• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python snowball.EnglishStemmer类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中nltk.stem.snowball.EnglishStemmer的典型用法代码示例。如果您正苦于以下问题:Python EnglishStemmer类的具体用法?Python EnglishStemmer怎么用?Python EnglishStemmer使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了EnglishStemmer类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: str_to_dict

def str_to_dict(s):
    '''
    creates dictionary of words and counts
    input:  s string
    output: dictionary {word: count}
    '''
    s = s.encode('ascii','ignore')
    s = str(s)
    word_dict = {}
    l = re.findall(WORDRE, s)
    for w in l:
        w = w.lower()               # make all letters lowercase 
        
        if w[0] == "'":             # remove single quotes from beginning/
            w = w[1:]               # end of words in l
        elif w[-1] == "'":
            w = w[:-1]
        
        w = EnglishStemmer().stem(w)        # stems non-noun/verbs 
        w = w.encode('ascii','ignore')
        
        if w != '':
            if w not in word_dict:      # build dictionary
                word_dict[w] = 1
            else:
                word_dict[w] += 1

    return word_dict
开发者ID:ccr122,项目名称:ccr,代码行数:28,代码来源:parse.py


示例2: getAllStemEntities

def getAllStemEntities(entities):
    st = EnglishStemmer()
    q = [",", ".", "!", "?", ":", ";"]
    tmp = []
    sourceEntities = [x for x in entities if len(x) > 0]
    np.random.shuffle(entities)

    for i in xrange(len(entities)):
        if len(entities[i]) == 0:
            continue
        if i % 1000 == 0:
            print i
        entities[i] = entities[i].lower()
        entities[i] = entities[i].replace(" - ", " \u2013 ", entities[i].count(" - "))
        entities[i] = entities[i].replace(" -", " \u2013", entities[i].count(" -"))
        entities[i] = entities[i].replace("- ", "\u2013 ", entities[i].count("- "))
        entities[i] = entities[i].replace("-", " - ", entities[i].count("-"))
        entities[i] = entities[i].replace(")", " )", entities[i].count(")"))
        entities[i] = entities[i].replace("(", "( ", entities[i].count("("))
        entities[i] = entities[i].replace("\u0027", " \u0027", entities.count("\u0027"))
        for w in q:
            entities[i] = entities[i].replace(w, " " + w, entities[i].count(w))
        word = entities[i].split(" ")
        s = ""
        for w in word:
            s += st.stem(unicode(w)) + " "
        tmp.append(s[:-1])
        if len(tmp) > 50:
            break

    return tmp, entities[: len(tmp)]
开发者ID:mikhaylova-daria,项目名称:NER,代码行数:31,代码来源:allFunctions.py


示例3: Granularity

def Granularity(sentenceArray):
    for sentence in sentenceArray:
        # print(sentence)
        try:

            stemmer = EnglishStemmer()
            sentence = re.sub(r'\#.*?$', '', sentence)
            sentence = re.sub(r'\#.*? ', '', sentence)
            sentence = re.sub(r'\@.*?$', '', sentence)
            sentence = re.sub(r'\@.*? ', '', sentence)
            sentence = re.sub(r'pic.twitter.*?$', '', sentence)
            sentence = re.sub(r'pic.twitter.*? ', '', sentence)
            sentence = re.sub(r'\'m', ' am', sentence)
            sentence = re.sub(r'\'d', ' would', sentence)
            sentence = re.sub(r'\'ll', ' will', sentence)
            sentence = re.sub(r'\&', 'and', sentence)
            sentence = re.sub(r'don\'t', 'do not', sentence)

            data = stemmer.stem(sentence)
            print(data)
            from nltk.corpus import stopwords

            sentence = str(data)
            stop = stopwords.words('english')
            final = [i for i in sentence.split() if i not in stop]
            finalstring = ' '.join(final)
            os.system("printf \"" + str(finalstring) + "\n\">> stemstop/" + word)
        except Exception as e:
            print(e)
开发者ID:PgnDvd,项目名称:SNLP,代码行数:29,代码来源:Stemmer.py


示例4: query

def query(word):
    db = MySQLdb.connect("127.0.0.1","dizing","ynr3","dizing" )
    cursor=db.cursor()
    snowball_stemmer = EnglishStemmer()
    stem2 = snowball_stemmer.stem(word)
    cursor.execute("SELECT * FROM words WHERE original=%s OR stem1=%s OR stem2=%s", (word,word,stem2))
    rows = cursor.fetchall()
    words1 = dict()
    words2 = dict()
    for row in rows:
        if row[1] == word or row[3]==word:
            words1[word] = row[0]
        else:
            words2[word] = row[0]
    scenes1 = []
    scenes2 = []
    for (i,words_dict) in [(1,words1), (2,words2)]:
        wids = words_dict.values()
        for wid in wids:
            sql = "SELECT s.sentence, s.start, s.stop, s.ready, m.title FROM scene AS s, words_scenes AS ws, movie as m " + \
                           "WHERE ws.wid=%d AND ws.sid=s.sid AND s.mid = m.mid" % int(wid)
            # print sql
            cursor.execute(sql)
            rows = cursor.fetchall()
            if (i==1): scenes1 += rows
            else: scenes2 += rows
    print scenes1
    print scenes2
    return scenes1 + scenes2
    db.close()
开发者ID:yasinzor,项目名称:videosozluk,代码行数:30,代码来源:query_word.py


示例5: _execute

 def _execute(self):
     
     corpus = mongoExtractText(self.name)
     stemmer = EnglishStemmer()
     for item in corpus:
         line = item.replace(',', ' ')
         stemmed_line = stemmer.stem(line)
         self.sentiment.append((sentiment.sentiment(stemmed_line), stemmed_line))
开发者ID:cevaris,项目名称:nebula,代码行数:8,代码来源:mining.py


示例6: stem_word

def stem_word(word):
    """
    Stem words
    :param word: (str) text word
    :returns: stemmed word
    """
    stemmer = EnglishStemmer()
    return stemmer.stem(word)
开发者ID:vipul-sharma20,项目名称:tweet-analysis,代码行数:8,代码来源:util.py


示例7: as_eng_postagged_doc

def as_eng_postagged_doc(doc):
    '''Uses nltk default tagger.'''
    tags    = [t for _, t in nltk.pos_tag(list(doc.word))]
    stemmer = EnglishStemmer()
    lemmata = [stemmer.stem(w) for w in list(doc.word)]
    doc['pos']   = Series(tags)
    doc['lemma'] = Series(lemmata)
    return doc
开发者ID:estnltk,项目名称:pfe,代码行数:8,代码来源:corpus.py


示例8: use_snowball_stemmer

 def use_snowball_stemmer(self,word):
     """
     return stemmed words used snowball algorithm
     :param word:
     :return:
     """
     englishStemmer=EnglishStemmer()
     stemmed_word= englishStemmer.stem(word)
     return stemmed_word
开发者ID:soumik-dutta,项目名称:Keyword-Extraction,代码行数:9,代码来源:Stemming.py


示例9: getLemmatizerInfo

def getLemmatizerInfo(pathArticle):

    data = open(pathArticle, "r")
    text1 = data.read().decode('utf-8')

    sourceText = text1

    links1 = []
    l = 0
    for q in text1.split():
        if q == '\ufeff':
            continue
        links1.append([text1.find(q,l), q])
        l = len(q) + 1 + text1.find(q,l)

    text1 = text1.replace(' - ', ' \u2013 ', text1.count(' - '))
    text1 = text1.replace(' -', ' \u2013', text1.count(' -'))
    text1 = text1.replace('- ', '\u2013 ', text1.count('- '))
    text1 = text1.replace('-', ' - ', text1.count('-'))
    text1 = text1.replace('(', '( ', text1.count('('))
    text1 = text1.replace(')', ' )', text1.count(')'))
    text1 = text1.replace(' \u0027', ' \u301E', text1.count(' \u0027'))
    text1 = text1.replace('\u0027', ' \u0027', text1.count('\u0027'))
    text1 = text1.split()
    if text1[0] == u'\ufeff':
        text1=text1[1:]
    text = []
    for word in text1:
        text2 = []
        if len(word) == 0:
            continue
        while word[len(word)-1] in [',','.','!','?',':',';']:
            text2.append(word[len(word)-1])
            word = word[:-1]
            if len(word) == 0:
                break
        text.append(word)
        for i in range(len(text2)-1, -1,-1):
            text.append(text2[i])

    out = ''

    st = EnglishStemmer()

    l = 0
    links = []
    for word in text:
        if isOk(word):
            q = st.stem(word) + ' '
        else:
            q = word + ' '
        out += q.lower()
        links.append([l, q])
        l += len(q)
    return out, links, links1, sourceText
开发者ID:mikhaylova-daria,项目名称:NER,代码行数:55,代码来源:allFunctions.py


示例10: stemming

def stemming(tweet):
    tweets = tweet.split()
    wrdStemmer = EnglishStemmer()
    stemTweet =[]
    try:
        for tweet in tweets:
            tweet = wrdStemmer.stem(tweet)
            stemTweet.append(tweet)
    except:
        print("Error: Stemming")
    return " ".join(stemTweet)
开发者ID:RohithEngu,项目名称:Opinion-Summarizer,代码行数:11,代码来源:PreProcessing.py


示例11: fix_lemma_problem

def fix_lemma_problem(pred_scores, targets, space):
    from nltk.stem.snowball import EnglishStemmer
    es = EnglishStemmer()
    r = pred_scores.copy()
    lemmas = np.array([es.stem(v) for v in space.vocab])
    for i, t in enumerate(targets):
        g = es.stem(space.vocab[t])
        mask = (lemmas == g)
        #print space.vocab[t], np.sum(mask)
        r[i][mask] = -1e9
        #print r[i][mask]
    return r
开发者ID:stephenroller,项目名称:naacl2016,代码行数:12,代码来源:lexsub.py


示例12: get_stemmed_keywords

def get_stemmed_keywords(keywords):

  stemmer = EnglishStemmer()
  stemmed_keywords = list(keywords)
  # split into list of list
  stemmed_keywords = [keyword.split() for keyword in stemmed_keywords]
  # stem individual words
  stemmed_keywords = [list(stemmer.stem(word) for word in keyword) for keyword in stemmed_keywords]
  # list of words to string
  stemmed_keywords = [' '.join(keyword).encode('ascii') for keyword in stemmed_keywords]

  return stemmed_keywords
开发者ID:bohrjoce,项目名称:keyword-extraction,代码行数:12,代码来源:evaluate_multiple.py


示例13: main

def main(fname):
  e = EnglishStemmer()

  n, a = 0, 0
  for line in open(sys.argv[1]):
    title, body, tags, creationdate, acceptedanswerid, score, viewcount = eval(line)

    # Process text into tokens
    html_tags = RX_OPEN_TAGS.findall(body)
    body = RX_TAGS.sub("",body)
    print " ".join(e.stem(s) for s in RX_NONWORD.split(body))
    M = bayes.NaiveLearner(adjust_threshold=True, name="Adjusted Naive Bayes")
开发者ID:andrewdyates,项目名称:signalfire_sap,代码行数:12,代码来源:parse2.py


示例14: stemmed

def stemmed(text, snowball=False):
    """Returns stemmed text
    """
    if snowball:
        st = EnglishStemmer()
    else:
        st = PorterStemmer()
    words = wordpunct_tokenize(text)
    words = [st.stem(w) for w in words]
    text = ' '.join(words)

    return text
开发者ID:soodoku,项目名称:search-names,代码行数:12,代码来源:preprocess.py


示例15: similarity_score

def similarity_score(word1, word2):
    """ see sections 2.3 and 2.4 of http://dx.doi.org.ezp-prod1.hul.harvard.edu/10.1109/TKDE.2003.1209005
    :type word1: string
    :type word2: string
    :return: float: between 0 and 1; similarity between two given words
    """
    stemmer = EnglishStemmer()
    if stemmer.stem(word1) == stemmer.stem(word2):
        return 1
    alpha = 0.2
    beta = 0.6
    l, h = get_path_length_and_subsumer_height(word1, word2)
    return exp((-1)*alpha*l)*((exp(beta*h)-exp((-1)*beta*h))/(exp(beta*h)+exp((-1)*beta*h)))
开发者ID:ReganBell,项目名称:QReview,代码行数:13,代码来源:Analyze.py


示例16: normalize_tags

def normalize_tags():
    cursor.execute('SELECT app_id, tag, times FROM tag_app_rel;')
    all_tag_data = defaultdict(dict)
    for r in cursor:
        all_tag_data[r[0]][r[1]] = r[2]
    from nltk.stem.snowball import EnglishStemmer
    stemmer = EnglishStemmer()
    for app_id, tag_to_times in all_tag_data.iteritems():
        normalized_app_tag_dict = defaultdict(int)
        for tag, times in tag_to_times.iteritems():
            normalized_app_tag_dict[stemmer.stem(tag)] += times
        for tag, times in normalized_app_tag_dict.iteritems():
            cursor.execute('INSERT INTO tag_app_relation (app_id, tag, times) VALUES (%s, %s, %s)', (app_id, tag, times))
开发者ID:demien-aa,项目名称:CodingMan,代码行数:13,代码来源:services.py


示例17: nltk_tokenizer

def nltk_tokenizer(text, min_size=4, *args, **kwargs):
	from nltk.stem.snowball import EnglishStemmer
	from nltk.corpus import stopwords as stwds
	from nltk.tokenize import TreebankWordTokenizer
	
	stemmer = EnglishStemmer()
	stopwords = set(stwds.words('english'))
	
	text = [stemmer.stem(w) for w in TreebankWordTokenizer().
			tokenize(text) if not w in stopwords 
			and len(w) >= min_size]

	return text
开发者ID:danielcestari,项目名称:machine_learning,代码行数:13,代码来源:naive.py


示例18: tokenize_documents

def tokenize_documents(documents):

    stop_words = stopwords.words('english') + stopwords.words('spanish') #common words to be filtered
    english = EnglishStemmer()
    arabic = ISRIStemmer()

    punctuation = { ord(char): None for char in string.punctuation}

    def valid_word(token, filtered=stop_words): 
        # Returns false for common words, links, and strange patterns
            if (token in filtered) or (token[0:4] == u'http') or\
            (token in string.punctuation):
                return False
            else:
                return True

    for doc in documents:

        row = doc[0]
        doc = doc[1]

        if doc is not None:

            # remove trailing whitespace
            doc = doc.strip()
            # remove twitter handles (words in doc starting with @)
            doc = re.sub(r"@\w+|\[email protected]\w+", "", doc)
            # lowercase letters
            doc = doc.lower()
            # remove punctuation
            doc = doc.translate(punctuation)

            # tokenization: handles documents with arabic or foreign characters
            tokens = nltk.tokenize.wordpunct_tokenize(doc)

            cleaned_tokens = []
            for token in tokens:

                # for valid words, correct spellings of gaddafi and stem words
                if valid_word(token):
                
                    if token in [u'gadhafi', u'gadafi', u'ghadhafi', u'kadhafi', u'khadafi', u'kaddafi']:
                        token = u'gaddafi'
                    else:
                        token = arabic.stem(english.stem(token)) 

                    cleaned_tokens.append(token)    

            yield row
            yield cleaned_tokens
开发者ID:sharonxu,项目名称:nlp-twitter,代码行数:50,代码来源:process_text.py


示例19: stem_sen

def stem_sen(list_sentences):
  stemmer = EnglishStemmer()
  # map back should be a dict with words,
  # each word map to 3 version: noun, adj, verb,
  # and each version is a list of pair
  lem = WordNetLemmatizer()
  mapping_back = {}
  res_list = []
  res_sen = []
  stemmer = EnglishStemmer()

  # of course we want to return a list of sentences back as well
  for sent in list_sentences:
    tmp_list = []
    tok_list = word_tokenize(sent)
    tok_pos = nltk.pos_tag(tok_list)
    for tok,pos in tok_pos:
      if (tok.lower() in stopwords.words('english')):
        continue
      if len(tok) == 1:
        continue
      tok = lem.lemmatize(tok)
      pos = pos[:2]
      if ('NN' not in pos) and ('JJ' not in pos) and ('VB' not in pos):
        continue
      stem_tok = stemmer.stem(tok)
      if (stem_tok not in mapping_back):
        mapping_back[stem_tok] = {}
      if pos not in mapping_back[stem_tok]:
        mapping_back[stem_tok][pos] = {}

      # increase count
      if tok not in mapping_back[stem_tok][pos]:
        mapping_back[stem_tok][pos][tok] = 1
      else:
        mapping_back[stem_tok][pos][tok] += 1
      tmp_list.append(stem_tok + '-' + pos)
    res_sen.append(tmp_list)
  res_map = {}

  # do the second run through to find the most frequent - mapping
  for tok in mapping_back:
    for pos in mapping_back[tok]:
      tmp_tok = tok + '-' + pos
      # find the most frequently, unstemmed word correspond to the stemmer + tagged
      most_freq = max(mapping_back[tok][pos], key = mapping_back[tok][pos].get)
      res_map[tmp_tok] = most_freq.encode('ascii')
      res_list.append(tmp_tok)
  return res_sen, res_list, res_map
开发者ID:bohrjoce,项目名称:keyword-extraction,代码行数:49,代码来源:feature_extract.py


示例20: tokenize

 def tokenize(self):
     terms = word_tokenize(self.text);
     self.tokens = [];
     self.lemmas = []
     stemmer = EnglishStemmer();
     lemmatizer = WordNetLemmatizer()
     for term in terms:
         try:
             self.tokens.append(stemmer.stem(term).lower())
             self.lemmas.append(lemmatizer.lemmatize(term.lower()))
         except Exception, e:
             print 'current text:', self.text;
             print 'current term:', term;
             print str(e);
             sys.exit(-1);
开发者ID:DrDub,项目名称:window_shopper,代码行数:15,代码来源:WindowExtractor.py



注:本文中的nltk.stem.snowball.EnglishStemmer类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python snowball.SnowballStemmer类代码示例发布时间:2022-05-27
下一篇:
Python porter.PorterStemmer类代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap