• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python lancaster.LancasterStemmer类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中nltk.stem.lancaster.LancasterStemmer的典型用法代码示例。如果您正苦于以下问题:Python LancasterStemmer类的具体用法?Python LancasterStemmer怎么用?Python LancasterStemmer使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了LancasterStemmer类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: stem_tweet

def stem_tweet(tweet, stemmer_type = "lancaster"):
    """
    :param tweet: string representing tweet
    :param stemmer_type: type of stemmer used (default value is lancaster)
    :return: stemmed tweet
    :type tweet: str
    :type stemmer_type: str
    """
    tokens = nltk.word_tokenize(tweet)
    stemmed_tokens = []
    if stemmer_type == "lancaster":
        stemmer = LancasterStemmer()
    elif stemmer_type == "snowball":
        stemmer = SnowballStemmer("english")
    elif stemmer_type == "porter":
        stemmer = PorterStemmer()
    elif stemmer_type == "regexp":
        stemmer = RegexpStemmer("english")
    else:
        return None

    for token in tokens:
        stemmed_tokens.append(stemmer.stem(token))

    ret_tw = "".join([" "+i if not i.startswith("'") and i not in string.punctuation else i for i in stemmed_tokens]).strip()
    return ret_tw
开发者ID:GavriloDrljaca,项目名称:ANNProject,代码行数:26,代码来源:nltk_manipulation.py


示例2: stem_text

def stem_text(text):
    stm = LancasterStemmer()
    tokens = text.split()
    words = [stm.stem(w) for w in tokens]
    snt = " ".join(words)

    return snt
开发者ID:uml-cs-nlp-sentence-completion,项目名称:Sherlock,代码行数:7,代码来源:process_file.py


示例3: lemmatizer_newsheadlines

def lemmatizer_newsheadlines() :
    lancaster_stemmer = LancasterStemmer()
    frl=open("C:/Users/rajas/Downloads/csv_files-2014-12-10/csv files/lemma1.csv","rU")
    fr=open("C:/Users/rajas/Downloads/csv_files-2014-12-10/csv files/sample.csv","rU")
    fw=open("C:/Users/rajas/Downloads/csv_files-2014-12-10/csv files/lemmaheadlines.csv","w")
    for headline in fr:
        if len(headline)>0:
          headlinelist=headline.split(",")
        
          if len(headlinelist)==3:
            headlinewords=headlinelist[1].split(" ")
            print(headlinewords)
            for word in headlinewords:
              wordcor=(((word.replace("?","")).replace(":","")).replace("\"",""))    
               
              headlineword=(lancaster_stemmer.stem(wordcor)).lower()
              print(headlineword) 
     #         for line in frl:
      #          crimelist=line.split(",")
       #         crimeword=((crimelist[1].replace("\"","")).strip()).lower()
               
        #        print(crimeword+str(i))
         #       i+=1
              dictcrime=lemmadict()
              if headlineword in dictcrime:
                  print(headlineword+"yipee")
                  fw.write(headlineword+","+headlinelist[0]+","+headlinelist[1]+"\n")
                                    
                  break;
    frl.close()     
    fw.close()
    fr.close()
开发者ID:22parthgupta18,项目名称:Crime_Visualization,代码行数:32,代码来源:lemmatizer.py


示例4: simplify_old

def simplify_old(s):
    res = ''
    st = LancasterStemmer()

    text = nltk.word_tokenize(s)
    tags = nltk.pos_tag(text)

    for tag in tags:
        word = tag[0]
        if f.checkPos(tag[1]):
            if word in model:
                word_stem = st.stem(word)
                top_words = model.most_similar(positive=[word], topn = 20)
                candidate_list = [w[0] for w in top_words]
                freq_list = [fdist[w] for w in candidate_list]
                c_f_list = zip(candidate_list, freq_list)
                ordered_list = sorted(c_f_list, key=lambda c_f_list:c_f_list[1], reverse=True)
                word_freq = fdist[word]
                #			synonmys = f.getSynonmys(word)  ## get synonmys from wordnet
                # print synonmys
                for w in ordered_list:
                    if not f.freq_diff(word_freq, w[1]):  ## break for loop if candidate word frequency does not exceed the word frequency by a threshold
                            break
                    if st.stem(w[0]) != word_stem and f.samePos(word, w[0]): ##exclude morphological derivations and same pos
                            word = w[0]  ### do not use wordnet
        # if w[0] in synonmys:
        # 	word = w[0]
        # else:
        # 	for syn in synonmys:
        # 		if st.stem(w[0]) == st.stem(syn):
        # 			word = w[0]

        res = res + word + ' '
    return res
开发者ID:wufei523,项目名称:SimpleTestUmb,代码行数:34,代码来源:utils.py


示例5: filt

	def filt(string):

		ret = string

		#	Filter all punctuation from string
		for p in punctuation:
			ret = ret.replace(p, '')

		#	Replace hyphens with spaces
		ret = ret.replace('-', ' ')
		oldret = ret
		ret = ""

		#	Filter all stop words from string
		for word in oldret.split():
			if (word in allStopWords) or len (word) <= 1:
				pass
			else:
				ret += word.lower() +  " "

		st = LancasterStemmer()
		steamed = ""

		for word in ret.split():
			try:
				steamed += str(st.stem(word)) + " "

			except UnicodeDecodeError:
				pass

		return steamed
开发者ID:mitzelu,项目名称:lexical_analysis_tex,代码行数:31,代码来源:mrtitlefreq.py


示例6: mapper

def mapper():

    #list of fields in positional order expected in inbound
    #forum node data.
    fieldnames = ['id', 'title', 'tag_names', 'author_id', 'body',
                    'node_type', 'parent_id', 'abs_parent_id', 
                    'added_at', 'score', 'state_string', 'last_edited_id',
                    'last_activity_by_id', 'last_activity_at', 
                    'active_revision_id', 'extra', 'extra_ref_id',
                    'extra_count', 'marked']

    reader = csv.DictReader(sys.stdin, delimiter='\t', fieldnames=fieldnames)
    stemmer = LancasterStemmer()
    stopw = stopwords.words('english')

    split_pattern = re.compile('[\W.!?:;"()<>[\]#$=\-/]')
    for line in reader:        
        
        pid = line['id']
        body = line['body']
        
        # split body into words
        words = split_pattern.split(body)
     
        # map the stemmer function across all the words.
        # and use the Counter to create a dict
        # of counted stems. Remove english stopwords.
        stem_counts = Counter((stemmer.stem(x) for x in words  if x not in stopw))        
        
        # emit the stem, count and node id
        # for reduction into the reverse index
        for stem, count in stem_counts.items():
        	print "{stem}\t{node_id}\t{count}".format(stem=stem, node_id=pid, count=count)
开发者ID:wgberger,项目名称:UdacityIntroToMR,代码行数:33,代码来源:mapper.py


示例7: preprocess

def preprocess(reviews):
	import nltk
	from nltk.tokenize import word_tokenize

	review_tokenized = [[word.lower() for word in word_tokenize(review.decode('utf-8'))] for review in reviews] 
	#print "review tokenize done"

	#remove stop words
	from nltk.corpus import stopwords
	english_stopwords = stopwords.words('english')
	review_filterd_stopwords = [[word for word in review if not word in english_stopwords] for review in review_tokenized]
	#print 'remove stop words done'

	#remove punctuations
	english_punctuations = [',','.',':',';','?','(',')','&','!','@','#','$','%']
	review_filtered = [[word for word in review if not word in english_punctuations] for review in review_filterd_stopwords]
	#print 'remove punctuations done'

	#stemming
	from nltk.stem.lancaster import LancasterStemmer
	st = LancasterStemmer()
	review_stemmed = [[st.stem(word) for word in review] for review in review_filtered]
	#print 'stemming done'

	return review_stemmed
开发者ID:anirudhreddy92,项目名称:DataMining_Capstone,代码行数:25,代码来源:task3.1.py


示例8: preprocess

def preprocess(content):
	stopset = set(stopwords.words('english'))
	#replace punctuation and tag with space
	tokens = word_tokenize(re.sub(r'<p>|</p>|[^A-Za-z ]', ' ', content.lower())) 
	pos_list = pos_tag(tokens)
	s_tokens = list()

	#noun and verb only
	for pos in pos_list:
		#print pos[1]
		#if pos[1] in ['NN', 'NNS', 'VB', 'VBD', 'VBG', 'VBN', 'VBP', 'VBZ']:
		if pos[1] in ['NN', 'NNS']:
			s_tokens.append(pos[0])

	wordfreq = FreqDist(s_tokens)
	stemfreq = dict()
	st = LancasterStemmer()
	for word, freq in wordfreq.items():
		#stopwords
		if word in stopset:
			del wordfreq[word]
			continue
		#tiny words
		if len(word) <= 2:
			del wordfreq[word]
			continue
		#stemmer
		stem = st.stem(word)
		try:
			stemfreq[stem]+=freq
		except:
			stemfreq[stem]=freq
	return stemfreq
开发者ID:TorchmanX,项目名称:TARS,代码行数:33,代码来源:nc.py


示例9: processRawData

 def processRawData(self, inputPath, outputPath):
   raw = pickle.load(open(inputPath, "r"))
   data = []
   genres = set([])
   count = 0
   st = LancasterStemmer()
   for key in raw.keys():
     movie = raw[key]
     # if no genre or synopsis data
     if 'genres' not in movie or 'synopsis' not in movie: continue
     if len(movie['genres'])==0 or movie['synopsis'] == '': continue
     temp = {}
     temp['genres'] = movie['genres']
     for g in temp['genres']:
       genres.add(g)
     # trim out the punctuation and transform to lowercase
     #replace_punctuation = string.maketrans(string.punctuation, ' '*len(string.punctuation))
     s = str(movie['synopsis'])
     s = s.translate(string.maketrans("",""), string.punctuation)
     s = re.sub(' +', ' ', s).strip()
     s = " ".join(st.stem(word) for word in s.split(" "))
     temp['synopsis'] = s.lower()
     data.append(temp)
     count += 1
   # output as a pickle file 
   file = open(outputPath, 'wb')
   pickle.dump(data, file)
   print 'processed ' + str(count) + ' movies'
   return genres
开发者ID:calvinyu,项目名称:SEA-final-project,代码行数:29,代码来源:trainer.py


示例10: parse_validation

def parse_validation(validation_path):
    validation_list = []
    with open(validation_path) as f:
        for line in f:
            strs = line.split('|')
            word_dict = {}
            validation_list.append(word_dict)
            word_dict["word"] = strs[0].strip()
            word_dict["real_sense"] = int(strs[1])
            sentence_list = []
            word_dict["sentence"] = sentence_list

            lmtzr = WordNetLemmatizer()
            ls = LancasterStemmer()
            single_words = re.findall("(\w+|%%)",strs[2])
            double_mod_found = False
            word_count = 0
            for single_word in single_words:
                if single_word == "%%":
                    if not double_mod_found:
                        word_dict["target_word_idx"] = word_count+1
                        double_mod_found = True
                    continue
                lemmed = lmtzr.lemmatize(single_word)
                stemmed = ls.stem(lemmed)
                if not stemmed in glob_Lucene:
                    sentence_list.append(stemmed)
                    word_count += 1

    return validation_list
开发者ID:joycez,项目名称:NLP_Proj2,代码行数:30,代码来源:dic_preprocessing.py


示例11: getMaybeWords

   def getMaybeWords(self, text_ls):
      ignoreWords = ["","have","her","there","the","be","to","of","and","a","in","that","it","for","on","with","as","at","this","but","his","by","from","they","or","an","will","would","so","even","is","be","am","are"];

      word_ls = []
      for text in text_ls:
         word_ls += wordpunct_tokenize(text)
         
      frequencies = {}
      st = LancasterStemmer()
      for word in word_ls:
         if not word[0].isalpha():
            continue
         if word in ignoreWords:
            continue
         word_stem = st.stem(word)
         if word_stem in frequencies:
            frequencies[word_stem] += 1
         else:
            frequencies[word_stem] = 1

      sorted_frequencies = sorted(frequencies.iteritems(), key = operator.itemgetter(1), reverse =  True)
      #print sorted_frequencies

      max_words = 30
      if len(sorted_frequencies) < max_words:
         max_words = len(sorted_frequencies)
      word_tuples = sorted_frequencies[0:max_words]
      words = [tuple[0] for tuple in word_tuples]
      print words
      return words
开发者ID:schasins,项目名称:school-program-scraping,代码行数:30,代码来源:sfusd_demo.py


示例12: build_analyzer

    def build_analyzer(self):
        """
        Return a callable that handles preprocessing and tokenization
        """
        preprocess = self.build_preprocessor()
        tokenize = self.build_tokenizer()
        stemmer = LancasterStemmer()

        filter_meta = lambda doc: ' '.join([w for w in doc.split() if not w.startswith('~')])
        parse_words = lambda doc: tokenize(preprocess(filter_meta(self.decode(doc))))
        stem_words = lambda doc: [stemmer.stem(t) for t in parse_words(doc)]
        meta_func = lambda prefix: lambda doc: (t for t in self.decode(doc).split() if t.startswith(prefix))

        feat_func_map = {
            'word': lambda doc: self._word_ngrams(parse_words(doc), self.get_stop_words()),
            'stem': lambda doc: self._word_ngrams(stem_words(doc), self.get_stop_words()),
            '1st': lambda doc: ('~T:1st' for i in parse_words(doc) if i in first_person_words),
            '3rd': lambda doc: ('~T:3rd' for i in parse_words(doc) if i in third_person_words),
            'tag': lambda doc: self._word_ngrams([t[1] for t in nltk.pos_tag(parse_words(doc))]),
            'length': lambda doc: ['~L:%d' % (len(parse_words(doc)) / 5)],
            'genre': meta_func('~G'),
            'rating': meta_func('~Ra'),
            'votes': meta_func('~V'),
            'lang': meta_func('~La'),
            'country': meta_func('~Co'),
            'year': meta_func('~Y'),
            'runtime': meta_func('~Rt'),
            'type': meta_func('~T')
        }
        func_list = [feat_func_map.get(flag.strip()) for flag in self.analyzer.split(':')] \
            if type(self.analyzer) is str else None
        if not func_list:
            raise ValueError('%s is not a valid tokenization scheme/analyzer' % self.analyzer)
        else:
            return lambda doc: itertools.chain.from_iterable(f(doc) for f in func_list if callable(f))
开发者ID:sevengram,项目名称:ml-hw,代码行数:35,代码来源:classify.py


示例13: readText

def readText(textFile):			
	examples = []
	count = 0
	lexicon_en = {}
	lexicon_ge = {}
	stem_en = LancasterStemmer()
	stem_ge = nltk.stem.snowball.GermanStemmer()
	for line in open(textFile):
		count+=1
		if count % 1000 == 0:
			print count
		lans = line.lower().strip().split("|||")
		#german = [stem_ge.stem(x.decode('utf-8')) for x in lans[0].strip().split(" ")]
		german = lans[0].strip().split(" ")
		german = process(german)
		for wordx in german:
			for word in wordx:
				if word not in lexicon_ge:
					lexicon_ge[word]=1
				else:
					lexicon_ge[word]+=1
		eng = [stem_en.stem(x.decode('utf-8')) for x in lans[1].strip().split(" ")]
		#parse_en = pattern.en.parse(" ".join(eng))
		eng = lans[1].strip().split(" ")
		for word in eng:
			if word not in lexicon_en:
				lexicon_en[word]=1
			else:
				lexicon_en[word]+=1
		examples.append(Example(german,eng))
	return examples, lexicon_en, lexicon_ge
开发者ID:frederick0329,项目名称:sp2016.11-731,代码行数:31,代码来源:align-compound.py


示例14: prepare_corpus

def prepare_corpus(raw_documents):
    # remove punctuation
    print "Removing Punctuation"
    import string
    exclude = set(string.punctuation)
    raw_documents = [''.join(ch for ch in s if ch not in exclude) for s in raw_documents]

    # remove common words
    print "Calculating Stoplist"
    stoplist = set([x.rstrip() for x in codecs.open("stop_list.txt", encoding='utf-8') if not x.startswith("#")])
    stoplist = stoplist.union(set(nltk.corpus.stopwords.words("english")))
    # print stoplist

    print "Removing Stoplist and Stemming"

    from nltk.stem.lancaster import LancasterStemmer
    st = LancasterStemmer()

    texts = [[st.stem(word) for word in document.lower().split() if word not in stoplist]
             for document in raw_documents]

    # remove words that appear only once
    print "Removing Single Variables"
    all_tokens = sum(texts, [])
    tokens_once = set(word for word in set(all_tokens) if all_tokens.count(word) == 1)
    texts = [[word for word in text if word not in tokens_once]
             for text in texts]

    return texts
开发者ID:showandtellinar,项目名称:harbinger,代码行数:29,代码来源:main.py


示例15: tokenize_rest

def tokenize_rest(text):
    wnl =  WordNetLemmatizer()
    st = LancasterStemmer()
    words = nltk.word_tokenize(text)
    postag = nltk.pos_tag(words)
    
    tokens = []
    whfound=False
    for word in words:
        if word[0:2].lower() == 'wh' and not whfound:
            tokens.append({word.lower():'wh'})
            whfound = True
            continue
        elem=wnl.lemmatize(word)
        stem = st.stem(elem)
        synd = wn.synsets(stem)
        if not synd:
            stem = stemmer(elem)
            synd = wn.synsets(stem)
        if not synd:
            stem = elem
            synd = wn.synsets(stem)
        dbelement=detect(stem)
        if dbelement:
            for every_elem in dbelement:
                tokens.append({word:every_elem})
    print "\n Rest of possible Tokens"
    print tokens
    return tokens
开发者ID:kushalbhabra,项目名称:nltk-movie-db,代码行数:29,代码来源:tokens.py


示例16: get_pretrained_vector

def get_pretrained_vector(session, word2vec_model, vocab_path, vocab_size, vectors):
    print(vectors)
    with gfile.GFile(vocab_path, mode="r") as vocab_file:
        st = LancasterStemmer()
        counter = 0
        counter_w2v = 0.0
        while counter < vocab_size:
            vocab_w = vocab_file.readline().replace("\n", "")

            # vocab_w = st.stem(vocab_w)
            # for each word in vocabulary check if w2v vector exist and inject.
            # otherwise dont change value initialise randomly.
            if word2vec_model and vocab_w and word2vec_model.__contains__(vocab_w) and counter > 3:
                w2w_word_vector = word2vec_model.get_vector(vocab_w)
                print("word:%s c:%i w2v size %i" % (vocab_w, counter, w2w_word_vector.size))
                vectors[counter] = w2w_word_vector
                counter_w2v += 1
            else:
                vocab_w_st = st.stem(vocab_w)
                if word2vec_model and vocab_w_st and word2vec_model.__contains__(vocab_w_st):
                    w2w_word_vector = word2vec_model.get_vector(vocab_w_st)
                    print("st_word:%s c:%i w2v size %i" % (vocab_w_st, counter, w2w_word_vector.size))
                    vectors[counter] = w2w_word_vector
                    counter_w2v += 1
                else:
                    if not vocab_w:
                        print("no more words.")
                        break

            counter += 1
        print("injected %f per cent" % (100 * counter_w2v / counter))
        print(vectors)
    return vectors
开发者ID:jonathanmanfield,项目名称:deepreferendum,代码行数:33,代码来源:embeddings_utils.py


示例17: process

def process(reviews):
	#separate splitor
	from nltk.tokenize import word_tokenize
	review_tokenized = [[word.lower() for word in word_tokenize(review.decode('utf-8'))] for review in reviews]

	#remove stop words
	from nltk.corpus import stopwords
	english_stopwords = stopwords.words('english')

	review_filterd_stopwords = [[word for word in review if not word in english_stopwords] for review in review_tokenized]

	#remove punctuations
	english_punctuations = [',','.','...', ':',';','?','(',')','&','!','@','#','$','%']
	review_filtered = [[word for word in review if not word in english_punctuations] for review in review_filterd_stopwords]

	#stemming
	from nltk.stem.lancaster import LancasterStemmer
	st = LancasterStemmer()
	review_stemmed = [[st.stem(word) for word in review] for review in review_filtered]

	#remove word whose frequency is less than 5
	all_stems = sum(review_stemmed, [])
	stems_lt_three = set(stem for stem in set(all_stems) if all_stems.count(stem) == 1)
	final_review = [[stem for stem in text if stem not in stems_lt_three] for text in review_stemmed]

	return final_review
开发者ID:anirudhreddy92,项目名称:DataMining_Capstone,代码行数:26,代码来源:task6.py


示例18: train_lsi_model

    def train_lsi_model(self, texts, num_of_toptics=10):
        texts_tokenized = [[word.lower()
                          for word in word_tokenize(text)]
                          for text in texts]
        # remove the stop words and punctuations
        english_stop_words = stopwords.words('english')
        english_punctuations = [',', '.', ':', '?', '(', ')', '[',
                                ']', '@', '&', '!', '*', '#', '$', '%']
        texts_filtered = [[word for word in text_tokenized
                         if (not word in english_punctuations) and
                         (not word in english_stop_words)]
                         for text_tokenized in texts_tokenized]
        # stem the word
        st = LancasterStemmer()
        texts_stemed = [[st.stem(word) for word in text_filtered]
                       for text_filtered in texts_filtered]

        all_stems = sum(texts_stemed, [])
        stem_once = set(stem for stem in set(all_stems)
                        if all_stems.count(stem) == 1)
        cleaned_texts = [[stem for stem in text if stem not in stem_once]
                        for text in texts_stemed]

        dictionary = corpora.Dictionary(cleaned_texts)
        corpus = [dictionary.doc2bow(text) for text in cleaned_texts]
        tfidf = models.TfidfModel(corpus)
        corpus_tfidf = tfidf[corpus]
        lsi = models.LsiModel(corpus_tfidf, id2word=dictionary,
                              num_topics=num_of_toptics)
        result = lsi[corpus]
        return result
开发者ID:Nanguage,项目名称:pubmed_xml_analyze,代码行数:31,代码来源:similarity.py


示例19: lemmstem

def lemmstem(sentences):
    ''' This function is responsible for perfoming 
        the lemmarization and stemming of the words
        Input: A list of trees containing the sentences.
                All words are classificated by their NE type
        Output: Lemmatized/Stemmized sentences
    '''
    
    lmtzr = WordNetLemmatizer()
    st = LancasterStemmer()
    
    dic = {'VB' :wordnet.VERB,
            'NN': wordnet.NOUN,
            'JJ':wordnet.ADJ,
            'RB':wordnet.ADV }
    
    for sent in sentences:
      
        lvsidx=sent.treepositions('leaves') 
       
        for pos in lvsidx:
            word=sent[pos][0]
            tag = sent[pos][1]
            rtag = tag[0:2]
            if rtag in dic:
                lemm=lmtzr.lemmatize( word, dic[rtag] )
                stem=st.stem(lemm)
                #print word, lemm, stem #Linia maldita
                sent[pos]=(word, tag, stem)
            else:
                sent[pos]=(word, tag, word)
    
    return sentences
开发者ID:picarus,项目名称:MAI-INLP-ALB5,代码行数:33,代码来源:preprocessing_functions.py


示例20: word_standardize

def word_standardize(sentences): 	
    tokens = []
    sentences_st = []

    for sent in sentences:
        tokens.extend(word_tokenize(sent))
        sentences_st.append(word_tokenize(sent))
	
    words = tokens
    
    st = LancasterStemmer()

    words = [w.lower() for w in words]
    words = [w for w in words if not w in stopwords.words('english')]
    words = [w for w in words if not w in '!"#$%&\'()*+,-./:;<=>[email protected][\\]^_`{|}~']
    st_words = [st.stem(w) for w in words]

    sent_result = []
    for sent in sentences_st:
        sent = [w.lower() for w in sent]
        sent = [w for w in sent if not w in stopwords.words('english')]
        sent = [w for w in sent if not w in '!"#$%&\'()*+,-./:;<=>[email protected][\\]^_`{|}~']
        sent_result.append(sent)

    return st_words, sent_result
开发者ID:chqsark,项目名称:hightext,代码行数:25,代码来源:pullData.py



注:本文中的nltk.stem.lancaster.LancasterStemmer类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python porter.PorterStemmer类代码示例发布时间:2022-05-27
下一篇:
Python stem.WordNetLemmatizer类代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap