• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python stanford.POSTagger类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中nltk.tag.stanford.POSTagger的典型用法代码示例。如果您正苦于以下问题:Python POSTagger类的具体用法?Python POSTagger怎么用?Python POSTagger使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了POSTagger类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: nltk_stanfordpos

def nltk_stanfordpos(inpath, outfolder):
    """POS-Tagging French text with Stanford POS-Tagger via NLTK."""
    print("\nLaunched nltk_stanfordpos.")

    import os
    import glob
    from nltk.tag.stanford import POSTagger

    for file in glob.glob(inpath):
        st = POSTagger('/home/christof/Programs/stanfordpos/models/french.tagger', '/home/christof/Programs/stanfordpos/stanford-postagger.jar', encoding="utf8")
        with open(file, "r", encoding="utf-8") as infile:
            untagged = infile.read()
            tagged = st.tag(untagged.split())

            taggedstring = ""
            for item in tagged:
                item = "\t".join(item)
                taggedstring = taggedstring + str(item) + "\n"
            #print(taggedstring)

            basename = os.path.basename(file)
            cleanfilename = basename
            if not os.path.exists(outfolder):
                os.makedirs(outfolder)
            with open(os.path.join(outfolder, cleanfilename),"w") as output:
                output.write(taggedstring)
    print("Done.")
开发者ID:daschloer,项目名称:tmw,代码行数:27,代码来源:tmw.py


示例2: main

def main():

    st = POSTagger(
        "/home/shaun/stanford-postagger-full-2013-11-12/models/german-dewac.tagger",
        "/home/shaun/stanford-postagger-full-2013-11-12/stanford-postagger.jar",
    )

    # st = POSTagger("/home/shaun/stanford-postagger-full-2013-11-12/models/german-fast.tagger", \
    # "/home/shaun/stanford-postagger-full-2013-11-12/stanford-postagger.jar")

    # print st.tag("Die Kinder in Bayern haben lange Ferien".split())

    # return

    with open(sys.argv[1], "r") as f:
        content = f.read()

    sentences = re.split("\n|\.|\?", content)

    for s in sentences:
        if len(s) == 0:
            continue
        # print s
        pieces = st.tag(s.split())
        strippedPieces = stripPieces(pieces)

        print " ".join(strippedPieces)
开发者ID:spattersongt,项目名称:lingq,代码行数:27,代码来源:case_trainer.py


示例3: cleanTokens

def cleanTokens(tokens):


    st = POSTagger('/models/german-fast.tagger')

    tags = st.tag(tokens);
    def cleanTags(x):
        y = x[1]
        return True if re.match("NE|NN",y) and len(x[0]) > 3 else False

    clean_tags= filter(cleanTags,tags)

    #import pdb;pdb.set_trace();


    def buildSentens(arr):
        list = []
        sen =""
        for i in arr:
            list.append(i[0])
        return list



    #print len(clean_tags)
    #print clean_tags
    clean =  buildSentens(clean_tags)

    return clean
开发者ID:jbrissier,项目名称:gccheck,代码行数:29,代码来源:extract_text.py


示例4: stanford_corenlp_filter

def stanford_corenlp_filter(sent):
  from nltk.tag.stanford import POSTagger
  posTagger = POSTagger('/Users/gt/Downloads/'
                        'stanford-postagger-2013-06-20/models/'
                        'wsj-0-18-bidirectional-nodistsim.tagger',
                        '/Users/gt/Downloads/stanford-postagger-2013-06-20'
                        '/stanford-postagger-3.2.0.jar',encoding=encoding)

  b1, b2 = sent.split(blockSeparator)
  b2 = b2.rstrip()

  b1 = b1.lower()
  tokens = word_tokenize(b1)
  pos_tags = posTagger.tag(tokens)
  filtered_sent = ' '
  for pos_t in pos_tags:
    if pos_t[1] in filterList:
      # filtered_sent += stemmer.stem(pos_t[0]) + ' '
      filtered_sent += '1' + stemmer.stem(pos_t[0]) + ' '

      #note: 1 concat stemmer(word) == stemmer(1 concat word)

  b2 = b2.lower()
  tokens = word_tokenize(b2)
  pos_tags = posTagger.tag(tokens)
  filtered_sent = ' '
  for pos_t in pos_tags:
    if pos_t[1] in filterList:
      # filtered_sent += stemmer.stem(pos_t[0]) + ' '
      filtered_sent += '2' + stemmer.stem(pos_t[0]) + ' '

  return filtered_sent
开发者ID:gthandavam,项目名称:Recipes,代码行数:32,代码来源:builder.py


示例5: vectorizer

def vectorizer(tokens, w2v_db):
    db_path = w2v_db
    # POS TAGGING
    tagger = POSTagger('tagger/english-left3words-distsim.tagger', 'tagger/stanford-postagger.jar')
    tagged_tokens = tagger.tag(tokens)
    unsorted_kw = OrderedDict()
    for (w,t) in tagged_tokens:
        if t in ['NNP', 'NNPS', 'FW']:
            label = 1.5
        elif t in ['NN', 'NNS']:
            label = 1
            
        else:
            continue
        w = w.lower()
        try:
            unsorted_kw[w] += label
        except KeyError:
            unsorted_kw[w] = label
    # Get the vectors of words. Maintain order as in document.
    token_vecs = OrderedDict()
    conn = SQLCon(db_path)
    words = (word.lower() for word in unsorted_kw)
    for word in words:
        try:
            if token_vecs[word]: continue
        except KeyError:
            v = conn.read(word)
            if not v is None:
                token_vecs[word] = list(v)
    print("kw_len: {0} vec_len: {1}".format(len(unsorted_kw), len(token_vecs))) #Output for debugging; total vs unique words.
    conn.close()
    return unsorted_kw, token_vecs
开发者ID:suraj813,项目名称:SOMClassifier,代码行数:33,代码来源:pp_v4.py


示例6: postext_st

def postext_st(filename):
    # Opening of File
    path_to_raw = '/home/cyneo/Work/Scans/Text Version/'

    if type(filename) != str:
        raise IOError('Filename must be a string')

    # Preparing to Tokenize
    with open(osp.abspath(path_to_raw + filename + '.txt'),
              'r', encoding='utf8') as raw:
        # Initialize the punkt module
        sent_detector = nltk.data.load('tokenizers/punkt/english.pickle')
        sents = []

        for line in raw:
            sents.extend(sent_detector.tokenize(line.strip()))
    
    tokenedsents = []
    # Tokenizing
    from nltk.tokenize.stanford import StanfordTokenizer
    for line in sents:
        tokenedsents.append(StanfordTokenizer().tokenize(line))

    # Parts of Speech Tagging
    posSents = []
    from nltk.tag.stanford import POSTagger
    st = POSTagger('/mnt/sda2/stanford-packages/stanford-postagger-2014-10-26/models/english-bidirectional-distsim.tagger',
                   encoding='utf8')

    for line in tokenedsents:
        # Returns a list of a list of tuples
        posSents.append(st.tag(line))

    return posSents
开发者ID:cyneo,项目名称:feminism,代码行数:34,代码来源:adjective+extract.py


示例7: createModel

def createModel():
    global classifierit
    global classifierloose
    global classifieryou
    global classifierto
    global classifiertheir
    trainingitSet = []
    traininglooseSet = []
    trainingyouSet = []
    trainingtoSet = []
    trainingtheirSet= []
    st = POSTagger('/home/siddhartha/Downloads/stanford-postagger-full-2014-01-04/models/english-bidirectional-distsim.tagger', '/home/siddhartha/Downloads/stanford-postagger-full-2014-01-04/stanford-postagger.jar')
    for line in brown.sents():
        print line
        tagSent = st.tag(line)
        print tagSent
        arrayOfitFeature = pos_itfeatures(tagSent)
        arrayOfyouFeature = pos_youfeatures(tagSent)
        arrayOftheirFeature = pos_theirfeatures(tagSent)
        arrayOflooseFeature = pos_loosefeatures(tagSent)
        arrayOftoFeature = pos_tofeatures(tagSent)
        if arrayOfitFeature:
            trainingitSet.extend(arrayOfitFeature)
        if arrayOftheirFeature:
            trainingtheirSet.extend(arrayOftheirFeature)
        if arrayOflooseFeature:
            traininglooseSet.extend(arrayOflooseFeature)
        if arrayOftoFeature:
            trainingtoSet.extend(arrayOftoFeature)
        if arrayOfyouFeature:
            trainingyouSet.extend(arrayOfyouFeature)
        
    
    algorithm = nltk.classify.MaxentClassifier.ALGORITHMS[1]
    #encodingit = maxent.TypedMaxentFeatureEncoding.train(trainingitSet, count_cutoff=3, alwayson_features=True)
    classifierit = maxent.MaxentClassifier.train(trainingitSet, algorithm)
    f = open('classifierit.pickle', 'wb')
    pickle.dump(classifierit, f)
    f.close()
    #encodingloose = maxent.TypedMaxentFeatureEncoding.train(traininglooseSet, count_cutoff=3, alwayson_features=True)
    classifierloose = maxent.MaxentClassifier.train(traininglooseSet, algorithm)
    f = open('classifierloose.pickle', 'wb')
    pickle.dump(classifierloose, f)
    f.close()
    #encodingyou = maxent.TypedMaxentFeatureEncoding.train(trainingyouSet, count_cutoff=3, alwayson_features=True)
    classifieryou = maxent.MaxentClassifier.train(trainingyouSet, algorithm)
    f = open('classifieryou.pickle', 'wb')
    pickle.dump(classifieryou, f)
    f.close()
    #encodingto = maxent.TypedMaxentFeatureEncoding.train(trainingtoSet, count_cutoff=3, alwayson_features=True)
    classifierto = maxent.MaxentClassifier.train(trainingtoSet, algorithm)
    f = open('classifierto.pickle', 'wb')
    pickle.dump(classifierto, f)
    f.close()
    #encodingtheir = maxent.TypedMaxentFeatureEncoding.train(trainingtheirSet, count_cutoff=3, alwayson_features=True)
    classifiertheir = maxent.MaxentClassifier.train(trainingtheirSet, algorithm)
    f = open('classifiertheir.pickle', 'wb')
    pickle.dump(classifiertheir, f)
    f.close()      
开发者ID:siddharthasandhu,项目名称:NLPProjects,代码行数:59,代码来源:stanLearn.py


示例8: stanford_tag

def stanford_tag(sentence):
    ''' use stanford tagger to tag a single tokenized sentence
    '''
    import src.experiment.path as path
    tagger = POSTagger(path.stanford_tagger_model_path(),
                       path.stanford_tagger_path(),
                       java_options='-Xmx16g -XX:MaxPermSize=256m')
    return tagger.tag(sentence)
开发者ID:fashandge,项目名称:deja,代码行数:8,代码来源:utilities.py


示例9: tag

def tag(segments):
    #st = POSTagger('/home/dc65/Documents/tools/stanford-postagger-2014-01-04/models/english-left3words-distsim.tagger', '/home/dc65/Documents/tools/stanford-postagger-2014-01-04/stanford-postagger-3.3.1.jar')
    st = POSTagger(os.path.join(stanford_path, 'models/english-left3words-distsim.tagger'),
                   os.path.join(stanford_path, 'stanford-postagger-3.3.1.jar'))
    tagged = []
    for segment in segments:
        x = ' '.join(nltk.tag.tuple2str(w) for w in st.tag(word_tokenize(segment)))
        tagged.append(x.decode('utf-8'))
    return tagged
开发者ID:bwallace,项目名称:irony-redux,代码行数:9,代码来源:extract_and_tag.py


示例10: spanish_pos

def spanish_pos(text):
	""" Parts of speech tagger for Spanish """
	
	text = text.encode('utf8')

	st = POSTagger('/Users/Lena/src/context/stanford-postagger/models/spanish-distsim.tagger', 
				'/Users/Lena/src/context/stanford-postagger/stanford-postagger.jar', 'utf8')

	pos_tagged = st.tag(text.split())

	return pos_tagged  
开发者ID:lenazun,项目名称:context,代码行数:11,代码来源:spanish_processing.py


示例11: german_pos

def german_pos(text):
	""" Parts of speech tagger for German """
	
	text = text.encode('utf8')

	st = POSTagger('/Users/Lena/src/context/stanford-postagger/models/german-fast.tagger', 
				'/Users/Lena/src/context/stanford-postagger/stanford-postagger.jar', 'utf8')

	pos_tagged = st.tag(text.split())

	return pos_tagged  
开发者ID:lenazun,项目名称:context,代码行数:11,代码来源:german_processing.py


示例12: stanford_batch_tag

def stanford_batch_tag(sentences):
    '''use stanford tagger to batch tag a list of tokenized
    sentences
    '''
    import src.experiment.path as path
    # need to replace the model path and tagger path of standford parser 
    # in your computer (I use two functions here, you can hard code the paths if 
    # you like)
    tagger = POSTagger(path.stanford_tagger_model_path(),
                       path.stanford_tagger_path())
    return tagger.batch_tag(sentences)
开发者ID:fashandge,项目名称:deja,代码行数:11,代码来源:utilities.py


示例13: pos_tag

def pos_tag(texts):

    from nltk.tag.stanford import POSTagger
    
    jar = config.mainpath+"analyze/SPOS/stanford-postagger.jar"
    if language == "german":
        model = config.mainpath+"analyze/SPOS/models/german-fast.tagger"
    if language == "english":
        model = config.mainpath+"analyze/SPOS/models/english-bidirectional-distsim.tagger"
    tagger = POSTagger(model, path_to_jar = jar, encoding="UTF-8")

    return tagger.tag_sents(texts)
开发者ID:chreman,项目名称:output_BA,代码行数:12,代码来源:parallel_preprocessing.py


示例14: main

def main():

    print "Inicio..."
    with open("tweets_a_procesar_v2.csv", 'rb') as csvfile:
        lines = csv.reader(csvfile, delimiter=DELIMITER, quotechar="'")
        # En esta variable estan todos los tweets
        tweets = []
        for line in lines:
            tweet = Tweet(line)
            #print tweet.spanish_text.split()
            tweets.append(tweet)
        
    #archivo de salida
    output = open("output_tagged_v2.csv", 'wb')
    filewriter = csv.writer(output, delimiter=DELIMITER, quotechar="'")

    #importando el tagger en español de Stanford NLP
    from nltk.tag.stanford import POSTagger
    st = POSTagger('/Applications/XAMPP/htdocs/Proyectos/Stanford/stanford-postagger-full-2014-08-27/models/spanish-distsim.tagger','/Applications/XAMPP/htdocs/Proyectos/Stanford/stanford-postagger-full-2014-08-27/stanford-postagger-3.4.1.jar',encoding='utf-8')
    #st = POSTagger('/Applications/XAMPP/htdocs/Proyectos/Stanford/stanford-postagger-full-2014-08-27/models/spanish.tagger','/Applications/XAMPP/htdocs/Proyectos/Stanford/stanford-postagger-full-2014-08-27/stanford-postagger-3.4.1.jar',encoding='utf-8')
    #st = POSTagger('C:\Data\stanford-postagger-full-2014-08-27\models\spanish.tagger', 'C:\Data\stanford-postagger-full-2014-08-27\stanford-postagger-3.4.1.jar', encoding='utf-8')

    n=0
    for tweet in tweets:
        n+=1
        print tweet.spanish_text
        #Ejemplo: st.tag('What is the airspeed of an unladen swallow ?'.split())
        tweet_tagged = st.tag((tweet.spanish_text).split())
        #Ejem_output: [('What', 'WP'), ('is', 'VBZ'), ('the', 'DT'), ('airspeed', 'NN'), ('of', 'IN'), ('an', 'DT'), ('unladen', 'JJ'), ('swallow', 'VB'), ('?', '.')]
        #print tweet_tagged

        important_words = []
        n_adj = 0
        for tag in tweet_tagged:
            inicial = tag[1][:1]
            if('a' in inicial):
                important_words.append(tag[0])
            if('r' in inicial):
                important_words.append(tag[0])
            if('n' in inicial):
                important_words.append(tag[0])
            if('v' in inicial):
                important_words.append(tag[0])

        #tweet.cant_adj = n_adj
        tweet.tweet_tagged = tweet_tagged
        tweet.important_words = important_words
        filewriter.writerow(tweet.to_CSV())
        if n % 100 == 0: print n
    print "Done"
    output.close()
开发者ID:wilchess26,项目名称:WebMining,代码行数:51,代码来源:unParseStream.py


示例15: pos_tag_stanford

def pos_tag_stanford(toked_sentence):
	"""
	INPUT: list of strings
	OUTPUT: list of tuples

	Given a tokenized sentence, return 
	a list of tuples of form (token, POS)
	where POS is the part of speech of token
	"""

	from nltk.tag.stanford import POSTagger
	st = POSTagger('/Users/jeff/Zipfian/opinion-mining/references/resources/stanford-pos/stanford-postagger-2014-06-16/models/english-bidirectional-distsim.tagger', 
               '/Users/jeff/Zipfian/opinion-mining/references/resources/stanford-pos/stanford-postagger-2014-06-16/stanford-postagger.jar')

	return st.tag(toked_sentence)
开发者ID:Jewelryland,项目名称:Opinion-Mining-Project,代码行数:15,代码来源:extract_aspects.py


示例16: processor

def processor(name, url, tokens, db_path,json_dir, USE_TITLE_WORDS = False):
    # POS TAGGING
    tagger = POSTagger('tagger/english-left3words-distsim.tagger', 'tagger/stanford-postagger.jar')
    tagged_tokens = tagger.tag(tokens)

    unsorted_kw = OrderedDict()
    for (w,t) in tagged_tokens:
        if t in ['NNP', 'NNPS', 'FW']:
            label = 1.5
        elif t in ['NN', 'NNS']:
            label = 1
        else:
            continue
        w = w.lower()
        try:
            unsorted_kw[w] += label
        except KeyError:
            unsorted_kw[w] = label

    # Get the vectors list
    token_vecs = OrderedDict()
    conn = SQLCon(db_path)
    words = (word.lower() for word in unsorted_kw)
    for word in words:
        try:
            if token_vecs[word]: continue
        except KeyError:
            v = conn.read(word)
            if not v is None:
                token_vecs[word] = list(v)
    print("kw_len: {0} vec_len: {1}".format(len(unsorted_kw), len(token_vecs)))
    conn.close()

    #Compute cluster centers:
    nk = round(len(token_vecs)/4)
    data = numpy.array(list(token_vecs.values()))
    cent, _ = kmeans2(data,nk,iter=20,minit='points')
    centroids = cent.tolist()

    # Create the JSON object for this webpage.

    if not os.path.exists(json_dir):
        os.makedirs(json_dir)
    json_path = os.path.join(json_dir,name+'.json')
    file_dest = open(json_path, 'w')
    json.dump({'url': url, 'vectors' : token_vecs, 'keyword_frequency': unsorted_kw, 'centroids' : centroids}, file_dest)
    file_dest.close()
开发者ID:suraj813,项目名称:SOMClassifier,代码行数:47,代码来源:pp_v3.py


示例17: stan_pos

def stan_pos(input_sent):
    """
    This function calls stanford POS tagger.In this function Stanford POS tagger directory must be in the same directory.And this function chooses model "wsj left 3 words" as normal POS tagging model. If  you want to use other POS tagging models, please change first argument of st = POSTagger() below.

    """
    eval_sent = []

    st = POSTagger("./stanford-postagger-2012-11-11/models/wsj-0-18-left3words.tagger","./stanford-postagger-2012-11-11/stanford-postagger.jar")

    pos_result = st.tag(input_sent.split())
    for one_tuple in pos_result:
        pos_format = one_tuple[0] + "_" + one_tuple[1]
        
        eval_sent.append(pos_format)

    eval_sent = reg_form(eval_sent)
    return eval_sent
开发者ID:Kensuke-Mitsuzawa,项目名称:practice_code,代码行数:17,代码来源:make_feat_predict.py


示例18: add_POS

 def add_POS(self,row_file,target):
     '''
     row_str = '';
     f = open(row_file,'rb');
     for row in f:
         row_str+=row;
     soup = BeautifulSoup(row_str);
     self.soup = soup;
     sentences = soup.find_all('sentence');
     all_token = list();
     for block in sentences:
         text = block.text.strip();
         text_token = self.tf.stanford_tokenize(text);
         all_token.append(text_token);
     '''
     all_token = self.get_token(target);
     stanford_tagger = \
     POSTagger('../stanford-postagger-full-2015-01-30/models/english-bidirectional-distsim.tagger','../stanford-postagger-full-2015-01-30/stanford-postagger.jar');
     tag_list = list();
     for row in all_token:
         temp_list = list();
         for word in row:
             if len(word)>1 and re.match(r'^[A-Z]+',word):
                 temp_list.append(word.lower());
             else:
                 temp_list.append(word);
         tag_list.append(temp_list);1
     #end for
     tagged_result = stanford_tagger.tag_sents(tag_list);
     '''
     for row in tagged_result:
         index_list = list();
         for num,item in enumerate(row):
             if not re.match(r'.*[\w\d]+',item[0]):
                 index_list.append(num);
         for i in index_list:
             row[i]=(row[i][0],row[i][0]);
     #end for
     '''
     w = open('pos_%s'%target,'wb');
     for num1,row in enumerate(tagged_result):
         for num2,item in enumerate(row):
             w.write(all_token[num1][num2]+' '+item[1]+'\n');
         w.write('\n');
     #print tagged_result;
     return;
开发者ID:victormm88,项目名称:SemEval,代码行数:46,代码来源:Feature_Tool.py


示例19: main

def main():
    dict2 = readDict("dict2.txt")
    sentences2 = readSentences("sentences2.txt")
    translated2 = translate(sentences2, dict2)
    print "======================================BASE TRANSLATION=========================================="
    for sentence in translated2:
        print sentence

    print "================================================================================================"

    st = POSTagger('stanford-postagger/models/english-left3words-distsim.tagger',
        'stanford-postagger/stanford-postagger.jar')
    POS = []
    for sentence in translated2:
        tagged = st.tag(sentence.split())
        if (len(tagged)>0):
            POS.append(tagged)

    POS = stupidFixes(POS)
    print "==================================STUPID FIXES TRANSLATION======================================"
    for sentence in POS:
#        print sentence # '[%s]' % ', '.join(map(str, sentence))
        print ' '.join(map(getWord, sentence))


    POS = rulesOneThree(POS)
    print "=====================================RULE1+3 TRANSLATION========================================"
    for sentence in POS:
        print ' '.join(map(getWord, sentence))

    POS = rulesFourFiveSeven(POS)
    print "=====================================RULE4+5+7 TRANSLATION========================================"
    for sentence in POS:
        print ' '.join(map(getWord, sentence))

    POS = ruleTwoNine(POS)
    POS = ruleTwoNine(POS) # apply twice
    print "=====================================RULE2+9 TRANSLATION========================================"
    for sentence in POS:
        print ' '.join(map(getWord, sentence))

    POS = ruleSixEight(POS)
    print "=====================================RULE6+8 TRANSLATION========================================"
    for sentence in POS:
        print ' '.join(map(getWord, sentence))
开发者ID:j-squared,项目名称:cs124-pa7,代码行数:45,代码来源:MT.py


示例20: get_transactions

	def get_transactions(self, product_reviews):
		'''
			Generates a set of transactions ready for frequent itemset mining
			from the crawled product reviews
		'''
		pos_tagger = POSTagger(PATHS['POS_MODEL'], PATHS['POS_TAGGER'])

		pos_output = []
		transactions_output = []

		print 'Generating transactions...'
		product_count = 0
		sentence_count = 0
		for product in product_reviews:
			sentences = sent_tokenize(product)
			for sentence in sentences:
				try:
					sent_pos = pos_tagger.tag(word_tokenize(sentence))
				except UnicodeEncodeError:
					continue
				trans = []
				pos_tags = []
				for word, pos in sent_pos:
					pos_tags.append(':'.join([word, pos]))
					if ((pos == 'NN' or pos == 'NNS' or pos == 'NP') and
						re.match('^[A-Za-z0-9-]+$', word)):
						trans.append(word.lower())
				if trans:
					pos_output.append([sentence] + pos_tags)
					transactions_output.append([sentence] + trans)
					sentence_count += 1
			product_count += 1

			print '---%s Reviews and %s Transactions Parsed---' % (
				product_count,
				sentence_count
			)

		write_csv(PATHS['POS'], pos_output)
		write_csv(PATHS['TRANSACTIONS'], transactions_output)

		print 'Finished generating transactions...'
开发者ID:arpangarg,项目名称:productreviews,代码行数:42,代码来源:features.py



注:本文中的nltk.tag.stanford.POSTagger类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tgrep.tgrep_positions函数代码示例发布时间:2022-05-27
下一篇:
Python stanford.NERTagger类代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap