_values_simulation.py


示例14: test_dataframe_duplicate

 def test_dataframe_duplicate(self):
     df = pd.DataFrame(self.arr_2d, columns=['const', 'trend'])
     tools.add_trend(df, trend='ct')
     tools.add_trend(df, trend='ct', prepend=True)
开发者ID:Bonfils-ebu,项目名称:statsmodels,代码行数:4,代码来源:test_tsa_tools.py


示例15: coint

def coint(y0, y1, trend='c', method='aeg', maxlag=None, autolag='aic',
          return_results=None):
    """Test for no-cointegration of a univariate equation

    The null hypothesis is no cointegration. Variables in y0 and y1 are
    assumed to be integrated of order 1, I(1).

    This uses the augmented Engle-Granger two-step cointegration test.
    Constant or trend is included in 1st stage regression, i.e. in
    cointegrating equation.

    Parameters
    ----------
    y1 : array_like, 1d
        first element in cointegrating vector
    y2 : array_like
        remaining elements in cointegrating vector
    trend : str {'c', 'ct'}
        trend term included in regression for cointegrating equation
        * 'c' : constant
        * 'ct' : constant and linear trend
        * also available quadratic trend 'ctt', and no constant 'nc'

    method : string
        currently only 'aeg' for augmented Engle-Granger test is available.
        default might change.
    maxlag : None or int
        keyword for `adfuller`, largest or given number of lags
    autolag : string
        keyword for `adfuller`, lag selection criterion.
    return_results : bool
        for future compatibility, currently only tuple available.
        If True, then a results instance is returned. Otherwise, a tuple
        with the test outcome is returned.
        Set `return_results=False` to avoid future changes in return.


    Returns
    -------
    coint_t : float
        t-statistic of unit-root test on residuals
    pvalue : float
        MacKinnon's approximate, asymptotic p-value based on MacKinnon (1994)
    crit_value : dict
        Critical values for the test statistic at the 1 %, 5 %, and 10 %
        levels based on regression curve. This depends on the number of
        observations.

    Notes
    -----
    The Null hypothesis is that there is no cointegration, the alternative
    hypothesis is that there is cointegrating relationship. If the pvalue is
    small, below a critical size, then we can reject the hypothesis that there
    is no cointegrating relationship.

    P-values and critical values are obtained through regression surface
    approximation from MacKinnon 1994 and 2010.

    TODO: We could handle gaps in data by dropping rows with nans in the
    auxiliary regressions. Not implemented yet, currently assumes no nans
    and no gaps in time series.

    References
    ----------
    MacKinnon, J.G. 1994  "Approximate Asymptotic Distribution Functions for
        Unit-Root and Cointegration Tests." Journal of Business & Economics
        Statistics, 12.2, 167-76.
    MacKinnon, J.G. 2010.  "Critical Values for Cointegration Tests."
        Queen's University, Dept of Economics Working Papers 1227.
        http://ideas.repec.org/p/qed/wpaper/1227.html
    """

    trend = trend.lower()
    if trend not in ['c', 'nc', 'ct', 'ctt']:
        raise ValueError("trend option %s not understood" % trend)
    y0 = np.asarray(y0)
    y1 = np.asarray(y1)
    if y1.ndim < 2:
        y1 = y1[:, None]
    nobs, k_vars = y1.shape
    k_vars += 1   # add 1 for y0

    if trend == 'nc':
        xx = y1
    else:
        xx = add_trend(y1, trend=trend, prepend=False)

    res_co = OLS(y0, xx).fit()

    res_adf = adfuller(res_co.resid, maxlag=maxlag, autolag=None,
                             regression='nc')
    # no constant or trend, see egranger in Stata and MacKinnon
    if trend == 'nc':
        crit = [np.nan] * 3  # 2010 critical values not available
    else:
        crit = mackinnoncrit(N=k_vars, regression=trend, nobs=nobs - 1)
        #  nobs - 1, the -1 is to match egranger in Stata, I don't know why.
        #  TODO: check nobs or df = nobs - k

    pval_asy = mackinnonp(res_adf[0], regression=trend, N=k_vars)
#.........这里部分代码省略.........
开发者ID:Inoryy,项目名称:statsmodels,代码行数:101,代码来源:stattools.py


示例16: adfuller


#.........这里部分代码省略.........
    .. [3] MacKinnon, J.G. 1994.  "Approximate asymptotic distribution functions for
        unit-root and cointegration tests.  `Journal of Business and Economic
        Statistics` 12, 167-76.

    .. [4] MacKinnon, J.G. 2010. "Critical Values for Cointegration Tests."  Queen's
        University, Dept of Economics, Working Papers.  Available at
        http://ideas.repec.org/p/qed/wpaper/1227.html
    """

    if regresults:
        store = True

    trenddict = {None: 'nc', 0: 'c', 1: 'ct', 2: 'ctt'}
    if regression is None or isinstance(regression, (int, long)):
        regression = trenddict[regression]
    regression = regression.lower()
    if regression not in ['c', 'nc', 'ct', 'ctt']:
        raise ValueError("regression option %s not understood") % regression
    x = np.asarray(x)
    nobs = x.shape[0]

    if maxlag is None:
        #from Greene referencing Schwert 1989
        maxlag = int(np.ceil(12. * np.power(nobs / 100., 1 / 4.)))

    xdiff = np.diff(x)
    xdall = lagmat(xdiff[:, None], maxlag, trim='both', original='in')
    nobs = xdall.shape[0]  # pylint: disable=E1103

    xdall[:, 0] = x[-nobs - 1:-1]  # replace 0 xdiff with level of x
    xdshort = xdiff[-nobs:]

    if store:
        resstore = ResultsStore()
    if autolag:
        if regression != 'nc':
            fullRHS = add_trend(xdall, regression, prepend=True)
        else:
            fullRHS = xdall
        startlag = fullRHS.shape[1] - xdall.shape[1] + 1  # 1 for level  # pylint: disable=E1103
        #search for lag length with smallest information criteria
        #Note: use the same number of observations to have comparable IC
        #aic and bic: smaller is better

        if not regresults:
            icbest, bestlag = _autolag(OLS, xdshort, fullRHS, startlag,
                                       maxlag, autolag)
        else:
            icbest, bestlag, alres = _autolag(OLS, xdshort, fullRHS, startlag,
                                              maxlag, autolag,
                                              regresults=regresults)
            resstore.autolag_results = alres

        bestlag -= startlag  # convert to lag not column index

        #rerun ols with best autolag
        xdall = lagmat(xdiff[:, None], bestlag, trim='both', original='in')
        nobs = xdall.shape[0]   # pylint: disable=E1103
        xdall[:, 0] = x[-nobs - 1:-1]  # replace 0 xdiff with level of x
        xdshort = xdiff[-nobs:]
        usedlag = bestlag
    else:
        usedlag = maxlag
        icbest = None
    if regression != 'nc':
        resols = OLS(xdshort, add_trend(xdall[:, :usedlag + 1],
                     regression)).fit()
    else:
        resols = OLS(xdshort, xdall[:, :usedlag + 1]).fit()

    adfstat = resols.tvalues[0]
#    adfstat = (resols.params[0]-1.0)/resols.bse[0]
    # the "asymptotically correct" z statistic is obtained as
    # nobs/(1-np.sum(resols.params[1:-(trendorder+1)])) (resols.params[0] - 1)
    # I think this is the statistic that is used for series that are integrated
    # for orders higher than I(1), ie., not ADF but cointegration tests.

    # Get approx p-value and critical values
    pvalue = mackinnonp(adfstat, regression=regression, N=1)
    critvalues = mackinnoncrit(N=1, regression=regression, nobs=nobs)
    critvalues = {"1%" : critvalues[0], "5%" : critvalues[1],
                  "10%" : critvalues[2]}
    if store:
        resstore.resols = resols
        resstore.maxlag = maxlag
        resstore.usedlag = usedlag
        resstore.adfstat = adfstat
        resstore.critvalues = critvalues
        resstore.nobs = nobs
        resstore.H0 = ("The coefficient on the lagged level equals 1 - "
                       "unit root")
        resstore.HA = "The coefficient on the lagged level < 1 - stationary"
        resstore.icbest = icbest
        resstore._str = 'Augmented Dickey-Fuller Test Results'
        return adfstat, pvalue, critvalues, resstore
    else:
        if not autolag:
            return adfstat, pvalue, usedlag, nobs, critvalues
        else:
            return adfstat, pvalue, usedlag, nobs, critvalues, icbest
开发者ID:Inoryy,项目名称:statsmodels,代码行数:101,代码来源:stattools.py


示例17: trade_allocation

def trade_allocation(context, data, resOLS):
    
    olsPara = resOLS.params  # OLS paramters for [x, dx, 1]
    resid = resOLS.resid
    ols_var = np.dot(resid, np.transpose(resid))/(resOLS.df_resid)
    
    # Replicate the OLS in adf test to predict the movement of stationary portfolio
    # RecentData = TrainPort[-context.lookback/50:]  #  only the recent data matters
    RecentData = context.TrainPort
    xdiff = np.diff(RecentData)
    nobs = xdiff.shape[0]
    xdall = np.column_stack((RecentData[-nobs:], xdiff[:,None])) 
    x = add_trend(xdall[:,:context.lag+1], 'c')
    y_pred = np.dot(x, olsPara)
    y_actual = xdiff[-nobs:]
        
    profit_potential = y_pred[-1]/context.cost
    # y_mean = np.mean(TrainPort)
    # y_std = np.std(TrainPort)

    # Calculate the score of deviation from current value
    # dev_score = y_pred[-1]#/np.sqrt(ols_var)
    # dev_score = -(y_pred[-1] - y_mean)/y_std
    # dev_score = -(TrainPort[-1] - np.mean(TrainPort))/np.std(TrainPort)
    
    curr_price = context.base_prices[-1,:]
    dollar_allocation = np.multiply(curr_price, context.weights)*profit_potential
    pct_allocation = context.leverage_limit*dollar_allocation/np.sum(np.abs(dollar_allocation))
    pct_allocation = np.asarray(pct_allocation)
    pct_allocation = pct_allocation[0,:]
    
    # print '-'*20
    # print 'ADF test statistics: %f' %adfstat
    # print 'ADF test critvalues: %s' %str(critvalues)
    # print 'ADF pvalue: %f' %pvalue
    # print ' '
    # print dir(resOLS)
    # print 'Predic value: %s' %str(y_pred[-5:])
    # print 'Fitted value: %s' %str(resOLS.fittedvalues[-5:])
    # print 'Actual value: %s' %str(y_actual[-5:])
    # print ' '
    # print 'Latest value of TrainPort: %f' %TrainPort[-1]
    # print 'Mean value of TrainPort: %f' %np.mean(TrainPort)
    # print 'Std Value of TrainPort: %f' %np.std(TrainPort)
    # print ' '
    # print 'avg of actual change: %f' %np.mean(abs(y_actual))
    # print 'std of actual change: %f' %np.std(y_actual)
    # print ' '
    # print 'avg of pred change: %f' %np.mean(abs(y_pred))
    # print 'std of pred change: %f' %np.std(y_pred)
    # print ' '
    # print 'The predicted bar: %f' %y_pred[-1]
    # print 'The current bar: %f' %y_actual[-1]
    # print ' '
    # print 'The ols std: %f' %np.sqrt(ols_var)
    # print 'mse_total %f' %resOLS.mse_total
    # print 'OLS rsquared: %f' %resOLS.rsquared
    # print 'profit_potential: %f' %profit_potential
    # print 'dev_score: %f' %dev_score
    
    # print 'Dollar Allocation: %s' %str(dollar_allocation)
    # if abs(y_pred[-1]) > 2*context.cost/abs(TrainPort[-1]):
    #     return pct_allocation
    # elif abs(y_pred[-1]) < context.cost/abs(TrainPort[-1]):
    #     return pct_allocation*0
    # else:
    #     return None
    
    # Trading window is determined by the abs(dev_score)
    if abs(profit_potential) < context.dev_lower_threshold:
        # Liquidate all positions if fall below lower threshold
        return pct_allocation*0.
    elif abs(profit_potential) < context.dev_upper_threshold:
        # Do nothing
        return None
    else:
        # Rebalance if the dev is above the upper threshold.
        return pct_allocation
开发者ID:archlight,项目名称:tigris,代码行数:78,代码来源:MeanReversion_on_ETFs.py



注:本文中的statsmodels.tsa.tsatools.add_trend函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tsatools.lagmat函数代码示例发布时间:2022-05-27
下一篇:
Python stattools.pacf函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap