• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tools.chain_dot函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中statsmodels.tools.tools.chain_dot函数的典型用法代码示例。如果您正苦于以下问题:Python chain_dot函数的具体用法?Python chain_dot怎么用?Python chain_dot使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了chain_dot函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: _omega_forc_cov

    def _omega_forc_cov(self, steps):
        # Approximate MSE matrix \Omega(h) as defined in Lut p97
        G = self._zz
        Ginv = L.inv(G)

        # memoize powers of B for speedup
        # TODO: see if can memoize better
        B = self._bmat_forc_cov()
        _B = {}
        def bpow(i):
            if i not in _B:
                _B[i] = np.linalg.matrix_power(B, i)

            return _B[i]

        phis = self.ma_rep(steps)
        sig_u = self.sigma_u

        omegas = np.zeros((steps, self.neqs, self.neqs))
        for h in range(1, steps + 1):
            if h == 1:
                omegas[h-1] = self.df_model * self.sigma_u
                continue

            om = omegas[h-1]
            for i in range(h):
                for j in range(h):
                    Bi = bpow(h - 1 - i)
                    Bj = bpow(h - 1 - j)
                    mult = np.trace(chain_dot(Bi.T, Ginv, Bj, G))
                    om += mult * chain_dot(phis[i], sig_u, phis[j].T)
            omegas[h-1] = om

        return omegas
开发者ID:AnaMP,项目名称:statsmodels,代码行数:34,代码来源:var_model.py


示例2: mse

    def mse(self, steps):
        """
        Compute theoretical forecast error variance matrices

        Parameters
        ----------
        steps : int
            Number of steps ahead

        Notes
        -----
        .. math:: \mathrm{MSE}(h) = \sum_{i=0}^{h-1} \Phi \Sigma_u \Phi^T

        Returns
        -------
        forc_covs : ndarray (steps x neqs x neqs)
        """
        ma_coefs = self.ma_rep(steps)

        k = len(self.sigma_u)
        forc_covs = np.zeros((steps, k, k))

        prior = np.zeros((k, k))
        for h in xrange(steps):
            # Sigma(h) = Sigma(h-1) + Phi Sig_u Phi'
            phi = ma_coefs[h]
            var = chain_dot(phi, self.sigma_u, phi.T)
            forc_covs[h] = prior = prior + var

        return forc_covs
开发者ID:AnaMP,项目名称:statsmodels,代码行数:30,代码来源:var_model.py


示例3: cum_effect_cov

    def cum_effect_cov(self, orth=False):
        """
        Compute asymptotic standard errors for cumulative impulse response
        coefficients

        Parameters
        ----------
        orth : boolean

        Notes
        -----
        eq. 3.7.7 (non-orth), 3.7.10 (orth)

        Returns
        -------

        """
        Ik = np.eye(self.neqs)
        PIk = np.kron(self.P.T, Ik)

        F = 0.
        covs = self._empty_covm(self.periods + 1)
        for i in range(self.periods + 1):
            if i > 0:
                F = F + self.G[i - 1]

            if orth:
                if i == 0:
                    apiece = 0
                else:
                    Bn = np.dot(PIk, F)
                    apiece = chain_dot(Bn, self.cov_a, Bn.T)

                Bnbar = np.dot(np.kron(Ik, self.cum_effects[i]), self.H)
                bpiece = chain_dot(Bnbar, self.cov_sig, Bnbar.T) / self.T

                covs[i] = apiece + bpiece
            else:
                if i == 0:
                    covs[i] = np.zeros((self.neqs**2, self.neqs**2))
                    continue

                covs[i] = chain_dot(F, self.cov_a, F.T)

        return covs
开发者ID:AnaMP,项目名称:statsmodels,代码行数:45,代码来源:irf.py


示例4: lr_effect_cov

    def lr_effect_cov(self, orth=False):
        """
        Returns
        -------

        """
        lre = self.lr_effects
        Finfty = np.kron(np.tile(lre.T, self.lags), lre)
        Ik = np.eye(self.neqs)

        if orth:
            Binf = np.dot(np.kron(self.P.T, np.eye(self.neqs)), Finfty)
            Binfbar = np.dot(np.kron(Ik, lre), self.H)

            return (chain_dot(Binf, self.cov_a, Binf.T) +
                    chain_dot(Binfbar, self.cov_sig, Binfbar.T))
        else:
            return chain_dot(Finfty, self.cov_a, Finfty.T)
开发者ID:AnaMP,项目名称:statsmodels,代码行数:18,代码来源:irf.py


示例5: _cov_sigma

    def _cov_sigma(self):
        """
        Estimated covariance matrix of vech(sigma_u)
        """
        D_K = tsa.duplication_matrix(self.neqs)
        D_Kinv = npl.pinv(D_K)

        sigxsig = np.kron(self.sigma_u, self.sigma_u)
        return 2 * chain_dot(D_Kinv, sigxsig, D_Kinv.T)
开发者ID:AnaMP,项目名称:statsmodels,代码行数:9,代码来源:var_model.py


示例6: _orth_cov

    def _orth_cov(self):
        # Lutkepohl 3.7.8

        Ik = np.eye(self.neqs)
        PIk = np.kron(self.P.T, Ik)
        H = self.H

        covs = self._empty_covm(self.periods + 1)
        for i in range(self.periods + 1):
            if i == 0:
                apiece = 0
            else:
                Ci = np.dot(PIk, self.G[i-1])
                apiece = chain_dot(Ci, self.cov_a, Ci.T)

            Cibar = np.dot(np.kron(Ik, self.irfs[i]), H)
            bpiece = chain_dot(Cibar, self.cov_sig, Cibar.T) / self.T

            # Lutkepohl typo, cov_sig correct
            covs[i] = apiece + bpiece

        return covs
开发者ID:AnaMP,项目名称:statsmodels,代码行数:22,代码来源:irf.py


示例7: H

    def H(self):
        k = self.neqs
        Lk = tsa.elimination_matrix(k)
        Kkk = tsa.commutation_matrix(k, k)
        Ik = np.eye(k)

        # B = chain_dot(Lk, np.eye(k**2) + commutation_matrix(k, k),
        #               np.kron(self.P, np.eye(k)), Lk.T)

        # return np.dot(Lk.T, L.inv(B))

        B = chain_dot(Lk,
                      np.dot(np.kron(Ik, self.P), Kkk) + np.kron(self.P, Ik),
                      Lk.T)

        return np.dot(Lk.T, L.inv(B))
开发者ID:AnaMP,项目名称:statsmodels,代码行数:16,代码来源:irf.py


示例8: cov_ybar

    def cov_ybar(self):
        r"""Asymptotically consistent estimate of covariance of the sample mean

        .. math::

            \sqrt(T) (\bar{y} - \mu) \rightarrow {\cal N}(0, \Sigma_{\bar{y}})\\

            \Sigma_{\bar{y}} = B \Sigma_u B^\prime, \text{where } B = (I_K - A_1
            - \cdots - A_p)^{-1}

        Notes
        -----
        Lutkepohl Proposition 3.3
        """

        Ainv = L.inv(np.eye(self.neqs) - self.coefs.sum(0))
        return chain_dot(Ainv, self.sigma_u, Ainv.T)
开发者ID:AnaMP,项目名称:statsmodels,代码行数:17,代码来源:var_model.py


示例9: cov

    def cov(self, orth=False):
        """
        Compute asymptotic standard errors for impulse response coefficients

        Notes
        -----
        Lutkepohl eq 3.7.5

        Returns
        -------
        """
        if orth:
            return self._orth_cov()

        covs = self._empty_covm(self.periods + 1)
        covs[0] = np.zeros((self.neqs ** 2, self.neqs ** 2))
        for i in range(1, self.periods + 1):
            Gi = self.G[i - 1]
            covs[i] = chain_dot(Gi, self.cov_a, Gi.T)

        return covs
开发者ID:AnaMP,项目名称:statsmodels,代码行数:21,代码来源:irf.py


示例10: forecast_cov

def forecast_cov(ma_coefs, sig_u, steps):
    """
    Compute theoretical forecast error variance matrices

    Parameters
    ----------

    Returns
    -------
    forc_covs : ndarray (steps x neqs x neqs)
    """
    k = len(sig_u)
    forc_covs = np.zeros((steps, k, k))

    prior = np.zeros((k, k))
    for h in xrange(steps):
        # Sigma(h) = Sigma(h-1) + Phi Sig_u Phi'
        phi = ma_coefs[h]
        var = chain_dot(phi, sig_u, phi.T)
        forc_covs[h] = prior = prior + var

    return forc_covs
开发者ID:AnaMP,项目名称:statsmodels,代码行数:22,代码来源:var_model.py


示例11: fit


#.........这里部分代码省略.........
        if kernel not in kern_names:
            raise Exception("kernel must be one of " + ', '.join(kern_names))
        else:
            kernel = kernels[kernel]

        if bandwidth == 'hsheather':
            bandwidth = hall_sheather
        elif bandwidth == 'bofinger':
            bandwidth = bofinger
        elif bandwidth == 'chamberlain':
            bandwidth = chamberlain
        else:
            raise Exception("bandwidth must be in 'hsheather', 'bofinger', 'chamberlain'")

        endog = self.endog
        exog = self.exog
        nobs = self.nobs
        exog_rank = np_matrix_rank(self.exog)
        self.rank = exog_rank
        self.df_model = float(self.rank - self.k_constant)
        self.df_resid = self.nobs - self.rank
        n_iter = 0
        xstar = exog

        beta = np.ones(exog_rank)
        # TODO: better start, initial beta is used only for convergence check

        # Note the following doesn't work yet,
        # the iteration loop always starts with OLS as initial beta
#        if start_params is not None:
#            if len(start_params) != rank:
#                raise ValueError('start_params has wrong length')
#            beta = start_params
#        else:
#            # start with OLS
#            beta = np.dot(np.linalg.pinv(exog), endog)

        diff = 10
        cycle = False

        history = dict(params = [], mse=[])
        while n_iter < max_iter and diff > p_tol and not cycle:
            n_iter += 1
            beta0 = beta
            xtx = np.dot(xstar.T, exog)
            xty = np.dot(xstar.T, endog)
            beta = np.dot(pinv(xtx), xty)
            resid = endog - np.dot(exog, beta)

            mask = np.abs(resid) < .000001
            resid[mask] = ((resid[mask] >= 0) * 2 - 1) * .000001
            resid = np.where(resid < 0, q * resid, (1-q) * resid)
            resid = np.abs(resid)
            xstar = exog / resid[:, np.newaxis]
            diff = np.max(np.abs(beta - beta0))
            history['params'].append(beta)
            history['mse'].append(np.mean(resid*resid))

            if (n_iter >= 300) and (n_iter % 100 == 0):
                # check for convergence circle, shouldn't happen
                for ii in range(2, 10):
                    if np.all(beta == history['params'][-ii]):
                        cycle = True
                        break
                warnings.warn("Convergence cycle detected", ConvergenceWarning)

        if n_iter == max_iter:
            warnings.warn("Maximum number of iterations (1000) reached.",
                          IterationLimitWarning)

        e = endog - np.dot(exog, beta)
        # Greene (2008, p.407) writes that Stata 6 uses this bandwidth:
        # h = 0.9 * np.std(e) / (nobs**0.2)
        # Instead, we calculate bandwidth as in Stata 12
        iqre = stats.scoreatpercentile(e, 75) - stats.scoreatpercentile(e, 25)
        h = bandwidth(nobs, q)
        h = min(np.std(endog),
                iqre / 1.34) * (norm.ppf(q + h) - norm.ppf(q - h))

        fhat0 = 1. / (nobs * h) * np.sum(kernel(e / h))

        if vcov == 'robust':
            d = np.where(e > 0, (q/fhat0)**2, ((1-q)/fhat0)**2)
            xtxi = pinv(np.dot(exog.T, exog))
            xtdx = np.dot(exog.T * d[np.newaxis, :], exog)
            vcov = chain_dot(xtxi, xtdx, xtxi)
        elif vcov == 'iid':
            vcov = (1. / fhat0)**2 * q * (1 - q) * pinv(np.dot(exog.T, exog))
        else:
            raise Exception("vcov must be 'robust' or 'iid'")

        lfit = QuantRegResults(self, beta, normalized_cov_params=vcov)

        lfit.q = q
        lfit.iterations = n_iter
        lfit.sparsity = 1. / fhat0
        lfit.bandwidth = h
        lfit.history = history

        return RegressionResultsWrapper(lfit)
开发者ID:PierreBdR,项目名称:statsmodels,代码行数:101,代码来源:quantile_regression.py


示例12: test_chain_dot

def test_chain_dot():
    A = np.arange(1, 13).reshape(3, 4)
    B = np.arange(3, 15).reshape(4, 3)
    C = np.arange(5, 8).reshape(3, 1)
    assert_equal(tools.chain_dot(A, B, C), np.array([[1820], [4300], [6780]]))
开发者ID:nsolcampbell,项目名称:statsmodels,代码行数:5,代码来源:test_tools.py


示例13: test_causality

    def test_causality(self, equation, variables, kind='f', signif=0.05,
                       verbose=True):
        """Compute test statistic for null hypothesis of Granger-noncausality,
        general function to test joint Granger-causality of multiple variables

        Parameters
        ----------
        equation : string or int
            Equation to test for causality
        variables : sequence (of strings or ints)
            List, tuple, etc. of variables to test for Granger-causality
        kind : {'f', 'wald'}
            Perform F-test or Wald (chi-sq) test
        signif : float, default 5%
            Significance level for computing critical values for test,
            defaulting to standard 0.95 level

        Notes
        -----
        Null hypothesis is that there is no Granger-causality for the indicated
        variables. The degrees of freedom in the F-test are based on the
        number of variables in the VAR system, that is, degrees of freedom
        are equal to the number of equations in the VAR times degree of freedom
        of a single equation.

        Returns
        -------
        results : dict
        """
        if isinstance(variables, (basestring, int, np.integer)):
            variables = [variables]

        k, p = self.neqs, self.k_ar

        # number of restrictions
        N = len(variables) * self.k_ar

        # Make restriction matrix
        C = np.zeros((N, k ** 2 * p + k), dtype=float)

        eq_index = self.get_eq_index(equation)
        vinds = mat([self.get_eq_index(v) for v in variables])

        # remember, vec is column order!
        offsets = np.concatenate([k + k ** 2 * j + k * vinds + eq_index
                                  for j in range(p)])
        C[np.arange(N), offsets] = 1

        # Lutkepohl 3.6.5
        Cb = np.dot(C, vec(self.params.T))
        middle = L.inv(chain_dot(C, self.cov_params, C.T))

        # wald statistic
        lam_wald = statistic = chain_dot(Cb, middle, Cb)

        if kind.lower() == 'wald':
            df = N
            dist = stats.chi2(df)
        elif kind.lower() == 'f':
            statistic = lam_wald / N
            df = (N, k * self.df_resid)
            dist = stats.f(*df)
        else:
            raise Exception('kind %s not recognized' % kind)

        pvalue = dist.sf(statistic)
        crit_value = dist.ppf(1 - signif)

        conclusion = 'fail to reject' if statistic < crit_value else 'reject'
        results = {
            'statistic' : statistic,
            'crit_value' : crit_value,
            'pvalue' : pvalue,
            'df' : df,
            'conclusion' : conclusion,
            'signif' :  signif
        }

        if verbose:
            summ = output.causality_summary(results, variables, equation, kind)

            print summ

        return results
开发者ID:AnaMP,项目名称:statsmodels,代码行数:84,代码来源:var_model.py


示例14: kalmanfilter

def kalmanfilter(F, A, H, Q, R, y, X, xi10, ntrain, history=False):
    """
    Returns the negative log-likelihood of y conditional on the information set

    Assumes that the initial state and all innovations are multivariate
    Gaussian.

    Parameters
    -----------
    F : array-like
        The (r x r) array holding the transition matrix for the hidden state.
    A : array-like
        The (nobs x k) array relating the predetermined variables to the
        observed data.
    H : array-like
        The (nobs x r) array relating the hidden state vector to the
        observed data.
    Q : array-like
        (r x r) variance/covariance matrix on the error term in the hidden
        state transition.
    R : array-like
        (nobs x nobs) variance/covariance of the noise in the observation
        equation.
    y : array-like
        The (nobs x 1) array holding the observed data.
    X : array-like
        The (nobs x k) array holding the predetermined variables data.
    xi10 : array-like
        Is the (r x 1) initial prior on the initial state vector.
    ntrain : int
        The number of training periods for the filter.  This is the number of
        observations that do not affect the likelihood.


    Returns
    -------
    likelihood
        The negative of the log likelihood
    history or priors, history of posterior
        If history is True.

    Notes
    -----
    No input checking is done.
    """
# uses log of Hamilton 13.4.1
    F = np.asarray(F)
    H = np.atleast_2d(np.asarray(H))
    n = H.shape[1]  # remember that H gets transposed
    y = np.asarray(y)
    A = np.asarray(A)
    X = np.asarray(X)
    if y.ndim == 1: # note that Y is in rows for now
        y = y[:,None]
    nobs = y.shape[0]
    xi10 = np.atleast_2d(np.asarray(xi10))
#    if xi10.ndim == 1:
#        xi10[:,None]
    if history:
        state_vector = [xi10]
    Q = np.asarray(Q)
    r = xi10.shape[0]
# Eq. 12.2.21, other version says P0 = Q
#    p10 = np.dot(np.linalg.inv(np.eye(r**2)-np.kron(F,F)),Q.ravel('F'))
#    p10 = np.reshape(P0, (r,r), order='F')
# Assume a fixed, known intial point and set P0 = Q
#TODO: this looks *slightly * different than Durbin-Koopman exact likelihood
# initialization p 112 unless I've misunderstood the notational translation.
    p10 = Q

    loglikelihood = 0
    for i in range(nobs):
        HTPHR = np.atleast_1d(np.squeeze(chain_dot(H.T,p10,H)+R))
#        print HTPHR
#        print HTPHR.ndim
#        print HTPHR.shape
        if HTPHR.ndim == 1:
            HTPHRinv = 1./HTPHR
        else:
            HTPHRinv = np.linalg.inv(HTPHR) # correct
#        print A.T
#        print X
#        print H.T
#        print xi10
#        print y[i]
        part1 = y[i] - np.dot(A.T,X) - np.dot(H.T,xi10) # correct
        if i >= ntrain: # zero-index, but ntrain isn't
            HTPHRdet = np.linalg.det(np.atleast_2d(HTPHR)) # correct
            part2 = -.5*chain_dot(part1.T,HTPHRinv,part1) # correct
#TODO: Need to test with ill-conditioned problem.
            loglike_interm = (-n/2.) * np.log(2*np.pi) - .5*\
                        np.log(HTPHRdet) + part2
            loglikelihood += loglike_interm

        # 13.2.15 Update current state xi_t based on y
        xi11 = xi10 + chain_dot(p10, H, HTPHRinv, part1)
        # 13.2.16 MSE of that state
        p11 = p10 - chain_dot(p10, H, HTPHRinv, H.T, p10)
        # 13.2.17 Update forecast about xi_{t+1} based on our F
        xi10 = np.dot(F,xi11)
#.........这里部分代码省略.........
开发者ID:AnaMP,项目名称:statsmodels,代码行数:101,代码来源:kalmanfilter.py


示例15: swar_transform

def swar_transform(subset, position, theta):
    '''Apply to a sub-group of observations'''
    n = subset.shape[0]
    B = np.ones((n,n)) / n
    out = subset - chain_dot(np.diag(theta[position]), B, subset)
    return out
开发者ID:ecaiucb,项目名称:master_code,代码行数:6,代码来源:panel.py



注:本文中的statsmodels.tools.tools.chain_dot函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tools.nan_dot函数代码示例发布时间:2022-05-27
下一篇:
Python tools.categorical函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap